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Appendix A: Simulation Details

PMMH pseudocode

The following exposition of the algorithm follows closely the pseudocode of Andrieu et al. [2010]

and Wilkinson [2011].

Step 1: initialization, for iteration j = 0,

(a) Set θ(0) arbitrarily

(b) Run the following SMC algorithm to get p̂(y|θ(0)), an estimate of the marginal likelihood, and

to produce a sample Xt0:n(0) ∼ p̂(·|y,θ(0)).

Let the superscript k ∈ {1, . . . ,K} denote the particle index, where K is the total number of

particles, and the subscript ti ∈ {t0, . . . , tn} denote the time; thus, Xk
ti denotes the kth particle

at time ti, and Xk
t0:i

=
(
Xk

t0 , . . . ,X
k
ti

)
. At time ti = t0, sample Xk

t0 = (Skt0 , I
k
t0) for k =

1, . . . ,K from the initial density of the hidden Markov state process. Specifically, sample Skt0 ∼

Poisson(φS) and Ikt0 ∼ Poisson(φI). Compute the k weights w(Xk
t0) := Pr(yt0 |Xk

t0 ,θ(0)) =(Ikt0
yt0

)
ρ(0)yt0 (1− ρ(0))I

k
t0
−yt0 , and set W (Xk

t0) = w(Xk
t0)/

∑K
k′=1w(Xk′

t0).

For i = 1, . . . , n, resample X̄
k
ti−1

from Xk
ti−1

with weights W (Xk
ti−1

). Sample K particles Xk
ti

from p(·|X̄k
ti−1

) (i.e. propagate resampled particles forward one time point). Assign weights
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w(Xk
ti) := Pr(yti |Xk

ti ,θ(0)) and compute normalized weightsW (Xk
ti) = w(Xk

ti)/
∑K

k′=1w(Xk′
ti ).

Set Xk
t0:i

= (X̄
k
t0:i−1

,Xk
ti).

It follows that

p̂(yti |yt0:i−1
,θ(0)) =

1

K

K∑
k=1

w(Xk
ti)

is an approximation to the likelihood p(yti |yt0:i−1
,θ(0)), and therefore an approximation to the

total likelihood is

p̂(y|θ(0)) = p̂(yt0 |θ(0))

n∏
i=1

p̂(yti |yt0:i−1
,θ(0)).

Thus we have a simple, sequential, likelihood-free algorithm which generates an unbiased es-

timate of the marginal likelihood, p(y|θ(0)). A Xt0:n(0) trajectory is sampled from the K

trajectories (Xk
t0:n , for k = 1, . . . ,K) based on the final set of particle weights, W (Xk

tn).

Step 2: for iteration j ≥ 1,

(a) Sample θ∗ ∼ q{·|θ(j − 1)}

(b) Run an SMC algorithm, as in step 1(b) with θ∗ instead of θ(0), to get p̂(y|θ∗) and X∗t0:n ∼

p̂(·|y,θ∗)

(c) With probability

min

{
1,

p̂(y|θ∗)
p̂(y|θ(j − 1))

Pr(θ∗)

Pr{θ(j − 1)}
q{θ(j − 1)|θ∗}
q{θ∗|θ(j − 1)}

}

set θ(j) = θ∗, Xt0:n(j) = X∗t0:n , and p̂(y|θ(j)) = p̂(y|θ∗), otherwise set θ(j) = θ(j − 1),

Xt0:n(j) = Xt0:n(j − 1), and p̂(y|θ(j)) = p̂(y|θ(j − 1)).

Simulating homogeneous SIRS

Gillespie’s direct method [Gillespie, 1977] simulates the time to the next event and then determines

which event happens at that time. The first reaction method [Gillespie, 1976] calculates the time to
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the next reaction for each of the possible events, and the minimum time to next reaction determines

the next step of the chain.

Using the direct method, we can think of our continuous-time Markov chain (CTMC) as a chemical

system with three different reactions. These reactions and their rate functions are given by the

infinitesimal rates

λ(S,I,R),(S′,I′,R′) =



(βI + α)S if S′ = S − 1, I ′ = I + 1, R′ = R,

γI if S′ = S, I ′ = I − 1, R′ = R+ 1,

µR if S′ = S + 1, I ′ = I, R′ = R− 1,

0 otherwise.

Thus the three reactions have the rate functions h1(Xt) = (βIt+α)St, h2(Xt) = γIt, and h3(Xt) =

µRt, corresponding to the infinitesimal rates of the CTMC. Then the time to the next reaction,

τ , has an exponential distribution with rate λ = h1(Xt) + h2(Xt) + h3(Xt), and the kth reaction

occurs with probability hk(Xt)/λ, for k = {1, 2, 3}.

The first reaction method instead simulates the time τk that the kth reaction happens for k =

{1, 2, 3}, given no other reactions happen in that time. Then the time to the next reaction τ =

mink(τk), and the reaction with the reaction time equal to τ is the event that happens.

Both the direct method and the first reaction method work only for homogeneous Markov chains.

If we want to assume that the additional force of infection, α, varies over time, the associated

Markov chain is inhomogeneous and we must account for the fact that the transition rate could

change before the next reaction occurs.

Simulating inhomogeneous SIRS

Gibson and Bruck [2000] introduce the next reaction method, an efficient exact algorithm to simu-

late stochastic chemical systems. They extend this next reaction method to include time-dependent

rates and non-Markov processes. Anderson [2007] deviates from these methods a bit, using Poisson
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processes to represent the reaction times, with time to next reaction given by integrated rate func-

tions. This leads to a more efficient modified next reaction method which they extend to systems

with more complicated reaction dynamics.

Using the methods described by Gibson and Bruck [2000] and Anderson [2007], to incorporate

a time-varying force of infection into the SIRS model we must integrate over the rate function

h1(Xt, s) = (βIt + α(s))St. Thus, to find the time τ1 that the first reaction happens, given no

other reactions happen in that time, we generate u ∼ Uniform(0, 1) and solve

∫ τ1

t
h1(Xt, s)ds = ln(1/u)

for τ1. Since the other two reactions have no time-varying parameters, we can solve for τ2 and τ3,

the reaction times of the second and third reactions, using the methods of the previous section.

Then we can continue, using the first reaction method to simulate the process.

We simplify this approach by assuming that the time-varying force of infection, α(t), remains

constant each day. We define daily time intervals Ai := [i, i+ 1) for i ∈ {t0, t0 + 1, . . . , tn − 1}, and

α(t) = αAi for t ∈ Ai. Then we can take advantage of the memoryless property of exponentials

and propagate the chain forward in daily increments. Thus, we use the direct method, but when

the time to next event exceeds the right end point of the current interval Ai, we restart CTMC

simulation from the beginning of the interval Ai+1 using αAi+1 in the waiting time distribution rate

λ(αA) = h1(Xt, αA) + h2(Xt) + h3(Xt), so τ ∼ Exp(λ(αA)). This modified Gillespie algorithm is

depicted and detailed in Figure A-1.

Selecting Tau

Unchecked, tau-leaping can lead to negative population sizes in a compartment if the compartment

has a low number of individuals. To avoid this, we use a simplified version of the modified tau-

leaping algorithm presented by Cao et al. [2005]. If the population of a compartment is lower than

some prespecified critical size, a single step algorithm (like the Gillespie algorithm) is used until
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Figure A-1: Depiction of the modified Gillespie algorithm. We assume the environmental force of infection,
α(t), is a step function which changes daily. Daily time intervals are denoted by Ai := [i, i + 1) for i ∈
{t0, t0 + 1, . . . , tn − 1}, so α(t) = αAi

for t ∈ Ai. Starting at time t = 1, the waiting time to the next event,
τ , has an exponential distribution with rate λ(αA1

) = h1(Xt, αA1
) + h2(Xt) + h3(Xt). In the depiction,

τ = 0.5. The simulated waiting time plus the current time, t∗ = t+ τ , remains in the interval A1, so we use
t∗ as the next time in our CTMC and propagate Xt forward at that time using Gillespie’s direct method.
Since we are still in the interval A1, we again simulate the time to the next event as an exponential random
variable with rate λ(αA1

) = h1(Xt∗ , αA1
) + h2(Xt∗) + h3(Xt∗). In this iteration, the waiting time plus the

current time, t∗ + τ , exceeds the boundary of the interval A1, so we discard this simulated waiting time τ .
Using the memoryless property of exponentials, we restart our simulation from the beginning of the interval
A2 using the new α(t) value, αA2 . We continue in this manner until we have simulated the Markov process
Xt up to time tn.

the population gets above that critical size. If the size of the compartment is not critically low

but the current value of τ still produces a negative population, we reject that simulation and try

again with a smaller τ (reduced by a factor of 1/2). The subsequent value of τ is picked based on

how long the current daily time-varying force of infection remains constant. We choose a value of

τ that simulates what happens during the remainder of the day, until the value of the transition

rate changes. This modified tau-leaping algorithm is depicted and detailed in Figure A-2.

For our simulations, we have chosen τ = 1 day; we perform a simulation study to see if this value for

τ is reasonable. Using the posterior estimates of the parameters, we simulate data forward in time
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5000 times using both the modified Gillespie algorithm and the modified tau-leaping algorithm.

We simulate data over the entire epidemic curve to see how the comparison changes for varying

values of α(t). Figure A-3 shows estimates of the median and 95% intervals for the simulated

values. The Monte Carlo standard error is very small for all estimates. For the numbers of

susceptible individuals, the estimates under Gillespie and tau-leaping are almost identical over the

entire epidemic. For the numbers of infected, the values are very close except at the epidemic peaks.

However, the differences are very small. We conclude that for our application τ = 1 day is a good

compromise between computational efficiency and accuracy.
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Figure A-2: Depiction of the modified tau-leaping algorithm. We assume the environmental force
of infection, α(t), is a step function which changes daily. Daily time intervals are denoted by
Ai := [i, i+ 1) for i ∈ {t0, t0 + 1, . . . , tn − 1}, so α(t) = αAi for t ∈ Ai. As a default, we use τ = 1
day. Starting at time t = 1, we simulate the changes in compartment populations over the interval
t ∈ [1, 2). At time t = 2, we again use τ = 1 day to simulate the changes over the interval t ∈ [2, 3).
This value of τ produces a negative population so we reject that simulation and try again with a
smaller τ (reduced by a factor of 1/2). The next value of τ is then calculated based on how long
the current daily time-varying force of infection remains constant, so τ = 0.5. At time t = 3, the
population of a compartment is lower than some prespecified critical size, so a single step algorithm
(SSA), in our case the Gillespie algorithm, is used until the population gets above that critical
size. Once the compartment populations are all above the critical size again, at time t = 3.2, the
subsequent value of τ is again picked based on how long the current daily time-varying force of
infection remains constant, so τ = 0.8.
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Figure A-3: Plots comparing the median and 95% intervals at different points during an epidemic,
simulated using both the modified Gillespie algorithm and the modified tau-leaping algorithm with
τ = 1 day. The medians and 95% intervals for 5000 simulations using the Gillespie algorithm are
given by the open circle and solid error bars. The medians and 95% intervals for 5000 simulations
using the modified tau-leaping algorithm are given by the asterisk and dashed error bars.
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Appendix B: MCMC diagnostics

Using simulated data, we compare results from models with different assumptions on the values of

φS and φI ; marginal posterior distributions for the parameters of the SIRS model from the final

runs of PMMH algorithms are in Figure B-2. The posterior distributions are similar, regardless of

assumptions about φS/N and φI/N . Trace plots and autocorrelation plots for the parameters of

the SIRS model assuming φS and φI are set at the true values are in Figure B-3, and Figure B-4

shows bivariate scatterplots of the parameters. Summary plots of the PMMH algorithm output

for the parameters of the SIRS model with data from Mathbaria, Bangladesh are given in Figure

B-6, and Figure B-7 shows bivariate scatterplots of the parameters. Effective sample sizes range

from 928 to 7546 for the parameters of the SIRS model with a time-varying environmental force of

infection and from 1590 to 3870 for the analysis of the data from Mathbaria. To test convergence,

we varied the initial values for the parameters of the PMMH algorithm. Some of the initial values

are shown in Table B-1 and the parameter estimates from the chains that started at these initial

values are given in the top third of Table B-2.
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Figure B-1: Prior distributions for the parameters of the SIRS model used in simulated data
example. The true values of the parameters are denoted by the red lines.
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Figure B-2: Posterior distributions for the parameters of the SIRS model, based on simulated data.
From top to bottom, the rows have φS/N and φI/N above the true values (0.39 and 0.0168), at
the true values (0.29 and 0.0084), below the true values (0.19 and 0.0042), and further below (0.095
and 0.0021). The true values of the parameters are denoted by the red lines.
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Figure B-3: Summary plots of the PMMH algorithm output (final run of 400000 iterations) for the
parameters of the SIRS model, based on simulated data. ACF plots are thinned to 40000 iterations
and trace plots are thinned to display only 500 iterations.
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Figure B-5: Prior distributions for the parameters of the SIRS model used in analysis of data from
Mathbaria.

Coefficient Starting value set 1 Starting value set 2 Starting value set 3

β ×N 0.6 0.8 0.4
γ 0.11 0.1 0.12
µ 0.0009 0.0012 0.0006
α0 −7.11 −8 −3
α1 0 0 1
α2 0 0 −1

ρ×N 60 6 100

Table B-1: Initial values used for separate runs of the PMMH algorithm on the data from Mathbaria.
We assume N = 10000.
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Figure B-6: Summary plots of the PMMH algorithm output (final run of 400000 iterations) for the param-
eters of the SIRS model, based on data from Mathbaria, Bangladesh. ACF plots and histograms are thinned
to 40000 iterations and trace plots are thinned to display only 500 iterations.
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Figure B-7: Smoothed bivariate scatterplots of parameters of the SIRS model estimated using data
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Starting value set 1 Starting value set 2 Starting value set 3
Coefficient Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs

β ×N 0.47 (0.33 , 0.65) 0.47 (0.33 , 0.65) 0.47 (0.34 , 0.65)
γ 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14)
µ 0.002 (0.001, 0.002) 0.002 (0.001, 0.002) 0.002 (0.001, 0.002)

(β ×N)/γ 3.92 (2.84 , 5.19) 3.96 (2.82 , 5.13) 3.95 (2.93 , 5.11)
α0 -6.49 (-7.39 , -5.41) -6.5 (-7.37 , -5.34) -6.5 (-7.37 , -5.46)
α1 -1.94 (-2.49 , -1.37) -1.94 (-2.44 , -1.34) -1.94 (-2.46 , -1.39)
α2 2.35 (1.85 , 2.98) 2.35 (1.84 , 2.95) 2.36 (1.84 , 2.96)

ρ×N 37.1 (27.2 , 50.2) 37.3 (27.5 , 50.8) 37 (27.2 , 50.4)

N=10000, K=1000 N=5000, K=100 N=50000, K=100
φS/N = 0.2, φI/N = 0.02 φS/N = 0.2, φI/N = 0.02 φS/N = 0.2, φI/N = 0.02

Coefficient Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs

β ×N 0.47 (0.34 , 0.64) 0.51 (0.35 , 0.69) 0.47 (0.36 , 0.63)
γ 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14)
µ 0.002 (0.001, 0.002) 0.002 (0.001, 0.002) 0.002 (0.001, 0.002)

(β ×N)/γ 3.95 (2.92 , 5.09) 4.17 (3.03 , 5.41) 3.93 (3.08 , 4.99)
α0 -6.5 (-7.38 , -5.46) -6.67 (-7.63 , -5.56) -6.86 (-7.59 , -5.98)
α1 -1.94 (-2.47 , -1.37) -1.96 (-2.49 , -1.43) -2.19 (-2.67 , -1.67)
α2 2.35 (1.83 , 2.94) 2.26 (1.71 , 2.86) 2.43 (1.9 , 3.09)

ρ×N 37.1 (27.4 , 50.2) 37.7 (27.6 , 51.8) 37 (27.3 , 49.9)

N=10000, K=100 N=10000, K=100 N=10000, K=100
φS/N = 0.4, φI/N = 0.04 φS/N = 0.1, φI/N = 0.01 φS/N = 0.4, φI/N = 0.01

Coefficient Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs

β ×N 0.29 (0.01 , 0.43) 0.78 (0.51 , 1.11) 0.3 (0.09 , 0.39)
γ 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14) 0.12 (0.1 , 0.14)
µ 0.002 (0.002, 0.004) 0.001 (0.001, 0.002) 0.003 (0.002, 0.003)

(β ×N)/γ 2.37 (0.1 , 3.29) 6.54 (4.43 , 8.91) 2.5 (0.79 , 3.14)
α0 -5.9 (-7.06 , -4.65) -6.66 (-7.52 , -5.64) -5.98 (-7.11 , -4.84)
α1 -1.68 (-2.36 , -1.13) -1.96 (-2.45 , -1.43) -1.72 (-2.39 , -1.15)
α2 2.33 (1.87 , 2.9) 2.33 (1.82 , 2.94) 2.42 (1.93 , 3.04)

ρ×N 26.5 (19.6 , 35.8) 57.2 (39.8 , 80.4) 25.6 (19.3 , 34)

Table B-2: Convergence diagnostics and sensitivity analysis: Posterior medians and 95% equitailed
credible intervals (CIs) under different initial values and assumptions for the parameters of the SIRS
model estimated using clinical and environmental data sampled from Mathbaria, Bangladesh. The
PMMH algorithm is run from different initial values using N = 10000, K = 100, φS/N = 0.2, and
φI/N = 0.02, and also run using different values for the population size, N , the total number of
particles, K, and the means of the Poisson initial distributions, φS and φI . Agreement of parameter
estimates and credible intervals across columns within each row indicates convergence of MCMC
runs started from different initial conditions to the same distribution (the first block of parameter
rows), robustness of parameter estimation to population size misspecification (the second block
of parameter rows), and robustness to prior assumptions about the numbers of susceptible and
infected individuals at the first observation time point (the third block of parameter rows).
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Appendix C: Model fit

To select a lag for the environmental covariates in the Mathbaria analysis, we compare prediction

results from models assuming three different lags: κ = 14, κ = 18, and κ = 21. These are shown in

Figures C-1 and C-2. The predictive distributions of the hidden states look similar across lags, so

we use the 21 day lag model in order to predict an upcoming epidemic furthest in advance. With

a three week lag, we would be able to make predictions three weeks in advance.

Figure C-3 shows plots of standardized residuals versus time for each of the two phases of data collec-

tion in Mathbaria, Bangladesh. Standardized residuals are calculated as εti = (yti − E(yti)) /sd(yti),

where yti is the number of observed infections at time ti for observation i ∈ {0, 1, ..., n}. E(yti) and

sd(yti) are approximated via simulation by fixing the model parameters to the posterior medians,

running the SIRS model forward 5000 times, and computing the average and sample standard

deviation of the 5000 realizations of the case counts at each time point. Residuals are furthest

from zero during the epidemic peaks; the inflation of residuals during times of high case counts is

probably due to the model being off in terms of the timing of the epidemic peak or the latent states

not being predicted correctly.
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Figure C-1: Distributions of predicted reported cases under models assuming a covariate lag of 14
days (top), 18 days (middle), and 21 days (bottom). The posterior probability of the predicted
counts is compared to the test data (diamonds connected by straight line). The coloring of the
bars is determined by the frequency of each set of counts in the predicted data for each time point.
The distributions are similar, regardless of lag choice.
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Figure C-2: Predictive distributions of the hidden states, under models assuming a covariate lag of
14 days (top), 18 days (middle), and 21 days (bottom). The gray area and the dot-and-dash line
denote the 95% quantiles and median of the predictive distributions for the fraction of susceptibles.
The short dashed lines and the long dashed line denote the 95% quantiles and median of the
predictive distributions for the fraction of infected individuals. Differences between the distributions
under the different lags are difficult to distinguish.
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Figure C-3: Plot of standardized residuals versus time. The top figure shows the residuals for the
first three years of data collected from Bangladesh, and the bottom figure shows the residuals for
the second three years of data collection. The red line is drawn through zero for reference.
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Appendix D: Sensitivity analysis

In our analysis of the data from Mathbaria, we assumed the size of the population, N = 10000 and

the means of the Poisson initial distributions, φS = .2 × N and φI = 0.02 × N , are known. We

studied sensitivity to these assumptions by setting all of these parameters to different values, and

the results are shown in the bottom two-thirds of Table B-2. We report β × N and ρ × N since

we found these parameter estimates to be robust to changes in the population size N . As seen in

Table B-2, estimates are similar over different values of N , φS , and φI . There does appear to be

some sensitivity to assumptions about the means of the Poisson initial distributions φS and φI ,

seen in estimates of β and ρ.

We also checked sensitivity to the number of particles in the SMC algorithm, using 1000 particles

instead of 100. Since it is very computationally expensive to use 1000 particles, we used a final

PMMH run of only 200000 iterations. However, effective sample sizes for the parameters using this

shorter run look similar to effective sample sizes for the longer run with only 100 particles. As seen

in Table B-2, posterior distributions look very similar to analysis with 100 particles.

We tested the effect of incorrect values for φS and φI on prediction using simulated data, as seen

in Figure D-1. Values for φS/N and φI/N are set above the true values, (0.39 and 0.0168), at the

truth (0.29 and 0.0084), below the true values (0.19 and 0.0042), or further below the true values

(0.095 and 0.0021). Predicted distributions look similar for all values of φS and φI . Uncertainty is

greatest when φS and φI are set at higher values than the truth. For the lowest values of φS and

φI , the fraction of susceptible individuals is lower and the fraction of infected is higher than those

predicted fractions under other settings. However, important information, like the timing of the

epidemic, remains intact.
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Figure D-1: Summary of prediction results for simulated data; each row shows prediction results
under different assumptions about the values of φs/N and φI/N . From top to bottom, values for
φS/N and φI/N are set above the true values (0.39 and 0.0168), at the true values (0.29 and 0.0084),
below the true values (0.19 and 0.0042), or further below the true values (0.095 and 0.0021). Plots
on the left compare the posterior probability of the predicted counts to the test data (diamonds
connected by straight line). The coloring of the bars is determined by the frequency of each set of
counts in the predicted data for each time point. The plots on the right show how the trajectory
of the predicted hidden states change over the course of the epidemic. The gray area and the dot-
and-dash line denote the 95% quantiles and median of the predictive distribution for the fraction of
susceptibles. The short dashed lines and the long dashed line denote the 95% quantiles and median
of the predictive distribution for the fraction of infected individuals. The solid blue and red lines
denote the true simulated fraction of susceptible and infected individuals.
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Appendix E: Prediction

We compare SIRS predictive distributions to predictions made from a lagged quasi-Poisson regres-

sion model, similar to the one used by Huq et al. [2005]. For the two predictors, water temperature

(WT) and water depth (WD), we have

ln E(Yt|CWD(t− κ), CWT (t− κ)) = β0 + β1CWD(t− κ) + β2CWT (t− κ),

where κ = 21 days. The quasi-Poisson model accounts for overdispersion in the data [McCullagh

and Nelder, 1989]. Figure E-1 shows the predicted means and 95% intervals under the quasi-Poisson

model. Test data are again cut off at different points during the 2012 and 2013 epidemic peaks and

predictions are run until the next cut off point, with cut off points chosen approximately every two

weeks. Predicted mean number of reported cases and 95% intervals from the hidden SIRS model

are also shown for comparison. To calculate these, we sample 1000 sets of parameter values from

the posterior. For each set of parameters, we simulate data forward until the next cut off point

100 times and then calculate the mean of the predicted counts at each observation time. Using

these 1000 means from the 1000 parameter sets, we calculate the overall predicted means and 95%

intervals. Both models predict well the timing of epidemic peaks. However, the quasi-Poisson

regression framework does not provide any information about the underlying fraction of infected

individuals in the population, which may be important for resource allocation.
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Figure E-1: Comparison of predicted means for number of reported cases. The solid blue lines and
the dashed blue lines denote the predicted means and 95% intervals under the quasi-Poisson model.
The green line and gray area denote the predicted means and 95% intervals under the SIRS model.
Predictions are started and stopped using identical cut-off points for the training and test data to
those in Figure 5. Test data are denoted by the purple diamonds connected by straight lines.
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Appendix F: Routes of transmission

An important question in cholera modeling is: what is the relative contribution of different routes

of transmission at different points of the epidemic? We hypothesized that environmental forces

trigger the seasonal cholera epidemics and that infectious contact between susceptible and infected

individuals drives the epidemics. To examine this possible dynamic, we compare the forces of

infection from the environment, α(t), to that from infected individuals, β × It, over time. Values

are computed by sampling 5000 sets of parameter values from the posterior. For each set of

parameters, we generate data using our hidden SIRS model. Figure F-1 shows median and 95%

quantiles for α(t) vs β × It plotted over time. The median values of α(t) are almost always higher

than values of β × It, except at the very beginning of the seasonal outbreaks when both forces of

infection are small. However, when It is largest, the posterior median for α(t) is larger than the

posterior median for β × It. This supports the hypothesis that the epidemics are driven by the

environmental force of infection.
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Figure F-1: The relative contribution of different routes of transmission at different points of the
epidemic curves. The gray area and the solid line denote the 95% quantiles and median of the force
of infection from the environment, α(t). The long dashed lines and the short dashed line denote
the 95% quantiles and median of the force of infection from infected individuals, β × It.
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Appendix G: Bayesian analysis using SIRS model on data simulated

from an SIWR model

In the hidden SIRS model, we assume that the hazard rate of infection is βIt + α(t) for each time

t, where β is the infectious contact rate between infected individuals and susceptible individuals

and α(t) is the time-varying environmental force of infection. In that model, infectious contact

incorporates both direct person-to-person transmission of cholera and consumption of contaminated

water. We now separate these contributions to transmission from infected individuals and explore

models which incorporate a feedback loop from the infected individuals back into the environment

to capture the effect of infected individuals excreting V. cholerae into the environment.

To accomplish this, we add a water compartment, W , that quantifies the concentration of V.

cholerae in the environment. Instead of using an environmental force of infection, we incorporate

the environmental covariates using the same function, α(t), as the rate of seasonal increase in water

V. cholerae concentration. This SIWR model is similar to the SIWR model of Tien and Earn [2010]

and Eisenberg et al. [2013], but unique in the way it incorporates the environmental covariates.

The hazard rate of infection is βIIt + βWWt for each time t, where βI represents the infectious

contact rate between infected individuals and susceptible individuals and βW represents force of

infection from contact with or consumption of contaminated water. Infected individuals excrete

V. cholerae into the environment/water compartment at rate κ. The time-varying function α(t)

also contributes to the increase of the V. cholerae concentration in the water compartment. This

concentration decays at rate η. Again, infected individuals recover from infection at rate γ, and

recovered individuals lose immunity to infection and become susceptible at rate µ.

We model Xt = (St, It, Rt,Wt) as an inhomogeneous Markov process [Taylor and Karlin, 1998]
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with infinitesimal rates

λ(S,I,R,W ),(S′,I′,R′,W ′)(t) =



(βII + βWW )S if S′ = S − 1, I ′ = I + 1, R′ = R, W ′ = W,

γI if S′ = S, I ′ = I − 1, R′ = R+ 1, W ′ = W,

µR if S′ = S + 1, I ′ = I, R′ = R− 1, W ′ = W,

κI + α(t) if S′ = S, I ′ = I, R′ = R, W ′ = W + 1,

ηW if S′ = S, I ′ = I, R′ = R, W ′ = W − 1,

0 otherwise,

(1)

where X = (S, I,R,W ) is the current state and X ′ = (S′, I ′, R′,W ′) is a new state. We do not

keep track of the number of recovered individuals because Rt = N − St − It.

The water compartment has no scale; it is used to quantify water contamination but may not

necessarily be the exact amount of V. cholerae in the water. In fact, for a constant c the dynamics

of the process are invariant if one makes the change of variables cβW and (κI + α(t)) /c. This also

controls the range of W , which can speed up simulation.

Again, we assume that Xt = (St, It, Rt,Wt) is not directly observable. Instead, we only observe yt,

the number of observed infections at time t, and assume yt has a binomial distribution with size It,

the number of infected individuals at time t, and success probability ρ, the probability of infected

individuals seeking treatment; thus, yti |Xti = (Sti , Iti , Rti ,Wti), ρ ∼ Binomial(Iti , ρ).

We simulate from the hidden SIWR model using a population size of N = 10000 and assume

independent Poisson initial distributions for St0 , It0 , and Wt0 , with means φS = 3450, φI = 6, and

φW = 12. The other parameters are set at βI = 1.072× 10−5, βW = 7× 10−6, α0 ≈ 0.39, α1 = 2,

γ = 0.12, κ = 0.02, η = 1/30 ≈ 0.03, and µ = 0.0018. Rates are measured in the number of events

per day. We use the daily time intervals Ai := [i, i + 1) for i ∈ {t0, t0 + 1, . . . , tn − 1} and define
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α(t) = αAi for t ∈ Ai where αAi = exp [α0 + α1C(i)] and

C(i) =



2.1 sin (2πi/365) if 0 ≤ i ≤ 365,

1.8 sin (2πi/365) if 365 < i ≤ 730,

2 sin (2πi/365) if 730 < i ≤ 1095,

2.2 sin (2πi/365) if 1095 < i ≤ 1460,

2 sin (2πi/365) if i > 1460.

Using the modified Gillespie algorithm to simulate from the SIWR model, as described in Appendix

A, the resulting (St, It,Wt) chain is given in Figure G-1. From the hidden data, we simulate the

observed number of infections, yt, as yt ∼ Binomial(It, ρ), where ρ = 0.016. Here case observations

occur once every two weeks.

We use this simulated data to study the effects of misspecification of the data generating process

on estimation and prediction. Using the data simulated under the SIWR model, we implement the

PMMH algorithm under the assumption of a hidden SIRS model. We test the effects on parameter

estimation and prediction when the model that we use to fit the data does not match the data

generating process. We assume the same settings for the PMMH algorithm and prior distributions

for the parameters that we used in the simulated data example for the SIRS analysis in Section 5.

Posterior medians and 95% equitailed credible intervals for the parameters of the SIRS model

estimated using data simulated from an SIWR model are shown in Table G-1, along with true

values for parameters that are comparable between the two models. Figure G-2 shows summary

plots of the PMMH algorithm output. The credible intervals for γ, µ, and ρ×N do not include the

true values of these parameters. Surprisingly, the true value of α1 = 2 for the SIWR model is in the

credible interval for the parameter α1 from the SIRS model. This means that the covariate effect is

still being captured in this simulation, regardless of how we model the relationship of environmental

covariates to cholera outbreaks. The posterior estimate of α0 seems to compensate for the model

misspecification, as the true value of α0 = 0.39 for the SIWR simulated data is outside the credible

interval for the SIRS α0 parameter. The chains are mixing well, as seen in the trace plots in Figure
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G-2.

Table G-1: Posterior medians and 95% equitailed credible intervals for the parameters of the SIRS
model estimated using data simulated from an SIWR model. True values for parameters that are
comparable between the two models are shown.

SIRS SIWR
Parameter True value Estimate 95% CIs

β ×N — 0.26 (0.18 , 0.36)
γ 0.12 0.09 (0.08 , 0.11)
µ 0.0018 0.0008 (0.0005, 0.0012)
α0 — -10.02 (-11.66 , -8.99)
α1 — 1.95 (1.41 , 2.82)

ρ×N 160 266.9 (169.8 , 431.7)

We test the predictive ability of the SIRS model on data generated from an SIWR model using

staggered training and test sets of data, as described in Section 5.1. Despite the model misspecifi-

cation, the model predictions look good, as seen in Figure G-4. The general trend and important

features of the epidemic curve are captured. We find that we can still predict outbreaks well when

we fit the parameters of the SIRS model to data generated by the SIWR model. This suggests that

the predictions made with the SIRS model using the data from Mathbaria in Section 6.1 may not

be too far off, even if the model is not biologically realistic.
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Figure G-1: Plots of simulated hidden states (counts of susceptible individuals, St, infected individ-
uals, It, and the water compartment, Wt) and the observed data (α(t) and yt ∼ Binomial(It, ρ) =
number of observed infections) plotted over time (t). The top plot shows the dynamics of the
number of susceptible and infected individuals over time. The middle plot shows the dynamics
of the water compartment and rate of seasonal increase in water V. cholerae concentration, α(t).
There is a slight delay in the increase in the water compartment after α(t) increases, and the decay
of the water compartment is more gradual than the decrease in α(t). The dashed vertical black
lines represent cut offs between the training sets and test data.
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Figure G-3: Bivariate scatterplots of parameters of the SIRS model estimated using data simulated
from an SIWR model. Scatterplots are thinned to display only 200 samples, so only every 2000th
sample from the posterior distribution is plotted.
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Figure G-4: Summary of prediction results for data simulated from an SIWR model. We approxi-
mate the posterior distribution of the parameters of the hidden SIRS model using training sets of
the data, which are cut off at each of the dashed black lines in the bottom plot, and future cases are
predicted until the next cut off. The top plot compares the posterior probability of the predicted
counts to the test data (purple diamonds and line), and the bottom plot shows how the trajectory
of the predicted hidden states changes over the course of the epidemic.
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