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Generating random and real world directed networks
In the main manuscript, we present results obtained on synthetic directed networks from six random models, as well as on real
world networks from biology and from economy. We detail here how we generated these networks.

The six directed network random models
Directed Erdös-Rènyi random model (ER) represents uniformly distributed random interactions1. A directed ER network
is generated by fixing the number of nodes in the network, and then by randomly adding directed edges (whose directionality
are chosen randomly with probability of 0.5 for each direction) between uniformly chosen pairs of nodes until a given density
is reached.

Directed Barabàsi-Albert Scale-free models (SFBA-Sink and SFBA-Source). Scale free model, also called preferential
attachment, generates networks based on the “rich-gets-richer” principle2. Scale-free topology is characterized by power law
degree distributions2. We use the directed preferential attachment model3. Starting from a small seed network having m0 nodes,
Directed SFBA networks are constructed by an iterative process, in which each iteration randomly performs one of following
three possible actions. With probability α , a new node v is added to the network and is linked with an existing node w (chosen
based on the existing nodes’ in-degrees) by a directed edge from v to w. Similarly, with probability β , a new node u is added to
the network and is linked with existing node v (chosen based on the existing nodes’ out-degrees) by a directed edge from v
to u. Finally, there is a probability γ of adding a directed edge from an existing node v (chosen based on the existing nodes’
out-degrees) to an existing node w (chosen based on the existing nodes’ in-degrees). The sum of probabilities α +β + γ equals
1. This iterative process is repeated until the desired numbers of nodes is obtained. To achieve desired network densities, we
allow the node being added to the network to be connected to m≤ m0 existing nodes, analogous to Albert-Barabasi model2.
We do not allow duplicated edges. With this generator, we create two sets of SFBA networks. By using α = 0.1, β = 0.3
and γ = 0.6, we create SFBA-Sink networks whose topology are characterized by sink hubs (node having large number of
incoming directed edges). Similarly, by using α = 0.3, β = 0.1 and γ = 0.6, we create SFBA-Source networks whose topology
are characterized by source hubs (node having large number of outgoing directed edges).

Scale-free model with gene duplication and divergence (SF-GD) is a scale-free model that mimics the gene duplication
and the gene divergence processes from biology4. We implement the directed model as follows. In the duplication step, a node
in the network is selected at random and a new node is created together with the connections to/from nodes that the “parent”
node had (e.g., if there is a directed edge from the parent node to node x, the new node also has a directed edge toward node x).
A directed edge between the new node and his parent is added with probability p, whose directionality is decided randomly
with probabilities of 0.5 for both directions. The mutation step is imitated in a way that each directed edge that the new node
“inherits” from its parent node is deleted with the probability q. This procedure is repeated until the desired number of nodes is
obtained. In our implementation, we start with probabilities p = q = 0.5. When the desired number of nodes is reached, we
check the density of the obtained network. If the density is lower or greater than the desired value, we decrease or increase the
value q by value qstep respectively, starting with the value qstep = 0.1. We then repeat the process of generating the network. In
case we “skipped” the desired network density by decreasing or increasing the value of q by the value of qstep in the previous
iteration, we adjust the value of qstep to qstep/2, and repeat the process until the desired network density is obtained.



Geometric model (GEO) represents the proximity relationship between uniformly distributed points in a d-dimensional
space5. We generate directed GEO networks by uniformly distributing the desired number of nodes (points) in a 3-dimensional
unit cube. Then, two nodes are connected by a directed edge, whose directionality is randomly chosen with probability of
0.5 for each direction, if the Euclidean distance between the corresponding points is smaller than a distance threshold r. The
distance threshold is chosen so as to obtain the desired directed edge density.

Geometric models with gene duplication (GEO-GD) is a geometric model that mimics the gene duplication process in
biology6. We generate directed GEO-GD networks as follows: (1) A small number of nodes are distributed randomly in
space—seed network; (2) Each new node is introduced as a duplicated node of a randomly selected node in the network; (3)
The new node is moved randomly from its parent node in the metric space, at a random distance smaller or equal to 2× r,
where r is the distance threshold used to generate GEO networks. Once the desired number of nodes is obtained, directed edges
between nodes are created following the rules of the directed geometric network model.

Real world directed networks
Metabolic networks represent bio-chemical reactions between enzymes and metabolites inside a cell. Using the organism-
specific pathway data available from KEGG/PATHWAY database7 in December 2014, we reconstructed the directed metabolic
networks of all Eukaryotes (299 species). KEGG/PATHWAY database maintains the molecular interaction and reaction relations
for each organism specific pathway and provides information on pathways with the reactions (links) between enzyme coding
genes and metabolites. Links can be directed or undirected, depending on the chemical reversibility of a specific reaction. We
consider only the directed links and construct directed metabolic networks where the nodes correspond to enzyme coding genes.
A directed link between two enzymes in a metabolic network denotes that one enzyme catalyses a reaction whose product is a
substrate for a reaction catalysed by the other enzyme. Note that we use terms gene and enzyme for the nodes interchangeably,
as the nodes in the network correspond to enzyme coding genes. The sizes of metabolic networks vary, with number of nodes
mainly being between 500 to 2000 and edge densities in the range between 0.5% and 1%.

We download taxonomic classification of Eukaryotes from KEGG, which classifies Eukaryotic species according to (from
the most generic to the most specific) Kingdom, Sub-Phylum and Class. To annotate enzyme coding genes with their biological
functions, we use Gene Ontology (GO)8. A single gene can be annotated with more than one GO term, while GO term
dependencies are described as a GO hierarchy. In particular, GO terms can represent biological processes (BP), molecular
functions (MF) and cellular components (CC). We downloaded the gene-to-GO term mappings from NCBI 1 in March 2015.
We only consider the experimentally confirmed GO annotations, i.e., those with experimental evidence codes.

World trade networks represent trading relations between countries. Using yearly trade data from the United Nations
Commodity Trade Statistics (UN Comtrade) database 2, we generated 52 directed trade networks, one for each year between
1962 and 2013. We first generated weighted networks where directed edges are weighted by the corresponding trade amounts.
Each weighted network is converted into an unweighed network by removing the lowest weighted edges until 90% of the total
trade amount in the networks remains.

We obtain the economic indicators of country wealth from PENN World Table (PENN) 3 and International Monetary Fund
World Economic Outlook Database (WEO) 4. When needed, all prices are expressed in 2005 US Dollars. We focus on the
following nine attributes:

• Population size, which is the reported population of a country in a given year, from PENN:POP.

• Employment size, which is the number of employed persons, from PENN:EMP.

• Gross Domestic Product (GDP), from PENN:RGDPNA.

• GDP per capita, which is the GDP of a country reported to its population size, from PENN:RGDPNA divided by
PENN:POP.

• Debt, which is the debt of a country, from WEO:BCA.

• Debt per capita, which is the debt of a country reported to its population size, from WEO:BCA divided by PENN:POP.

• Import, which is the total import expenses of a country, from PENN:CSH M multiplied by PENN:RGDPNA.

1ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
2Data collected in August 2014, from http://comtrade.un.org/
3Version 7.1, downloaded in July 2014, from https://pwt.sas.upenn.edu/
4downloaded in July 2014 from http://www.imf.org/
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• Export, which is the total export incomes of a country, from PENN:CSH X multiplied by PENN:RGDPNA.

• Capital Stock, which is the total capital of a country, from PENN:RKNA.

Economic attributes from WEO are available only from 1980, and economic attributes from PENN are available only until
2011. Thus, experiments using economic attributes are computed on the subset of 32 world trade networks from 1980 to 2011.

Directed automorphism orbits
An isomorphism g from directed network X to directed network Y is a bijection of nodes of X to nodes of Y such that (u,v) is a
directed edge (from u to v) of X if and only if (g(u),g(v)) is a directed edge (from g(u) to g(v)) of Y . An automorphism is
an isomorphism from a directed network to itself, and it highlights the symmetries in the directed network’s structure. The
automorphisms of a network X form a group, called the automorphism group of X , and is commonly denoted by Aut(X). If u is
a node of graph X , then the automorphism orbit of u is Orb(u) = {v ∈V (X)|v = g(u) for some g ∈ Aut(X)}, where V (X) is
the set of nodes of graph X . An automorphism orbit (orbit, for brevity) groups together nodes having identical wiring pattern.

Measuring the topological similarity between nodes in directed networks

We extend the graphlet degree vector similarity9 with our directed graphlets to compare the topology around the nodes in our
directed networks in the following way. The similarity between the ith directed graphlet degrees of nodes u and v is computed
as:

Di(u,v) = wi×
|log(DGDVu[i]+1)− log(DGDVv[i]+1)|

log(max(DGDVu[i],DGDVv[i])+2)
, (1)

where wi is an orbit-specific weight that reduces the influence of dependent orbits. The value of wi is based on oi, which is
the number of orbits that affects orbits i including itself; for example, if a node touches orbit 9, it also touches orbits 0 and 1,
henceforth o9 = 3. This leads to the following values of oi:

• 1 for i ∈ {0,1},

• 2 for i ∈ {2, 4, 5, 6, 7, 8, 10, 11},

• 3 for i ∈ {3, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 30, 31, 32, 33, 36, 60, 64, 68, 72, 118, 120, 125, 128},

• 4 for i ∈ {19, 22, 23, 27, 35, 38, 44, 45, 47, 48, 52, 56, 57, 61, 63, 66, 67, 70, 73, 74, 76, 77, 78, 80, 85, 87, 91, 92, 95,
96, 100, 105, 113, 115},

• 5 for i ∈ {14, 15, 18, 26, 34, 37, 42, 43, 49, 50, 53, 54, 58, 59, 62, 65, 69, 71, 88, 90, 93, 94, 99, 103, 107, 111, 121, 122,
126, 127},

• 6 for i ∈ {39, 40, 41, 46, 51, 55, 75, 79, 81, 82, 83, 84, 86, 89, 97, 98, 101, 102, 104, 106, 108, 109, 110, 112, 114, 116,
117, 119, 123, 124}.

wi is then computed as:

wi = 1− log(oi)

log(129)
. (2)

The Directed graphlet Degree Vector Similarity (DGDVS) is calculated as:

DGDV S(u,v) = 1− ∑
128
i=0 Di(u,v)

∑
128
i=0 wi

. (3)

Measuring the topological similarity between directed networks
In the main manuscript, we detail how we generalized three graphlet based network distances (RGD, GDDA and GCD)
to directed networks. Here, we detail how we generalized two traditional network distances to directed networks: degree
distribution distance and spectral distance.
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In- and out-degree distribution distances. The in-degree distribution of the network G is encoded in a vector DG, whose
ith entry is the number of nodes in G having in-degree equal to i. The in-degree distribution distance between two networks G1
and G2 is defined as the Euclidean distance between their in-degree distribution vectors:

dd(G1,G2) =
√

∑
i
(DG1 [i]−DG2 [i])2. (4)

We alternatively considered using out-degree instead of in-degrees, but the corresponding out-degree distribution distance
achieved almost identical classification results as the ones of the in-degree distribution distance.

Directed Spectral distance. Spectral network theory explains the topology a network using the eigenvalues and eigenvectors
of matrices associated to the network, such as its adjacency matrix or Laplacian matrix10. The eigen-decomposition of the
Laplacian matrix of G is L = φλGφ T where λG = diag(λ 1

G,λ
2
G, ...,λ

n
G) is the diagonal matrix with the ordered eigenvalues as

elements and φ = (φ1|φ2|...|φn) is the matrix with the ordered eigenvectors as columns. The spectrum of network G is the set
of its eigenvalues SG = {λ 1

G,λ
2
G, ...,λ

n
G}, where λ 1

G ≤ λ 2
G ≤ ...≤ λ n

G.
Wilson and Zhu10 compare various spectral distance measures that are defined from different types of matrices, showing

that the spectral distance between the Laplacian matrices of two networks is the best measure for classification and clustering
purposes. Later on, Thorne and Stumpf11 also use the spectral distance of Laplacian matrices for the analysis of the evolution in
protein interaction networks. In parallel to these studies, we chose spectral distance from Laplacian matrices as the benchmark
representing the performance of spectral distance measures against graphlet based distances. The spectral distance between two
networks G and H is defined as the Euclidean distance between their spectra10:

Spectral(G,H) =
√

∑
i
(λ i

G−λ i
H)

2. (5)

When the spectra of two networks are of different sizes, 0 valued eigenvalues are added into the smaller spectrum while
preserving the correct magnitude ordering.

However, in the directed case, adjacency and Laplacian matrices are not symmetric, so their spectral decomposition may
have complex eigenvalues. To compute spectral distance on directed networks, we represent a directed network with its
symmetric normalized Laplacian matrix Ln. It is based on the reciprocal square of the incidence matrix of a network, S:

S[u][e] =

 1/
√

d(u) if the directed edge e = (u,v) is in the network,
−1/

√
d(u) if the directed edge e = (v,u) is in the network,

0 otherwise.
(6)

Then, the symmetric normalized laplacian matrix, Ln, is defined as:

Ln = S×ST , (7)

where ST is the transpose of S.

Dependencies between graphlet degrees
The statistics of different orbits on directed graphlets are not independent of each other. The reason behind this is the fact that
smaller graphlets are induced sub-graphs of larger graphlets. We report 23 such non-redundant dependencies in Supplementary
Table 1. Note that these redundancy formulas are only valid for networks without anti-parallel directed edges, and thus, can
not be used to remove redundant orbits. For example, let the number of orbits 0 that touches a node n in a network without
anti-parallel directed edges be C0. There are

(C0
2

)
pairs of orbits 0 that touch node n. Each pair can result either in the count of

one orbit 6, if the corresponding end-nodes are not connected, or in the count of one orbit 11 if the two end-nodes are connected
by a directed edge. Thus,

(C0
2

)
=C6 +C11, as presented in Table 1. However, if anti-parallel directed edges are allowed, this

results in a third cases accounting for the count of two orbits 11, which invalidates the previously presented redundancy formula.

Brokerage and peripheral scores
We use the first canonical variate, which relate the economic wealth of a country (GDP, capital stock and debt) with brokerage
positions in the WTN, to derive scores measuring the brokerage power or the peripherality of a country from its node roles
in the trade network of a given year. These scores use the loadings of broker and peripheral roles, which are the Pearson
correlation betweens the node roles (graphlet degrees) and the linear combination of node roles from the canonical variate. For
a country u and its directed graphlet degree vector DGDVu in the WTN for a given year, these scores are defined as follows.

Brokerage(u) = 0.903×DGDVu[51]+0.907×DGDVu[55]+0.907×DGDVu[59]
+0.901×DGDVu[63]+0.897×DGDVu[67]+0.916×DGDVu[71]
+0.904×DGDVu[75]+0.912×DGDVu[79]

(8)
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1.
(C0

2

)
= C6 +C11

2.
(C0

1

)
·
(C1

1

)
= C3 +C9 +C12

3.
(C1

2

)
= C8 +C10

4.
(C2

1

)
·
(C0−1

1

)
= C27 +C57 +C73 +2 ·C113 +C107 +C111 +2 ·C48 +C42

5.
(C1

1

)
·
(C2

1

)
= C58 +C50 +C40 +C39 +C82 +C98 +C102 +C14 +C83

6.
(C0

1

)
·
(C5

1

)
= C26 +C65 +C49 +C40 +C46 +C102 +C86 +C89 +C98

7.
(C5

1

)
·
(C1−1

1

)
= C22 +C74 +C66 +2 ·C44 +C43 +2 ·C95 +C99 +C103

8.
(C7

1

)
·
(C0−1

1

)
= C23 +C61 +C77 +C42 +2 ·C45 +C107 +2 ·C92 +C111

9.
(C7

1

)
·
(C1

1

)
= C18 +C62 +C54 +C46 +C41 +C86 +C110 +C106 +C89

10.
(C4

1

)
·
(C0

1

)
= C15 +C53 +C69 +C39 +C41 +C83 +C106 +C110 +C82

11.
(C4

1

)
·
(C1−1

1

)
= C19 +C78 +C70 +C43 +2 ·C47 +C99 +2 ·C115 +C103

12.
(C3

1

)
·
(C1−1

1

)
= 2 ·C37 +2 ·C59 +C79 +C55 +C97 +C112 +C116 +C81

13.
(C3

1

)
·
(C0−1

1

)
= 2 ·C34 +C51 +C75 +2 ·C71 +C101 +C108 +C84 +C114

14.
(C6

1

)
·
(C0−2

1

)
= 3 ·C32 +2 ·C67 +C96 +C87 +C100

15.
(C6

1

)
·
(C1

1

)
= C34 +C75 +C51 +C94 +C90 +C104

16.
(C8

1

)
·
(C0

1

)
= C37 +C55 +C79 +C88 +C93 +C109

17.
(C8

1

)
·
(C1−2

1

)
= 3 ·C30 +2 ·C63 +C85 +C91 +C105

18.
(C9

1

)
·
(C0−1

1

)
= C51 +C104 +2 ·C90 +C84 +C101 +2 ·C121 +C117 +C124

19.
(C9

1

)
·
(C1−1

1

)
= C55 +C81 +C112 +C109 +2 ·C88 +C119 +2 ·C122 +C123

20.
(C10

1

)
·
(C1−2

1

)
= C63 +2 ·C105 +2 ·C85 +2 ·C91 +3 ·C125 +3 ·C118

21.
(C10

1

)
·
(C0

1

)
= C59 +C97 +C81 +C116 +C112 +C127 +C122 +C119 +C123

22.
(C11

1

)
·
(C0−2

1

)
= C67 +2 ·C87 +2 ·C100 +2 ·C96 +3 ·C128 +3 ·C120

23.
(C11

1

)
·
(C1

1

)
= C71 +C84 +C108 +C114 +C101 +C121 +C126 +C124 +C117

Table 1. The 23 non-redundant dependencies between directed graphlet degrees. These equations come from the
observation that combining two orbits from the left-hand-sides can only results in orbits from the right-hand-sides.
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Peripherality(u) = 0.286×DGDVu[52]+0.279×DGDVu[56]+0.284×DGDVu[60]
+0.275×DGDVu[64]+0.279×DGDVu[68]+0.272×DGDVu[72]
+0.281×DGDVu[76]+0.274×DGDVu[80]

(9)

Supplementary Figure 1 presents the brokerage and peripheral scores of the strongest brokers (United States of America,
United Kingdom, Germany, France and China, panels a and b) and of emerging economies (Brazil, Russia, India, Turkey
and Indonesia, panels c and d). To further study how China integrated the world trade network, we use import-specific and
export-specific (according to the directionality of the trade between the broker role and the peripheral role) variants of the
brokerage score:

Import Brokerage(u) = 0.907×DGDVu[55]+0.901×DGDVu[63]+0.916×DGDVu[71]+0.912×DGDVu[79] (10)

Export Brokerage(u) = 0.903×DGDVu[51]+0.907×DGDVu[59]+0.897×DGDVu[67]+0.904×DGDVu[75] (11)

Supplementary Figure 1 presents the import- and export-specific brokerage scores of emerging economies (Brazil, Russia,
India, Turkey and Indonesia, panels e and f).

Supplementary Figures
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Supplementary Figure 1: Tracking the dynamics of WTN. (a) and (b) Brokerage and peripheral scores of the United States
of America (USA), United Kingdom (GBR), Germany (DEU), France (FRA) and China (CHN). (c) and (d) Export-specific and
import-specific brokerage scores of the United States of America (USA), United Kingdom (GBR), Germany (DEU), France
(FRA) and China (CHN). (e) and (f) Export-specific and import-specific brokerage scores of Brazil (BRA), Russia (RUS), India
(IND), Turkey (TUR) and Indonesia (IDN); United Kingdom (GBR, in pink) is added for comparison purposes.
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Supplementary Figure 2: Observed and predicted GDPs. (a) For all of United States of America (USA), United Kingdom
(GBR), Germany (DEU), France (FRA) and China (CHN), the observed GDPs are plotted in bold lines and the predicted GDPs
(from the trade patterns of the countries) are plotted in dashed lines. (b) The same for Brazil (BRA), Russia (RUS), India (IND),
Turkey (TUR) and Indonesia (IDN).
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(a) (b) (c)

AUPR AUC
Distance Kingdom Sub-Phylum Class Kingdom Sub-Phylum Class

DGCD-129 0.782 0.786 0.600 0.839 0.923 0.927
DGCD-13 0.784 0.786 0.530 0.850 0.928 0.945
DGDDA 0.677 0.687 0.629 0.751 0.852 0.873
RDGF 0.738 0.718 0.544 0.854 0.914 0.934

In-Degree Distribution 0.458 0.335 0.305 0.635 0.708 0.755
Directed Spectral 0.574 0.459 0.339 0.777 0.863 0.893

(d)

Supplementary Figure 3: Classifying metabolic networks. Precision Recall curves when classifying metabolic networks
according to the Kingdom (panel a), Sub-phylum (panel b) and Class (panel c) levels of KEGG’s taxonomic classification of
species. (d) The corresponding area under the precision-recall curves (AUPRs) and area under the ROC curves (AUCs).
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