Development of a one-pot assay for screening and identification of Mur pathway inhibitors in *Mycobacterium tuberculosis*

Kandasamy Eniyan¹, Anuradha Kumar², Geetha Vani Rayasam², Andrej Perdih³ and Urmi Bajpai^{1*}

¹Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi 110019, India

²Open Source Drug Discovery Unit, CSIR, New Delhi 110002, India

³National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia

*Corressponding author Urmi Bajpai, PhD

Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi New Delhi 110019, India Email: urmibajpai@andc.du.ac.in

Ph. No. 011-26412547 Fax: 011-26294540

Supplementary information

Table S1. Primers used in amplification of Mur enzymes

Primer name	Primer name Primer DNA sequence	
		enzymes
MurA F	5'-ACCCTT <u>GAATTC</u> ACTGACCGG-3'	EcoRI
MurA R	5'-AGGT <u>AAGCTT</u> CGCCTAACAGC-3'	HindIII
MurB F	5'-ATTAGAATTCATGAAACGGAGCGGTGTC-3'	EcoRI
MurB R	5'-GCCGCGAAAAGCTTCTACAAC-3'	Hind III
MurC F	5'-ATTAGGATCCGTGAGCACCGAGCAGTTG-3'	ВатНІ
MurC R	5'-TCTAAGCTTCCTCGTTGTGTTCC-3'	Hind III
MurD F	5'-CGCGGATCCGACGTGCTTGACCCTCTG-3'	ВатНІ
MurD R	5'-CGC <u>AAGCTT</u> CTACCGGATCACCGCGCG-3'	Hind III
MurE F	5'-CGCGGATCCGTGTCATCGCTGGCCCGAG-3'	RamHI
MurE R	5'-CGC <u>AAGCTT</u> TCATGCGCGCCGCTCGAG-3'	Hind III
MurF F	5'-CGCGGATCCATGATCGAGCTGACCGTCGCG-3'	<i>RamHI</i>
MurF R	5'-CGC <u>AAGCTT</u> CATGGGCGCACACTCCC-3'	Hind III

The underlined bases indicate the restriction sites.

Table S2. Results of the one-pot assay of the furan-based mono and dicarboxylic acid molecules against Mur Enzymes from M.tuberculosis.

Compound	Structure	Percentage inhibition (%)	Compound	Structure	Percentage inhibition (%)
1	HO HOO	16	6	S S S S S S S S S S S S S S S S S S S	16
2	HO O O NO2	18	7	S S S Br	10
3	COOH NO2	97	8	S S COOH	21
4	CI COOH	93	9	S CI CI CI	-1
5	NO ₂ OCI	10	10		28

Inhibition in % were determined at 100 µM concentration of the investigated compound.

Table S3. Results of the one-pot assay of the selected benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives against Mur Enzymes of *M.tuberculosis*.

Compound	Structure	Percentage inhibition	Compound	Structure	Percentage inhibition
A	HO O NH NH S	6	E	HO O N S N S N S N S N S N S N S N S N S	2
В	HO O NH NH O NO	16	F	O NH O N S	9
C	HO O NH NH O N O Br	3	G	O NH O N S	10
D	HO O N S N CI	10	Н	O NH NH S Br	15

Inhibition in % were determined at 250 µM concentration of the investigated compound.

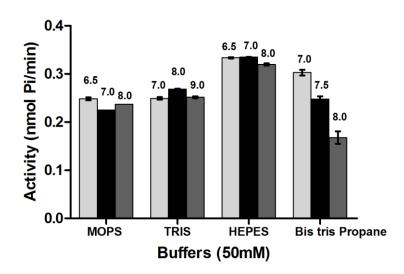


Figure S1. Effect of various buffers on the UDP-N-acetylglucosamine enolpyruvyl transferase activity of MurA enzyme. The pH of the buffers tested are mentioned above the bar. Net Pi released in enzymatic reactions was determined and data depicted is mean \pm S.E. values obtained from three independent experiments.

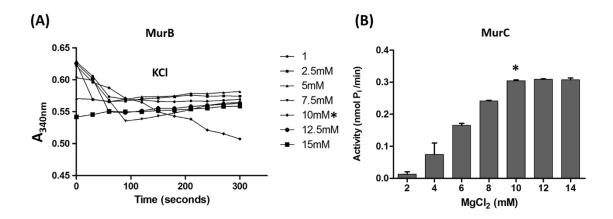


Figure S2. Optimization of K^+ and Mg^{2+} on MurB and MurC (first of the four ligases) (A) Effect of K^+ on the activity of MurB enzyme. X-axis represents incubation time (seconds) and Y-axis represents absorbance at 340nm and (B) Effect of Mg^{2+} on the ATPase activity of MurC enzyme. X-axis represents the $MgCl_2$ at various concentrations (mM) and Y-axis represents the amount of Pi released (nmol/min). Net Pi released in enzymatic reactions was determined and data depicted is mean \pm S.E. values obtained from three independent experiments.

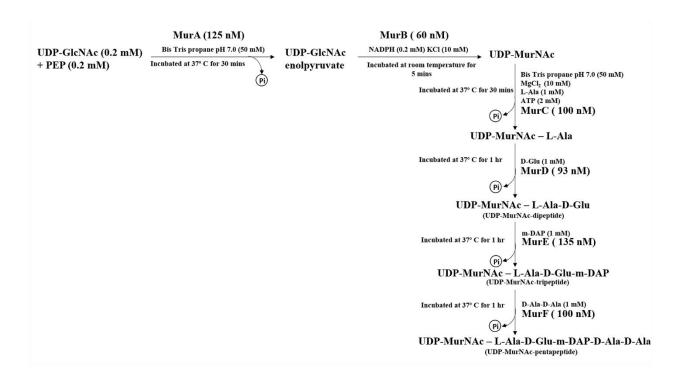
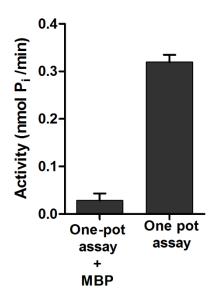



Figure S3. Schematic representation of the sequential coupled assays.

Figure S4. Effect of purified MBP in the one-pot assay. Purified MBP at 1μ g concentration was added in place of MurD and MurF enzymes in the reaction mixture to demonstrate that the observed activity was specific to MurD and MurF. X-axis represents MBP added in one-pot assay and Y-axis represents net P_i (nmol P_i /min)

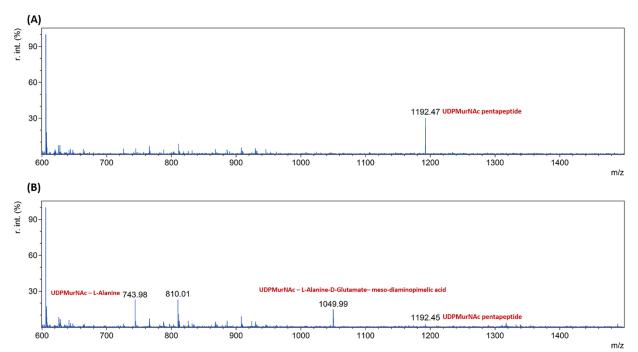


Figure S5. Electron Spray Ionization-Mass Spectrometry analysis of D-Cycloserine activity in one-pot assay. (A) ESI-MS analysis of one-pot assay without D-Cycloserine. (B) ESI-MS analysis of one-pot assay with D-Cycloserine.