

SUPPLEMENTAL INFORMATION

7	
2	

2	
3 4	Biochemical Characterization of Essential Cell Division Proteins FtsX and FtsE That Mediate Peptidoglycan Hydrolysis by PcsB in <i>Streptococcus pneumoniae</i>
5	
6 7	Ruchika Bajaj ¹ , Kevin E. Bruce ² , Amy L. Davidson ^{1‡} , Britta E. Rued ² , Cynthia V. Stauffacher ¹ , and Malcolm E. Winkler* ²
8	
9 10	¹ Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 and ² Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
11	
12	Running title: Reconstitution of Pneumococcal FtsX in Nanodiscs
13	
14	Supplemental Tables: S1-S3
15	Supplemental Figure Legends: S1-S5
16	
17	
18	Corresponding author:
19	Malcolm E. Winkler
20	Department of Biology
21	Indiana University Bloomington
22	1001 E. 3 rd St.
23	Bloomington, IN 47405 USA
24	Phone: 812-856-1318
25	E-mail: winklerm@indiana.edu
26	

Table S1. Bacterial strains and primers used in this study

Strain number	<i>E. coli</i> strain	Plasmid ^a	Antibiotic resistance marker ^b	Construction ^c	Description ^a	Reference		
IU6892	BL21AI	pETCT- <i>ftsX</i> -GFP- His ₈	Kan	ftsX cloned into pET-CT-GFP- HIS-LIC with Ndel and Xhol	C-terminal GFP and His ₈ tagged FtsX	This study		
Pr	imer		Seque	nce (5'-3'; RE sites	s in bold) ^d			
KE	3103	CTTTAAGAA		CATATGTCATTGC		CCGTG		
KE	3100	CAGAAAATA	ATAAATTTTC C	TCGAGAATCTTCA	AGAATCGGCGC	ATGGA		
IU6884	BL21AI	pEVL4- His ₆ -GFP- <i>ftsX</i>	Kan	<i>ftsX</i> cloned into pEV-L4 with <i>Kpn</i> I and <i>Eco</i> RI		This study		
Pr	imer			ence (5'-3'; RE site				
	3104	ТТ		ACCGAGAACCTG		TCATTGCCA		
KE	3102	ACGTGCCA	C gaattc cta	AATCTTCAAGAAT	CGGCG			
IU10693 BL21DI		pETCT- <i>ftsX</i> -GFP- His ₈	Kan	See IU6892 above	C-terminal GFP and His ₈ tagged FtsX	This study		
				fte V ale read inte				
IU6942	BL21DE3	pET22b- <i>ft</i> sX-His ₆	Amp	ftsX cloned into pET22b with Ndel and Not	C-terminal His₀ tagged FtsX	This study		
Pr	imer		Seque	ence (5'-3'; RE site	s in bold)			
KE	3119	CGGTAGCA	TATGTCATTG	CCATTGAAAATGG	CCGTG			
KE	3120	AGT GCGGCCGC AATCTTCAAGAATCGGCGCATGG						
		1						
IU4340	BL21DE3	pET22b- <i>ftsE</i> -His ₆	Amp	<i>ftsE</i> cloned into pET22b with <i>Nde</i> I and <i>Not</i> I	C-terminal His ₆ tagged FtsE	This study		
	imer	Sequence (5'-3'; RE sites in bold)						
	S132			BAAATGAGAGATG				
CS	5133	AGT GCGGC	CGCATCATCO	GTATCCATACTCTC	CTTTTGATTC			
IU6917	BL21DE3	pACYC- Duet- <i>ftsE</i>	Chl	ftsE cloned into pACYC Duet with <i>Nde</i> l and <i>Xho</i> l	Untagged FtsE	This study		
Pr	imer		Seque	ence (5'-3'; RE site	s in bold)			
	B96	CGGTAG CA		ATTGAAATGAGAG				
KE	3118	CCGCTCGA	GCTAATCATC	GTATCCATACTCT	CC			
IU6454	BL21DE3	pACYC- Duet- <i>ft</i> sX	Chl	ftsX cloned into pACYC Duet with <i>Nde</i> l and <i>Kpn</i> l	Untagged FtsX	This study		

Pri	mer		Seque	ence (5'-3'; RE site	s in bold)					
	241	CCGGCATATGATTAGTAGATTTTTTCGCCATTTATTTG								
	242	CCGG GGTACC AATCTTCAAGAATCGGCGCAT								
IU10588	BL21DE3	pET22b- <i>ftsE</i> -His ₆ pACYC- Duet- <i>ftsX</i>	Amp, Chl	ftsE cloned into pET22b with Ndel and Notl ftsX cloned in pACYC Duet with Ndel and Kpnl	Co-expressed C-terminal His ₆ tagged FtsE and untagged FtsX	This study				
Pri	mer		Seque	ence (5'-3'; RE site	s in bold)					
CS	132	ATACATATGTCAATTATTGAAATGAGAGATGTCGTT								
CS	133	AGT GCGGC	CGCATCATCO	GTATCCATACTCTC	CTTTTGATTC					
CS	241	CCGGCATA	TG ATTAGTAG	ATTTTTTCGCCAT	TTATTTG					
	242			AGAATCGGCGCA						
50										
IU10589	BL21DE3	pET22b- <i>ftsX</i> -His ₆ pACYC- Duet- <i>ftsE</i>	Amp, Chl	ftsX cloned into pET22b with Ndel and Notl ftsE cloned into pACYC Duet with Ndel and Xhol	Co-expressed C-terminal His ₆ tagged FtsX and untagged FtsE	This study				
Pri	mer		Seque	ence (5'-3'; RE site	s in bold)					
-	119	CGGTAGCATATGTCATTGCCATTGAAAATGGCCGTG								
	120			AAGAATCGGCGC						
	396	CGGTAG CATATG TCAATTATTGAAATGAGAGATGTC								
	118			GTATCCATACTCT						
IU1614	BL21DE3	pET22b- <i>pcsB</i> ^{ΔN27} - His ₆	Amp, Chl	<i>pcsB</i> ^{∆N27} cloned into pET22b with <i>Nde</i> I and <i>Not</i> I	C-terminal His ₆ tagged PcsB with first 27 residues deleted	Barendt <i>et</i> <i>al</i> ., 2009				
Pri	mer	Sequence (5'-3'; RE sites in bold)								
	119	CTCGAG GC		IGCATAAATATATO	/					
	1117			GACAAAATTGCTG						
IU4561	BL21AI	pET22b- <i>pcsB</i> ²⁸⁻²⁵⁹ (CC)-His ₆	Amp	<i>pcsB</i> ²⁸⁻²⁵⁹ (CC) cloned into pET22b with <i>Nde</i> l and <i>Not</i> l	C-terminal His ₆ tagged PcsB CC domain	Sham <i>et</i> <i>al</i> ., 2011				
	mer			ence (5'-3'; RE site	/					
	117			GACAAAATTGCTG						
KG	002	ACGGAATA	GCGGCCGCAG	GCTGTTAAGTTAG	IGTTTGCTGAAG	CA				
IU1791	BL21DE3	pET22b- <i>pcsB</i> ²⁷¹⁻³⁹² (CHAP)-	Amp, Chl	<i>pcsB</i> ²⁷¹⁻³⁹² (CHAP) cloned into pET22b	C-terminal His ₆ tagged PcsB CHAP	Sham <i>et</i> <i>al</i> ., 2011				

	His ₆		with <i>Nde</i> l and <i>Not</i> l	domain	
Primer		Seque	nce (5'-3'; RE site	s in bold)	
SC001	GGAATTC CA T	TATGGTCCG	TGCAAAAGTTCG1	CCAACAT	
WN119				STAACAAAACC	
^a His ₈ and His ₆ ta	gs are abbrev	viated as "Hi	s" in the text.		
^b Antibiotic resi	stance marl	kers: Amı	o, ampicillin;	Kan, kanam	iycin; Chl,
chloramphenicol.					
^c See Materials a	nd Methods fo	or additional	information abo	ut plasmid con	structs.
^d RE site, restric	tion enzyme	cleavage s	site built into pr	imers to allow	ı cloning of
amplicons synthesiz	ed by high-fid	lelity PCR.			
	SC001 WN119 ^a His ₈ and His ₆ ta ^b Antibiotic resi chloramphenicol. ^c See Materials a ^d RE site, restric	SC001GGAATTCCAWN119CTCGAGGCG ^a His ₈ and His ₆ tags are abbrew ^b Antibiotic resistance marchloramphenicol. ^c See Materials and Methods for ^d RE site, restriction enzyme	SC001 GGAATTCCATATGGTCCG WN119 CTCGAGGCGGCCGCATCT ^a His ₈ and His ₆ tags are abbreviated as "Hi ^b Antibiotic resistance mathematical resistance chloramphenicol. cSee Materials and Methods for additional	Primer Sequence (5'-3'; RE site SC001 GGAATTCCATATGGTCCGTGCAAAAGTTCGT WN119 CTCGAGGCGGCCGCATCTGCATAAATATATC ^a His ₈ and His ₆ tags are abbreviated as "His" in the text. ^b Antibiotic resistance markers: Amp, ampicillin; chloramphenicol. ^c See Materials and Methods for additional information abo ^d RE site, restriction enzyme cleavage site built into pr	Primer Sequence (5'-3'; RE sites in bold) SC001 GGAATTCCATATGGTCCGTGCAAAAGTTCGTCCAACAT WN119 CTCGAGGCGGCCGCATCTGCATAAATATATGTAACAAAACC aHis ₈ and His ₆ tags are abbreviated as "His" in the text. bAntibiotic resistance markers: Amp, ampicillin; Kan, kanam chloramphenicol. cSee Materials and Methods for additional information about plasmid con- dRE site, restriction enzyme cleavage site built into primers to allow

Table S2.	Detergent	screening	for	optimal	extraction	of	FtsX-GFP-His	from
membranes	a							

h	
Detergent ^b	Fluorescence intensity recovered
	in detergent-extracted membrane
	supernates (RFU) ^c
None	899
1% DDM	2,902
2% DDM	3,231
1% OG	2,441
2% OG	2,038
1% Fos12	2,539
2% Fos12	3,470
1% Sodium Cholate	2,671
2% Sodium Cholate	984
1% LDAO	3,539
2% LDAO	3,051
1% Anergent	3,412
2% Anergent	2,742
1% CHAPS	2,181
2% CHAPS	1,718

36

37

34 35

in Materials and Methods.

^bFtsX-GFP-His was extracted from membranes with the concentrations of detergents 38 shown as described in Materials and Methods. Abbreviations: DDM = n-dodecyl- β -D-39 maltoside: OG n-octyl- β -D-glucoside; Fos12 foscholine-12 40 = = = ndodecylphosphocholine; LDAO = n-dodecyl-N, N-dimethylamine oxide, CHAPS = [3-[(3-41 cholamidopropyl)-dimethylammonio]-1-propane sulfonate] Detergents were obtained 42 from Anatrace, Inc. 43

^aStrain IU6892 (BL21AI/pETCT-*ftsX*-GFP-His) was grown and induced as described

^cRFU = random fluorescence unit. Most effective detergents for FtsX-GFP-His
 solubilization from membranes are emboldened. DDM was the most effective and
 economical detergent and was incorporated in the purification procedures in Materials
 and Methods.

5

48 **Table S3**. Optimization of FtsX-GFP-His expression by varying IPTG concentrations^a

	Fluorescence intensity (RFU) ^b							
		Membrane resuspension	DDM-extracted membrane supernate ^c					
0	434	140	115					
0.1	7,240	7,640	5,503					
0.5	10,936	12,651	11,646					
1.0	8,074	13,216	13,816					
^a Strain Il	J10693 (BL2	1DE3/pETCT-ftsX-GFP-His) was grown and induced	l a				

49

50 described in Materials and Methods.

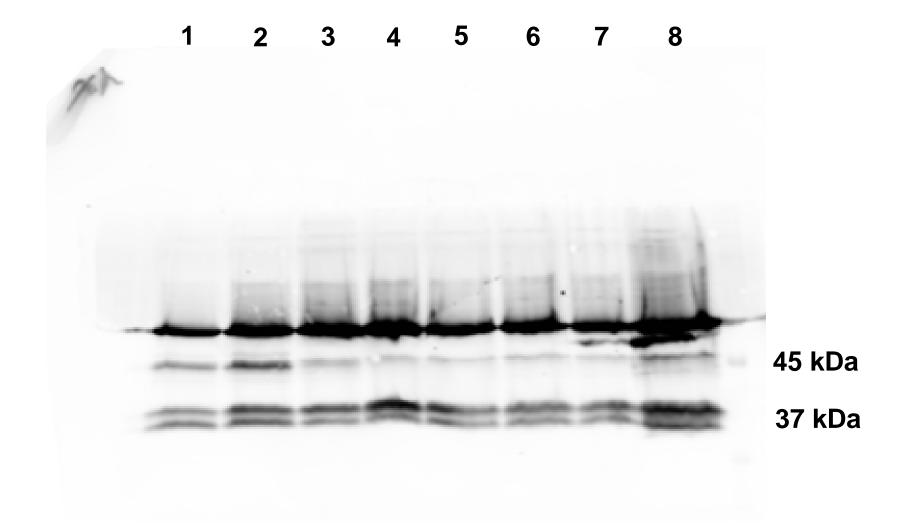
- ^bRFU = random fluorescence unit.
- ⁵² ^cFtsX-GFP-His was extracted from membranes with 1% (wt/vol) DDM as described

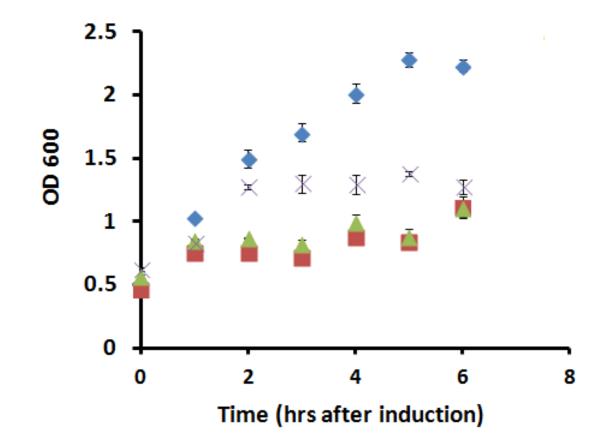
53 in Materials and Methods.

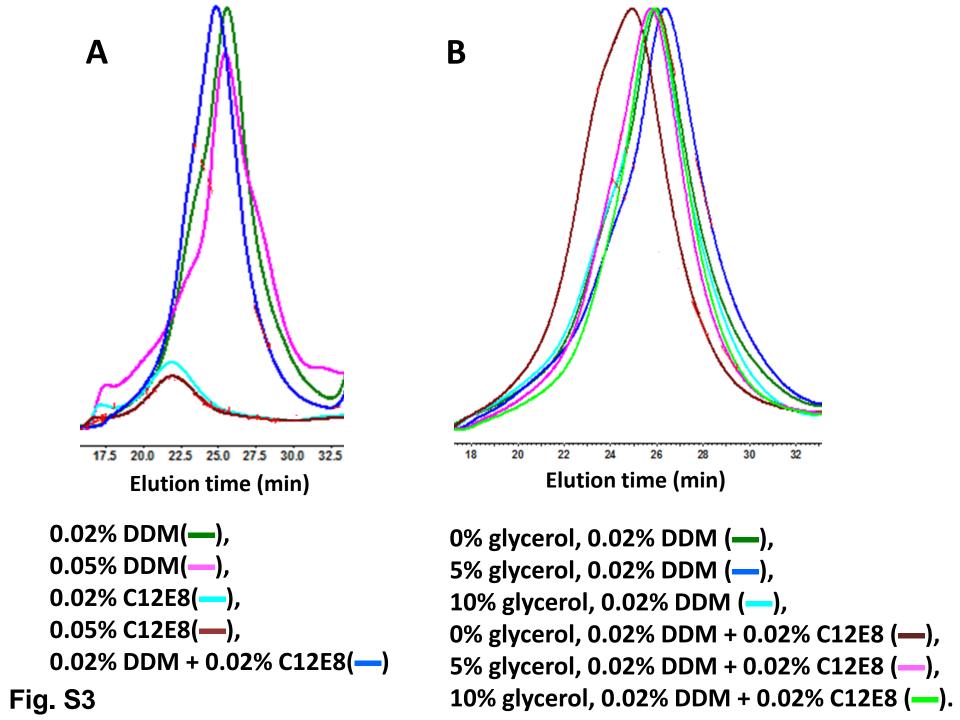
54 SUPPLEMENTAL FIGURE LEGENDS

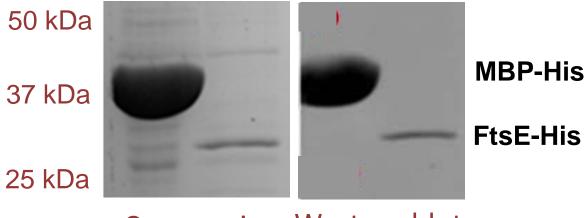
Fig. S1. Western blot of FtsX-GFP-His with anti-GFP antibody recovered in 1% 55 (wt/vol) DDM-extracted membrane supernates from strain IU6892 (BL21AI/ pETCT ftsX-56 GFP-His) induced with different inducers. Lane 1, no inducer: lane 2, 0.001% (wt/vol) 57 arabinose; lane 3, 0.01% (wt/vol) arabinose; lane 4, 0.02% arabinose (wt/vol); lane 5= 58 0.05% (wt/vol) arabinose; lane 6, 0.1% (wt/vol) arabinose; lane 7, 0.5 mM IPTG; lane 8, 59 0.5mM IPTG + 0.01% (wt/vol) arabinose. Maximal induction was observed in lane 8, 60 which is the condition that produced maximal fluorescence intensity in DDM-extracted 61 membrane supernates (see Table 1). The upper band is intact FtsX-GFP-His, whereas 62 63 the lower bands present in all samples are degraded protein that retains the GFP epitope. Band intensities are not necessarily in the linear range of detection. 64

Fig S2. Growth curves of *E. coli* BL21DE3 cells expressing: no recombinant protein 65 (blue diamond): FtsE-His from plasmid pET22b-ftsE-His (strain IU4340) (red squares): 66 67 FtsX-His from plasmid pET22b-ftsX-His (strain IU6942) (green triangles); and FtsX-His and FtsE from plasmids pET22b-ftsX-His and pACYC Duet-ftsE (strain IU10589 (purple 68 crosses). Strains are listed in Table S1. For growths, 50 mL of LB broth was inoculated 69 with 50 µL of overnight cultures of each strain and incubated with shaking at 25°C. At 70 $OD_{600} = 0.5$, recombinant proteins were induced with 1 mM IPTG (time = 0), and OD_{600} 71 was monitored with time. Data points are averages of three independent growths. 72 Growth of strains expressing recombinant proteins slowed down significantly after 73 induction, but the cultures did not lyse while expressed recombinant proteins. 74

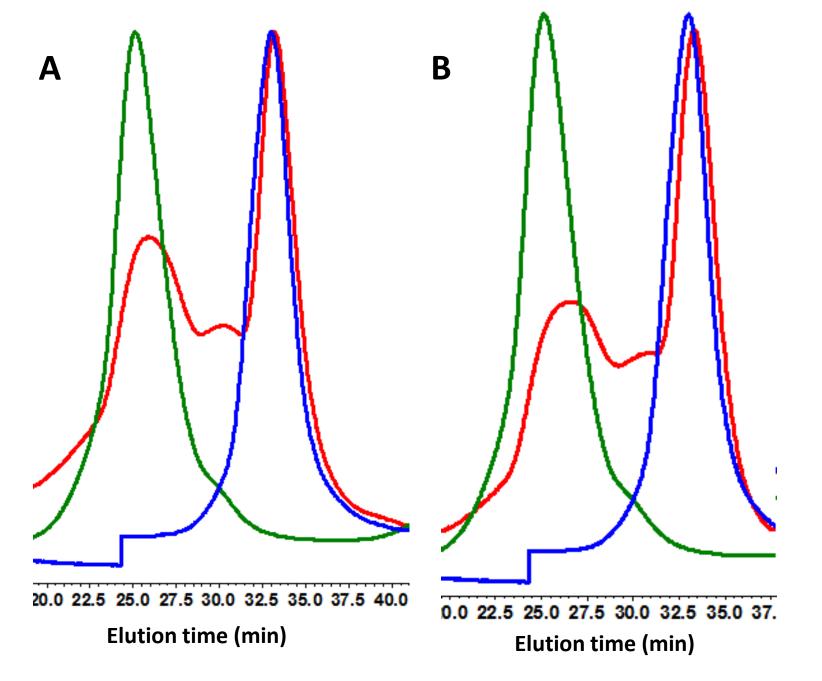

7


Fig. S3. Fluorescence-detection size-exclusion chromatography (FSEC) to optimize
 the concentration of (A) detergents and (B) glycerol for FtsX-GFP-His purification.
 Besides the indicated detergents and glycerol, elution buffer contained 50 mM Tris-HCI
 pH 8.0, 200 mM NaCl, and columns were run at 0.5 mL per min. 15% (vol/vol) glycerol
 was added to the buffers in panel A. See Materials and Methods for additional details.


Fig S4. Western blot showing that FtsE-His runs at 30 kDa, instead of at 26 kDa on 80 SDS-PAGE. FtsE-His was overexpressed in strain IU4340 (BL21DE3/pET22b-ftsE-His) 81 that was induced for 20 h at 16°C following addition of 1 mM IPTG. FtsE-His was 82 purified as described in Materials and Methods, and purified FtsE-His was analyzed by 83 SDS-PAGE with Coomassie blue staining (left panel). Purified MBP-His was included as 84 a positive control for detecting His-tagged proteins. The positions of standards from a 85 size-standard ladder are indicated. The gel was then Western blotted as described in 86 87 Materials and Methods (right panel). The Coomassie-stained gel shows that FtsE-His 88 preparations contain at least two faint contaminant bands, and the Western blot show that the prominent 30 kDa band corresponds to FtsE-His. 89


Fig. S5. Association studies of purified FtsE-His and FtsX-His proteins using
analytical size-exclusion chromatography (Superdex 200 30/100 column in 50 mM TrisHCl pH 8.0, 200 mM NaCl, 5% (vol/vol) glycerol, 0.02% (wt/vol) DDM, 0.02% (wt vol)
C₁₂E₈), performed as described in Materials and Methods. A. FtsE-His + FtsX-His (1:1
molar ratio) B. FtsE-His + FtsX-His (1:1 molar ratio) + 5 mM ATP + 5 mM MgCl₂ + 0.5
mM vanadate to allow trapping. FtsX-His alone (green, lines); FtsE-His alone (blue
lines); mixtures of FtsE-His + FtsX-His (red lines). See text for additional details.

8



Coomassie Western blot (anti-His antibody)

Fig. S5