
Supplementary Materials A 

Aim 1: Simulated Single-Node Interventions 

To evaluate centrality and expected influence indices as measures of node importance, we 

simulated single-node interventions in randomly generated networks. We performed this process 

in three steps. 

In Step 1, we randomly generated networks. First, we used the erdos.renyi.game random graph 

generation tool from the R package igraph to create an unweighted and undirected adjacency 

matrix. We used the G (n, p) variant of the Erdős-Rényi graph model, with n (the number of 

nodes) set to 13 and p (the probability of an edge being present) set to .50. We chose these 

parameters so that the generated networks would have unweighted density comparable to the 

lasso network of complicated grief symptoms that was the focus of our Aim 2 analyses. The 

result of this generation tool is an unweighted and undirected network where edges indicate the 

presence of a relationship between two nodes, but not the strength of those relationships.  

 

We next assigned edge weights by multiplying the unweighted adjacency matrix produced by the 

Erdős-Rényi generation tool by a matrix of values randomly sampled from a gamma distribution 

(shape = .85, rate = 12) where the minimum value of the distribution was set to .05. We chose 

this distribution so that the distribution of edge weights was comparable to the lasso network of 

complicated grief symptoms that was the focus of our Aim 2 analyses. In the figure below, 

greater edge thickness signifies greater edge weight. Nodes with stronger edges are pushed to the 

center for the network by the Fruchterman-Reingold algorithm. 

 



As a final step in generating the network, we randomly assigned a specified proportion of edge 

weights to be negative. We randomly generated networks in each of 4 conditions: 0%, 5%, 10%, 

and 25% negative edges. In the example network presented here, 5% of edges are negative. In 

the figure below, positive edges appear in green and negative edges appear in red. 

 

To conclude step 1, we calculated the centrality and expected influence indices of the nodes in 

the network (see Table A1). In this example network, nodes 6 through 10 are highly central to 

the network, while other nodes (e.g., Nodes 12 and 13) have fewer and weaker edges connecting 

it to the rest of the network. 

 

 

 

 

 

 

 

 

 

The example of Node 5 is of particular relevance to the current study. Most nodes in this network 

have exclusively positive edges and, thus, their strength is equal to their EI1. However, for nodes 

with negative edges, such as Node 5, these measures diverge. Node 5 has relatively moderate 

node strength. However, because of its mix of positive and negative edges, Node 5 has the 

lowest expected influence scores of any node in the network. In other words, the strength index 

identifies Node 5 as having some modest importance within the network. The expected influence 

indices do not.  

Table A1. Centrality and expected influence indices for sample network 

Node Closeness Betweenness Strength EI1 EI2 

1 0.00624 2 0.739 0.739 1.296 

2 0.00670 8 0.640 0.640 1.127 

3 0.00687 6 0.767 0.557 1.067 

4 0.00577 6 0.623 0.623 1.063 

5 0.00620 0 0.633 0.277 0.596 

6 0.00836 26 1.199 1.199 2.015 

7 0.00690 4 0.948 0.948 1.658 

8 0.00739 16 0.898 0.898 1.615 

9 0.00684 6 0.941 0.941 1.662 

10 0.00663 18 0.904 0.759 1.366 

11 0.00731 6 0.741 0.741 1.420 

12 0.00550 0 0.392 0.392 0.721 

13 0.00467 0 0.373 0.373 0.657 



In Step 2, we simulated the dynamics of the network by iteratively calculating the activation of 

each node at Time 2 (xit) as a function of the value of all remaining nodes in the network at Time 

1 (xjt-1) weighted by the edges shared between node i and node j (      ). In doing so, we made 

several assumptions about nodes, edges, and networks. First, we assumed that nodes cannot have 

negative activation and that nodes cannot increase in severity indefinitely. We further assumed 

that increases in activation are not linear and that, at high levels of node activation, more 

incoming influence from other nodes is needed to increase node activation than is needed at 

lower levels of node activation.  We made no such assumption as node activation approaches 0. 

To incorporate these assumption into the simulation, we used an arctangent function multiplied 

by 2/pi to constrain node activation below 1 and a domain restriction to constrain node activation 

above 0. For these simulations, we defined the value of node i at Time 2 purely as a function of 

the remaining nodes in the network and did not incorporate external influence or self-loops. 

    
 

 
                

 

 
            

 

   

  

We assigned all nodes an initial starting value of .50 and performed 30 iterations of this network 

to allow it to reach of point of stable activation in which the amount of incoming influence for 

the nodes in the network is insufficient to further increase activation of those nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2. Node activation in example network 

Node Start Iteration 30 

1 0.50 0.71 

2 0.50 0.67 

3 0.50 0.66 

4 0.50 0.66 

5 0.50 0.46 

6 0.50 0.81 

7 0.50 0.77 

8 0.50 0.76 

9 0.50 0.77 

10 0.50 0.73 

11 0.50 0.73 

12 0.50 0.54 

13 0.50 0.51 

Network Activation 6.50 8.78 



In Step 3, we evaluated the effect of “deactivating” a single node by setting the activation of the 

target node to 0 and then repeating the simulation of the network dynamics as described in Step 

2. We again performed 30 iterations of this network to allow the network to reach a new point of 

stability. The figure below depicts the effect on overall network activation induced by 

intervening on Node 1.  

 

 

 

 

 

 

 

Deactivating Node 1 led to an overall change in network activation of 1.20. However, much of 

that change in overall network activation was due to the removal of Node 1 itself, which was 

reduced from .71 to 0. To avoid any confounding effects of incorporating the target node into our 

assessment of network change, we then calculated the change in the remainder of the network 

(1.20 - 0.71 = 0.49). We repeated this process for each node in the network. Table A3 includes the 

centrality and expected influence indices from Step 1 and the observed influence of “treating” each node.  

 

Table A3. Centrality, expected influence, and observed node influence in example network 

 Centrality Expected influence Observed Influence 

Node Closeness Betweenness Strength EI1 EI2 

Overall 

Change 

Remainder 

Change 

1 0.00624 2 0.739 0.739 1.296 1.20 0.49 

2 0.00670 8 0.640 0.640 1.127 1.05 0.38 

3 0.00687 6 0.767 0.557 1.067 0.92 0.26 

4 0.00577 6 0.623 0.623 1.063 1.06 0.40 

5 0.00620 0 0.633 0.277 0.596 0.52 0.06 

6 0.00836 26 1.199 1.199 2.015 1.97 1.16 

7 0.00690 4 0.948 0.948 1.658 1.49 0.72 

8 0.00739 16 0.898 0.898 1.615 1.44 0.68 

9 0.00684 6 0.941 0.941 1.662 1.49 0.72 

10 0.00663 18 0.904 0.759 1.366 1.26 0.53 

11 0.00731 6 0.741 0.741 1.420 1.13 0.40 

12 0.00550 0 0.392 0.392 0.721 0.69 0.14 

13 0.00467 0 0.373 0.373 0.657 0.66 0.15 



Finally, to conclude step 3, we calculated the correlation of each of the centrality and expected 

influence indices with observed influence. In this example network, closeness, r (11) = .77, 

betweenness, r (11) = .78, and strength, r (11) = .90 were all strongly correlated with observed 

node influence. However, one-step expected influence, r (11) = .98, and two-step expected 

influence, r (11) = .96, exhibited notably higher correlations. The reason for this stronger 

correlation can be seen in the figures below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As previously noted, the centrality and expected influence indices make different predictions 

about the importance of Node 5. The centrality and expected influence indices diverge for this 

node because it has negative edges. The closeness index identifies Node 5 has having some 

modest importance, assigning it greater importance than three other nodes in the network. In 

contrast, EI1 identifies it as the least important node in the network. Consistent with this latter 

prediction, Node 5 exhibited the lowest observed influence on the network. That is, “treating” 

Node 5 had minimal cumulative impact on the other nodes and less impact than treating any 

other node in the network. The closeness index failed to predict this low observed influence 

because it failed to distinguish between positive and negative edges. A similar pattern can be 

observed for Node 3, another node with a strong negative edge. Together, these finding illustrate 

the advantage of the expected influence indices in identifying influential nodes.  

 



To obtain a reliable estimate of centrality and expected influence and their relation to observed 

node influence, we repeated this single node intervention 500 times in each of our four 

conditions (0%, 5%, 10, and 25% negative edges). The results of these analyses appear in Figure 

1 in the manuscript text. The figure below presents the findings for closeness and one-step 

expected influence in networks with all positive edges and in networks with 25% negative edges. 

In networks with positive edges, expected influence was consistently very strongly associated 

with observed node influence, M = .96 (.03) and tended to remain strongly correlated with it 

even in networks with 25% negative edges, M = .80 (.16). In contrast, closeness was strongly 

correlated with observed influence in networks with positive edges, M = .82 (.09), but is, on 

average, only moderately correlated with observed node influence in networks with 25% 

negative edges. Moreover, as seen in the distribution in the lower left panel of the figure below, 

the correlation was not even minimal (r = .10) in a non-trivial number of trials. In other words, in 

networks with a high proportion of negative edges, closeness was not consistently strongly 

correlated with observed node influence.   

 

 

 

  

Positive 

Edges Only 

25% Negative 

Edges 

Closeness EI1 

M=.82 (.09)  M=.96 (.03)  

M=.45 (.30)  M=.80 (.16)  



 

Supplementary Materials B 

Aim 2: Node Change and Network Change 

 

Figure B1. Histogram depicting the change in overall network activation from 6 to 18-months 

post loss.  

M (SD) = -2.86 (4.88) 



 

Table B1  

Mean and standard deviation of individual node change from Time 1 to Time 2 and correlations 

between node activation change and change in activation of the remainder of the network from 

Time 1 to Time 2 

Note. Change in the rest of the network was calculated as overall network change – change in the 

node of interest. Accordingly the “network change” variable differs for each node.    

 

Node Change 

Correlation Between Node Change and 

Change in the Rest of the Network 

 
M SD r [95% CI] p 

B1_Yearning -0.20 1.25 .25 [.11, .37] .001 

B2_Emotional Pain -0.46 0.76 .31 [.18, .43] < .001 

B3_Thoughts Person -0.21 0.60 .13 [-.01, .27] .062 

B4_Thoughts Death -0.14 1.17 .21 [.08, .34] .003 

C1_Difficulty Accepting -0.30 1.01 .34 [.21, .46] < .001 

C2_Numbness/Disbelief -0.25 0.89 .18 [.04, .31] .014 

C4_Bitterness about loss -0.08 0.71 .18 [.04, .31]     .012 

C5_Regret 0.01 0.78 .19 [.05, .32] .009 

C6_Avoidance -0.06 0.82 .05 [-.09, .19] .489 

C9_Loneliness -0.14 0.69 .15 [.01, .28] .039 

C10_Life Empty -0.30 0.86 .44 [.33, .55] < .001 

C11_Diminished Identity -0.54 1.21 .26 [.12, .38] < .001 

C12_Future -0.12 1.00 .15 [.01, .28] .042 



Supplementary Materials C 

Aim 2: Lasso Network Findings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1.  Lasso network for nodes of CG at 6 months post-loss. Each node represents a 

symptom of CG.  Each edge represents the L1-regularized covariance between two nodes after 

accounting statistically for the effect of the remaining nodes in the network between two nodes. 

Thicker edges signify stronger associations. Nodes with stronger inter-node associations appear 

in the center for the network.   

  



Table C1  

Reliability Assessment of Centrality and Expected influence Indices at 6-months post-loss in 

Lasso Network 

 

 

 

 

 

 

Note. To examine the reliability of centrality indices within Time 1, we conducted Spearman 

correlation permutation tests (cf. Courrieu, Brand-D’Abrescia, Peereman, Spieler, & Rey, 2010 ). 

Similar analyses have been used to test the reproducibility of network metrics in neuroimaging 

research (Telesford et al., 2010 ). For this analysis, we divided the Time 1 dataset into two 

equally sized samples composed of independent subjects. Then, following the identical 

procedures as the main analysis in the current study, we calculated network centrality indices 

separately for each sample and conducted the Spearman correlation between these indices to test 

whether the two samples resulted in similar centrality metrics for each node. We then permuted 

this process - conducting the Spearman correlation on the centrality metrics of two randomly 

divided Time 1 samples – 10,000 times to establish a distribution of Spearman correlation values 

for the Time 1 network centrality indices. Computer code for the analyses was written in R using 

the qgraph package and Python, using packages pandas 0.16.2 (McKinney, 2010), numpy 1.9.2 

(van der Walt, Colbert, and Varoquaux, 2011), scipy 0.15.1 (Millman & Aivazis, 2011). The 

reliability analyses were carried out in R and Python. 

 

 

 

 

 

 

 

Centrality/EI Index M SD 
 

Closeness 0.48 0.20  

Strength 0.42 0.20  

Betweenness 0.37 0.23  

EI1 0.58 0.18  

EI2 0.54 0.17  
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Supplementary Materials D 

Aim 2: Association Network Findings 

 

Figure D1. Association network for nodes of CG at 6 months post-loss. Each node represents a 

symptom of CG.  Each edge represents the zero-order Pearson product-moment correlation 

between two nodes. Thicker edges signify stronger correlations. Edges not statistically 

significant were omitted from the network. Nodes with stronger inter-node associations appear in 

the center for the network.   

  



 

Table D1  

 

Indices of Node Centrality for the Association Network of Complicated Grief Symptoms at 6 

Months Post-loss 

Note. EI1 = one-step expected influence. EI2 = two-step expected influence.  

 

 

 

 

 

 

 

 

 
Time 1: 6 Months Post-Loss 

 
Strength Closeness Betweenness EI1 EI2 

B1_Yearning 3.543 0.022 2 3.543 15.956 

B2_Emotional Pain 4.419 0.028 8 4.419 19.366 

B3_Thoughts Person 2.565 0.018 0 2.271 10.811 

B4_Thoughts Death 3.867 0.025 10 3.867 16.917 

C1_Difficulty Accepting 3.566 0.023 2 3.566 15.935 

C2_Numbness/Disbelief 4.119 0.026 8 4.118 18.181 

C4_Bitterness about loss 3.250 0.021 0 3.250 14.544 

C5_Regret 1.803 0.014 0 1.803 8.304 

C6_Avoidance 1.774 0.014 0 1.439 7.051 

C9_Loneliness 3.391 0.022 0 3.391 15.552 

C10_Life Empty 4.365 0.027 4 4.364 19.248 

C11_Diminished Identity 3.266 0.021 0 3.225 14.786 

C12_Future 3.208 0.021 0 3.208 14.798 



 

Table D2  

Reliability Assessment of Centrality and Expected influence Indices at 6-months post-loss in 

Association Network 

 

 

 

 

 

 

Note. To examine the reliability of centrality indices within Time 1, we conducted Spearman 

correlation permutation tests (cf. Courrieu, Brand-D’Abrescia, Peereman, Spieler, & Rey, 2010 ). 

For further details, see Supplementary Materials C: Table C1.  

  

Centrality Index M SD 
 

Closeness 0.71 0.10  

Strength 0.72 0.10  

Betweenness 0.46 0.22  

EI1 0.74 0.09  

EI2 0.72 0.10  



Table D3 

Correlations with 95% Confidence Intervals Among Centrality Indices, Expected Influence Indices, and the Strength of Association 

Between CG Node Activation Change and CG Network Activation Change from 6- to 18-months Post-loss  

 Centrality Expected influence 

 Closeness Betweenness Strength EI1 EI2 

Betweenness    .74 [.32,.92]     

Strength >.99 [.98,1.00]  .69 [.22,.90]    

EI1   .99 [.96,1.00]  .67 [.20,.89] >.99 [.98,1.00]   

EI2   .98 [.94,1.00]  .64 [.14,.88]   .99 [.98,1.00] >.99 [.98,1.00]  

Node-Network 

Association 
  .67 [.19, .89]  .35 [-.25, .75]   .68 [.21, .90]   .69 [.23, .90]   .68 [.21, .90] 

Note. We calculated the centrality and expected influence indices from an association network of CG symptoms at 6 months post-loss. 

All indices were strongly correlated with one another. Two of the three centrality indices and both expected influence indices were 

strongly and significantly associated with the strength of association between node change and network change. Although 

betweenness exhibited a moderate correlation with the node change-network change association, this finding was not statistically 

significant.  


