Supporting Information

Indium-based and iodine-based labeling of HPMA copolymer–epirubicin conjugates: Impact of structure on in vivo fate

Libin Zhang^a, Rui Zhang^a, Jiyuan Yang^a, Jiawei Wang^a, Jindřich Kopeček^{a,b,*}

^aDepartment of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA, ^bDepartment of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA

* Corresponding author: Jindřich Kopeček, Center for Controlled Chemical Delivery, 20 S 2030 E, BPRB 205B, University of Utah, Salt Lake City, UT 84112-9452, USA. Phone: (801) 581-7211; Fax: (801) 581-7848.

E-mail address: jindrich.kopecek@utah.edu (J. Kopeček)

Table of Content

د

I. Synthesis schemes	
1. Synthesis of Tyr-C三CH	(Fig.S1)
2 Synthesis of MA-GFLG-Abu(N ₃)-EPI and MA-GFLG-Abu(Tyr)-EPI	(Fig.S2)
3 Synthesis of CTA-GFLG-CTA	(Fig.S3)
4 Synthesis of conjugates P-EPI and P-EPI(Tyr)	(Fig.S4)
5 Synthesis of conjugates P-DTPA	(Fig.S5)
6.Synthesis of 1 st generation conjugate P-DTPA-EPI(Tyr)	(Fig.S6)
II. Characterization of monomers, RAFT agent and conjugates	
1. HPLC (left) and MALDI-TOF-MS (right) analysis of MA-GFLG-Abu(N_3)-EPI	(Fig.S7)
HPLC (left) and MALDI-TOF-MS (right) analysis of MA-GFLG-Abu(Tyr)-EPI	(Fig.S8)
HPLC (left) and MALDI-TOF-MS (right) analysis of CTA-GFLG-CTA	(Fig.S9)
4.FPLC analysis and characterization of copolymer conjugates P-EPI,P-EPI(Tyr) and P-DTPA	(Fig.S10)
5. Standard curves for determination of amine and epirubicin content	(Fig.S11)
6. Standard curve for determination of DTPA content	(Fig.S12)
III. Papain cleavage	(Fig.S13)
IV. Tritosomes cleavage	(Fig.S14)
V. Tumor-to-tissue uptake ratios	(Fig.S15)

Fig. S2. Synthesis of MA-GFLG-Abu(N₃)-EPI and MA-GFLG-Abu(Tyr)-EPI.

Fig. S3. Synthesis of CTA-GFLG-CTA.

Fig. S4. Synthesis of conjugates P-EPI and P-EPI(Tyr).

Synthesis of P-DTPA

An ampoule containing 80 mg of HPMA, 4 mg of MA-GG-EPI and 10 mg of MA-GFLG-NHBoc was attached to the Schlenk-line. After three vacuum-nitrogen cycles to remove oxygen, 60 µL degassed MeOH was added and stirred at room temperature. CTA (2 mg/mL × 115 µL) in degassed MeOH and 2 mg/mL × 43 µL of VA-044 in degassed MeOH were added via syringe under magnetic stirring and bubbled with N_2 for 10 min in ice bath. The ampoule was sealed, and polymerization was performed at 44 °C for 22 h. The copolymer was obtained by precipitation into acetone/ethyl ether (3:1) and purified by redissolving in methanol and precipitation in acetone/ethyl ether (3:1) two more times. The copolymer was isolated as red powder and dried under vacuum. Yield: 33 mg of P-EPI-NHBoc (34%). After end-modification with 40-times excess of V-65, 33 mg of copolymer P-EPI-NHBoc was dissolved in 500 µL H₂O and added 500 µL TFA. The mixture was stirred in ice for 30 min. After removing the solvent, 31 mg red powder was obtained by precipitation into acetone/ethyl ether (3:1). The red powder (31 mg) was dissolved in 600 µL NaHCO₃ (0.2 M) buffer containing 10 mM EDTA (pH 8.5), then mixed with p-SCN-Bn-DTPA (10 mg) in 200 µL DMSO. After stirring at room temperature overnight, the sample was applied to a pre-equilibrated PD-10 Sephadex G25 column (GE Healthcare) with DI H₂O for primary purification. The fraction of 2.5–4.5 mL was collected and further purified by ultrafiltration (30,000 Da cut-off) with NaHCO₃ buffer three times and DI H₂O three times. The final product in DI H₂O was freeze dried to remove solvent (8.5 mg, 26%). DTPA and EPI contents of the copolymer were determined spectrophotometrically as 49 and 19 nmol/mg polymer, respectively.

Fig. S5. Synthesis of conjugate P-DTPA.

Fig. S6. Synthesis of 1^{st} generation conjugate P-DTPA-EPI(Tyr) by copolymerization of MA-GFLG-Abu(N₃)-EPI with HPMA and APMA. Tyrosine residue was incorporated via Cu(I) assisted alkyne-azide click reaction. DTPA was attached to backbone via pendent amino group modification with *p*-SCN-Bn-DTPA. The polymer precursor was then labeled with ¹²⁵I and ¹¹¹In, consecutively.

Fig. S7. HPLC (left) and MALDI-TOF-MS (right) analysis of MA-GFLG-Abu(N₃)-EPI.

Fig. S8. HPLC (left) and MALDI-TOF-MS (right) analysis of MA-GFLG-Abu(Tyr)-EPI.

Fig. S9. HPLC (left) and MALDI-TOF-MS (right) analysis of CTA-GFLG-CTA.

Fig. S10. FPLC analysis and characterization of copolymer conjugates P-EPI (blue) and P-EPI(Tyr) (red).

Fig. S11. APMA standard curve for ninhydrin assay (A), and EPI standard working curve (B).

Fig. S12. Relationship between the absorbance of the yttrium complex of arsenazo **III** at 652 nm and the molarity of *p*-SCN-Bn-DTPA.

Cleavage of P-DTPA-EPI(Tyr) and 2P-DTPA-EPI(Tyr) by papain

Glutathione (35.5 mg/mL × 16.8 μ L) in McIlvaine's buffer (50 mM citrate/0.1 M phosphate, pH 6.0) was added to a papain solution (1.68 mg in 168 μ L McIlvaine's buffer) and activated at 37 °C for 5 min. P-DTPA-EPI(Tyr) (0.95 mg) or 2P-DTPA-EPI(Tyr) (0.7 mg) was added into a 1.5 mL tube followed by adding 60 μ L of papain solution and incubated at 37 °C. After 4 h, 140 μ L EtOH was added and the mixture was centrifuged for 5 min (13 000 rpm). The supernatant was analyzed by HPLC at 495 nm detection.

Fig. S13. (A) 1st and 2nd generation conjugates P-DTPA-EPI(Tyr) (0.95 mg) and 2P-DTPA-EPI(Tyr) (0.7 mg) were exposed to model enzyme papain solution (10 mg/mL × 168 μ L). After incubation at 37 °C for 4 h, the reaction mixture was analyzed by HPLC which showed that the conjugate P-DTPA-EPI(Tyr) wide peak at 17.4 min almost disappeared accompanied by the emergence of a new peak at 15.5 min corresponding to cleavage product. (B) MALDI-TOF-MS analysis of the new peak showed that papain cleavage of the conjugate yielded two products of glycine-EPI-Tyr ([G-EPI-Tyr+Na]⁺, 1024.39) and EPI-Tyr ([EPI-Tyr+Na]⁺, 967.37). The results indicated that tyrosine moiety was still coupled with EPI after cleavage from P-DTPA-EPI(Tyr) by papain. Papain cleavage products of 2nd generation conjugate 2P-DTPA-EPI(Tyr) were the same as 1st generation conjugate P-DTPA-EPI-Tyr with a little slower cleavage rate.

Cleavage of P-DTPA by Tritosomes

For Tritosomes cleavage of P-DTPA, the low molecular weight products in reaction mixture were removed by ultrafiltration (10,000 Da cut-off) with DI H₂O four times. The supernatant of copolymer was analyzed using working curves (Figs. S11B and S12) to calculate the ratio of DTPA/EPI of the samples. In P-DTPA, EPI bound via nondegradable GG spacer was used as internal standard; release of DTPA resulted in the change of the DTPA/EPI ratio. The initial DTPA/EPI ratio of P-DTPA was considered as 100% before Tritosomes cleavage. From the change in the DTPA/EPI ratio the cleavage percent rate was calculated. Time intervals: 1 min, 1, 2, 4, 6, 8, 23, and 48 h.

Fig. S14. Time profile of P-EPI(Tyr), P-EPI and P-DTPA cleavage by Tritosomes: Purple line – release of EPI from P-EPI; red line – release of Gly-EPI-Tyr + EPI-Tyr from P-EPI(Tyr); green line – release of unmodified EPI from P-EPI(Tyr); blue line – release of DTPA from P-DTPA. Tritosomes (480 μ L) were incubated with conjugates (3.5 mg P-EPI, 2.5 mg P-EPI(Tyr) or 6.1 mg P-DTPA, 300 nmol substrate in each conjugate) in 520 μ L buffer B-GSH (0.04% w/w Triton-X-100) at 37 °C. Daunomycin was used as internal standard.

Fig. S15. Tumor-to-tissue uptake ratios of polymeric carriers and payload of HPMA copolymer-EPI conjugates in tumor-bearing mice at 48 h or 144 h after i.v. injection. Data obtained using the radioactivity count method plotted as percentage of injected dose per gram of tissue (%ID/g). All the data are expressed as mean ± standard deviation (n=5).