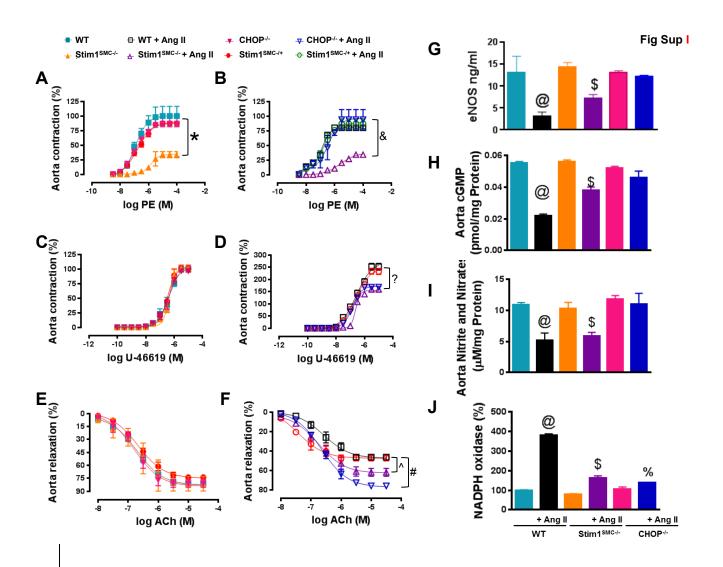
Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction


Modar Kassan^{1,2,4}, Karima Ait-Aissa², Eman Radwan², Vishal Mali², Samuel Haddox², Mohanad Gabani⁴, Wei Zhang³, Souad Belmadani², Kaikobad Irani⁴, Mohamed Trebak^{3*}, Khalid Matrougui^{1,2*}

Short title: STIM1 and cardiovascular dysfunction

¹Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112 (M.K and K.M); ²Department of Physiological Sciences, EVMS, Norfolk, VA 23501 (M.K, K.M and K.A); ³Penn State University College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033 (M.T); ⁴University of Iowa, Department of Internal Medicine, Iowa City, IA 52242.

^{*}Co-senior authors: correspondence should be addressed to either Khalid Matrougui, PhD., Department of Physiological Sciences, EVMS, Norfolk, VA 23501; phone: 757-446-5278; email: matrouk@evms.edu; or Mohamed Trebak, PhD., Penn State Hershey College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033-0850, phone: 717-531-8152; email: mtrebak@hmc.psu.edu

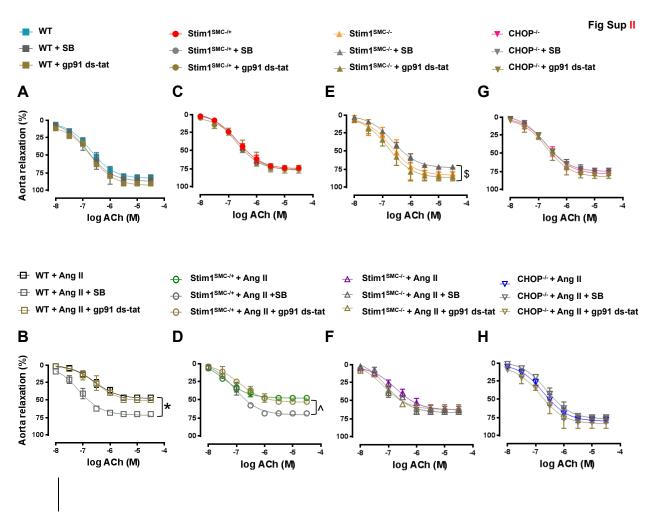

Subject Codes: Basic / Vascular Biology / Cell Signaling/Signal Transduction Word account: 6468 Total number of figures and tables: 5 TOC category: basic studies TOC subcategory: Vascular Biology

Figure Supp I.- STIM1 and CHOP mediate hypertension-induced cardiac damage and fibrosis. Wire Myograph vascular reactivity showing Contraction response to phenylephrine (**A**, **B**, **n=5-6**) and thromboxaneA2 analogue U-46619 (**C**, **D**, **n=5**), and endothelial-dependent relaxation in response to acetylcholine (**E**, **F**, **n=5**) in thoracic aorta from in mesenteric resistance arteries from WT, heterozygous (Stim1^{SMC-/+}) and homozygous Stim1 knockout specifically in smooth muscle (Stim1^{SMC-/-}), and CHOP knockout (CHOP^{-/-}) mice infused with saline or Ang II. cGMP levels were determined using a sandwich enzyme-linked immunosorbent assay (**G**, **n=3**) Elisa showing eNOS levels (**I**, **n=3**), and nitrites/nitrate levels were determined using the Griess reaction (**H**, **n=3**), and NADPH oxidase using lucigenin chemiluminescence assays (**J**, **n=5**), in thoracic aortas from WT, Stim1^{SMC-/-} and CHOP^{-/-} mice infused with saline or Ang II.

Two-way repeated measured ANOVA followed by *Tukey's Post-Hoc test* was applied for figures (A, B, C, D, E, F). One-way ANOVA followed by *Bonferroni Post-Hoc test* was applied for figures (G, H, I, J).

*p<0.05 between STIM^{SMC-/-} vs WT, STIM^{SMC-/+}, and CHOP^{-/-}. *p<0.05 between STIM^{SMC-/-} + AngII vs WT + Ang II, STIM^{SMC-/+} + Ang II, CHOP^{-/-} + Ang II. [?]p<0.05 between STIM^{SMC-/-} + AngII, CHOP^{-/-} + Ang II VS WT + Ang II, STIM^{SMC-/+} + Ang II. [^]p<0.05 between WT + Ang II, STIM^{SMC-/+} + Ang II + Ang II, STIM^{SMC-/+} + Ang II + An

Figure Supp. II.- STIM1 and CHOP regulate hypertension-induced vascular damage. Wire Myograph vascular reactivity showing endothelial-dependent relaxation in response to acetylcholine before and after incubation with TGF- β inhibitor (SB431542) and NADPH oxidase inhibitor (gp91 ds-tat) in thoracic aorta from:

- WT mice infused with saline or AngII (A, B, n=5)

- Heterozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/+}) mice infused with saline or AngII (C, D, n=5)

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with saline or AngII (E, F)

- CHOP knockout (CHOP^{-/-}) mice infused with saline or AngII (G, H, n=5)

Two-way repeated measured ANOVA followed by *Tukey's Post-Hoc test* was applied for figures (A, B, C, D, E, F, G, H).

*p<0.05 between WT + Ang II + gp91 ds-tat, WT + Ang II vs WT + Ang II + SB. p<0.05 between STIM^{SMC-/+} + Ang II + gp91 ds-tat, STIM^{SMC-/+} + Ang II vs STIM^{SMC-/+} + Ang II + SB.

Kassan et al.

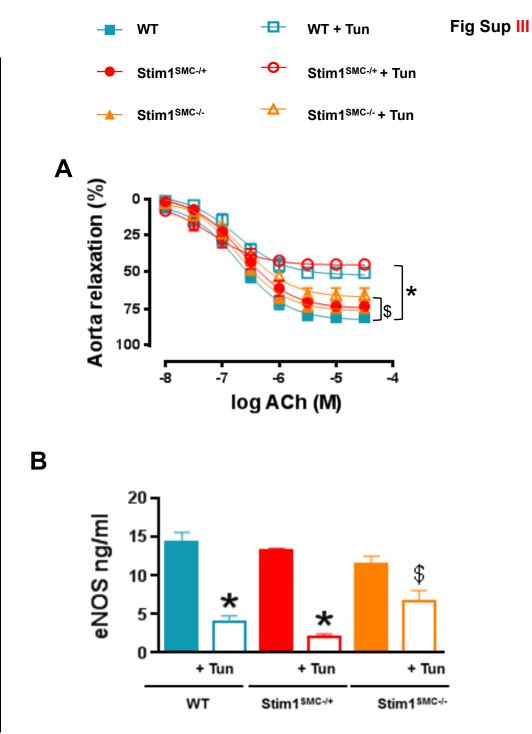


Figure Supp. III.- Effect of Tunicamycin-induced ER stress on vascular reactivity in STIM1 knockout mice. Wire Myograph vascular reactivity showing endothelial-dependent relaxation in response to acetylcholine (A, n=5) and eNOS levels (B, n=3) in thoracic aorta from WT, heterozygous (Stim1^{SMC-/+}) and homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice treated with saline or Tunicamycin.

Two-way repeated measured ANOVA followed by *Tukey's Post-Hoc test* was applied for figure (A). One-way ANOVA followed by *Bonferroni Post-Hoc test* was applied for figure (B).

p<0.05 between STIM^{SMC-/+} + Tunica vs WT, STIM^{SMC-/-}, STIM^{SMC-/+}. p<0.05 between STIM^{SMC-/+} + Tunica, WT + Tunica vs STIM^{SMC-/+} + Tunica, WT, STIM^{SMC-/-}, STIM^{SMC-/+}. p<0.05 between STIM^{SMC-/-} + Tunica vs STIM^{SMC-/+} + Tunica and WT + Tunica.

Fig Sup IV

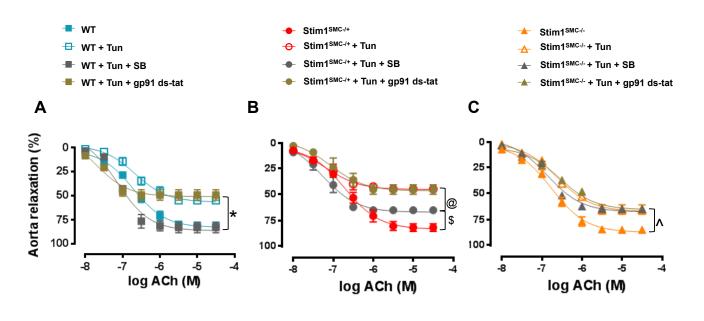


Figure Supp. IV.- Effect of inhibition of NADPH oxidase and TGF-ß signaling on Vascular reactivity in tunicamycin-treated STIM1 knockout mice. Wire Myograph vascular reactivity showing endothelial-dependent relaxation in response to acetylcholine before and after incubation with TGF- β inhibitor (SB431542) and NADPH oxidase inhibitor (gp91 ds-tat) in thoracic aorta from:

- WT mice treated with saline or Tunicamycin (A, n=5)

- Heterozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/+}) mice treated with saline or Tunicamycin (**B**, **n=5**)

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice treated with saline or Tunicamycin (C, n=5)

Two-way repeated measured ANOVA followed by Tukey's Post-Hoc test was applied for figures (A, B, C)

*p<0.05 between WT + Tunica, WT + Tunica + gp91 ds-tat vs WT + Tunica + SB. *p<0.05 between STIM^{SMC-/+} vs STIM^{SMC-/+} + Tunica + SB. @p<0.05 between STIM^{SMC-/+} + Tunica + SB vs STIM^{SMC-/+} + Tunica, STIM^{SMC-/+} + Tunica + gp91 ds-tat. \hat{p} <0.05 between WG/ STIM^{SMC-/-} vs STIM^{SMC-/-} + Tunica, STIM^{SMC-/-} + Tunica + gp91 ds-tat, STIM^{SMC-/-} + STIM^{SMC-/-} + Tunica + SB.

Kassan et al.

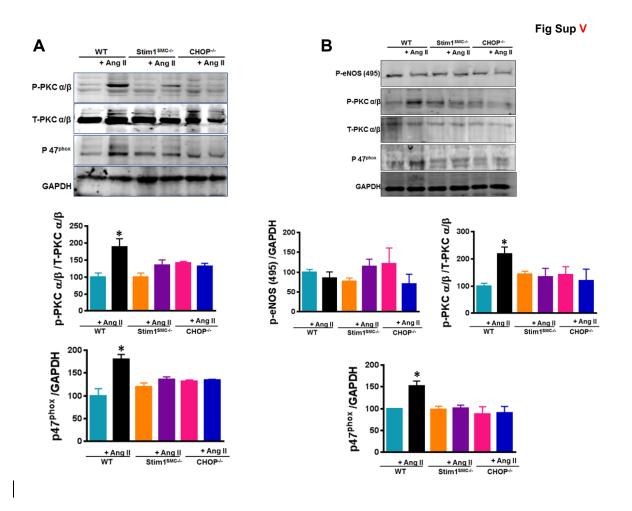
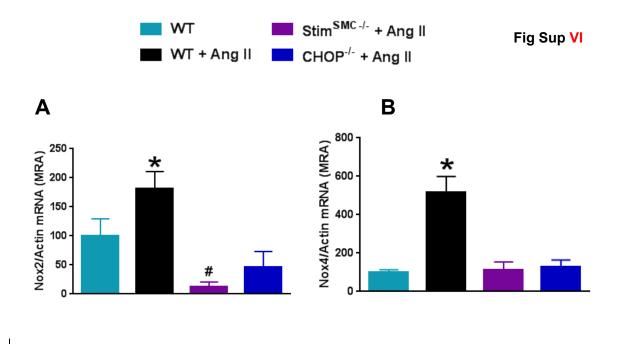


Figure Supp. V.- Effect of STIM1 and CHOP deletion on hypertension-induced uncoupling eNOS and NADPH oxidase. Western blot analysis and quantification for uncoupled eNOS markers (eNOS T495, P and T-PKC α/β) and NADPH oxidase subunit p47 phox in mesenteric arteries (MRA, A, n=4) and thoracic aorta (B, n=4) from:


- WT mice infused with saline or Angiotensin II

- CHOP knockout mice infused with saline or Angiotensin II.

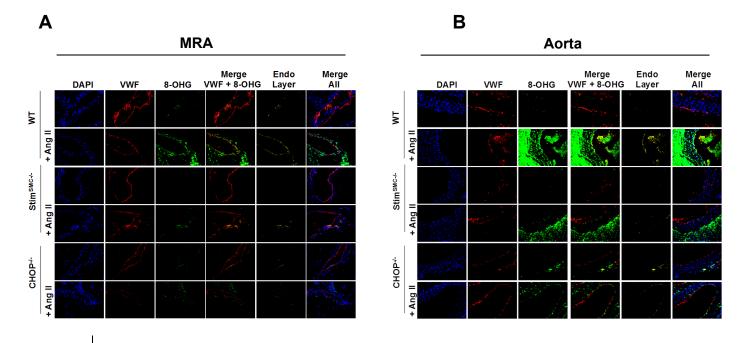
- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with saline or Angiotensin II.

One-way ANOVA followed by Bonferroni Post-Hoc test was applied for figures (A, B).

 $^{*}p<0.05$ between WT + Ang II vs WT, CHOP-/-, CHOP-/- Ang II, STIM^{SMC-/-} and STIM^{SMC-/-} + Ang II.

Figure Supp. VI.- Effect of STIM1 and CHOP deletion on NADPH oxidase subunits during hypertension. Real Time PCR showing the mRNA expression of Nox1 (A, n=3-4), Nox2 (B, n=3-4) and Nox4 (C, n=3-4) in mesenteric arteries (MRA) from:

- WT mice infused with saline or Angiotensin II

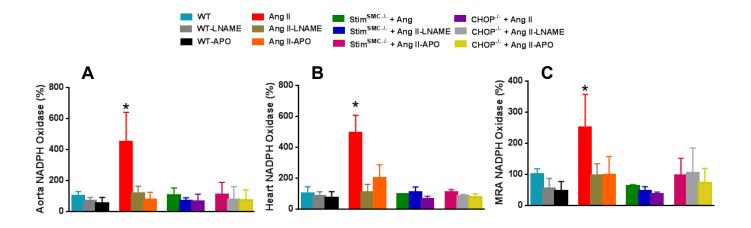

- CHOP knockout mice infused with Angiotensin II.

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with Angiotensin II.

One-way ANOVA followed by Bonferroni Post-Hoc test was applied for figures (A, B).

*p<0.05 between WT + Ang II vs WT, CHOP-/- + Ang II and STIM^{SMC-/-} + Ang II. #p<0.05 between STIM^{SMC-/-} + Ang II vs WT and CHOP-/- + Ang II.

Fig Sup VII


Figure Supp. VII.- Effect of STIM1 and CHOP deletion on oxidative stress. Immunostaining showing the expression of 8-hydroxy-2-deoxyguanosine (8-OHD) in mesenteric arteries (MRA, **A**, **n=3**) and thoracic aorta (**B**, **n=3**) from:

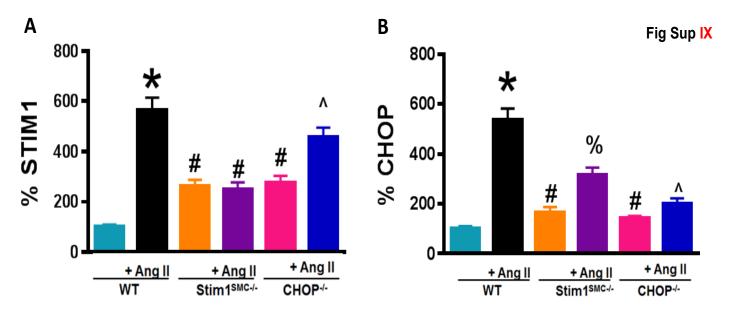
- WT mice infused with saline or Angiotensin II

- CHOP knockout mice infused with saline or Angiotensin II.

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with saline or Angiotensin II.

Fig Sup VIII

Figure Supp. VIII.- Effect of STIM1 and CHOP deletion on NADPH oxidase activity during hypertension. Luminometer showing the NADPH oxidase activity in the presence and absence of L-NAME and Apocynin in mesenteric arteries (MRA, **A**, **n=4**), heart (**B**, **n=4**) and thoracic aorta (**C**, **n=4**) from:


- WT mice infused with saline or Angiotensin II

- CHOP knockout mice infused with Angiotensin II.

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with Angiotensin II.

One-way ANOVA followed by Bonferroni Post-Hoc test was applied for figures (A, B, C)

^{*}p<0.05 between WT + Ang II vs WT \pm L-NAME or Apocynin, WT + Ang II \pm L-NAME or Apocynin, STIM^{SMC-/-} + Ang II \pm L-NAME or Apocynin and CHOP^{-/-} + Ang II \pm L-NAME or Apocynin.

Figure Supp. IX.- Effect of Angiotensin II on STIM1 and CHOP in heart. Quantification of STIM1 **(A)** and CHOP **(B)** in heart (n=4) from:

- WT mice infused with saline or Angiotensin II

- CHOP knockout mice infused with Angiotensin II.

- Homozygous Stim1 knockout specifically in SMC (Stim1^{SMC-/-}) mice infused with Angiotensin II.

One-way ANOVA followed by Bonferroni Post-Hoc test was applied for figures (A, B).

*p<0.05 between WT+ Ang II vs WT, STIM^{SMC-/-}, STIM^{SMC-/-} + Ang II, CHOP^{-/-} and CHOP^{-/-} + Ang II.

#p<0.05 between WT vs STIM^{SMC-/-}, STIM^{SMC-/-} + Ang II, CHOP-/-.

^p<0.05 between CHOP-/- + Ang II vs WT, STIM^{SMC-/-}, STIM^{SMC-/-} + Ang II, CHOP-/-.

%p<0.05 between STIM^{SMC-/-} + Ang II vs WT, STIM^{SMC-/-} , CHOP^{-/-} and CHOP^{-/-} + Ang II.

Kassan et al.

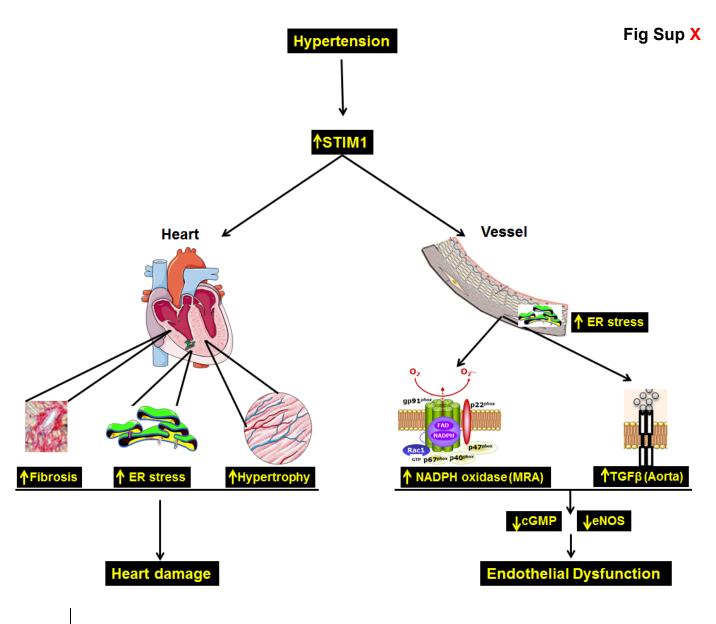


Figure Supp. 9.- schematic summarizing the main findings.