Supplementary material

Contents

Supplementary Tables 2
Table S1: Results of conventional PCR and sequencing pre-screening on the Y. pestisspecific pla fragment (133 bp)2
Table S2: Carbon-dating
Table S3: Copy number estimation of plasmids 3
Table S4: Genomes used for SNP calling and phylogeny
Table S5: 157 chromosomal SNPs called for the Altenerding genome compared to the CO92 reference
Table S6: 11 SNPs called for plasmids pCD1 and pMT1
Table S7: SNPs published by Wagner et al. for the Aschheim genome not called in theAltenerding genome14
Table S8: 19 potential false positive SNPs called by Wagner et al
Table S9: 63 Unique SNPs in the Altenerding genome cross-referenced against dataset
Table S10: Non-synonymous SNPs compared to CO92
Table S11: Regions missing in CO92 but present in the Altenerding genome
Supplementary figures
Fig.S1: pla gene qPCR amplification and melting curves used for sample screening 29
Fig.S2: mapDamage plot based on the non-UDG treated Altenerding library mapped to the CO92 chromosome reference
Fig.S3: mapDamage plot based on the non-UDG treated Altenerding library mapped to the human hg19 reference
Fig.S4: Maximum Parsimony tree excluding the Aschheim genome
Fig.S5: Maximum Likelihood tree excluding the Aschheim genome
Fig.S6: Maximum Likelihood tree
Fig.S7 (A-S): Visualization of positions containing potential false positive SNPs called by <i>Wagner et al.</i> 2014
Fig. S8 (A-K): Visualization of the abnormal coverage peaks in the re-analyzed Aschheim SNP enriched data and non-SNP enriched data, containing potential false positive SNPs called by <i>Wagner et al.</i> 2014

Fig. S9 (A-J): Visualization of 10 positions containing true SNPs called for the re- analyzed Aschheim genome as well as for the Altenerding genome	. 58
Fig.S10 (A-H): Visualization of positions containing potential false positive SNPs specifically derived in the re-analyzed Aschheim genome	. 64
Fig.S11: Genome-wide SNP allele frequency plot of the re-analyzed Aschheim genome	. 66
Fig.S12: Coverage plots across the CO92 reference for the Altenerding genome	. 67
Supplementary archaeological and historical information	. 68
References	. 69

Supplementary Tables

Table S1: Results of conventional PCR and sequencing pre-screening on the 3	Y.
<i>pestis</i> specific <i>pla</i> fragment (133 bp)	

Individual	Tooth sample 1	Tooth sample 2
AE96	-	-
AE97	-	-
AE127	-	-
AE128	-	-
AE349	-	-
AE350	-	-
AE468	-	-
AE469	-	-
AE887	-	-
AE888	-	-
AE1004	-	-
AE1005	-	-
AE1154	-	-
AE1155	-	-
AE1175	-	+
AE1176	+	-

AE1184	-	-
AE1185	-	-
AE1223	-	-
AE1241	-	-

Table S2: Carbon-dating

Individual	Sample	C14 date	+/-	Cal 1 sigma	Cal 2 sigma	C:N	%C	percent collagen
AE1175	metacarpal	1541	19	Cal AD	Cal AD	3.3 ^a	37.8 ^a	13.8 ^a
				434-556	428-571			
AE1176	metacarpal	1563	20	Cal AD	Cal AD	3.3 ^a	36.1 ^a	3.4 ^a
	-			430-538	426-545			

^a The C:N relation, percent C and percent collagen values are in the normal range and show a good collagen quality.

Table S3: Copy number estimation of plasmids

	Chromosome	pCD1	pMT1
Reference sequence (CO92)	NC_003143.1	NC_003131.1	NC_003134.1
Average read length	67.41 bp	68.7 bp	61 bp
Selected region of full			
mappability (positions in	2306929 -		
reference)	2311929	24206-29205	2000-6999
"G+C" content in region of full			
mappability	48.04 %	47.98 %	47.96 %
Average coverage in region of full			
mappability	21.2 X	60.8 X	54 X
Estimated copy number ^a	-	2.87	2.55

a The copy number of the plasmids was estimated on the average coverage in the region of full mappability divided by that of the chromosome, and is likely to be affected by ascertainment bias in the array capture.

Table S4: Genomes used for SNP calling and phylogeny

Strain ID	SNP Calls	Coverage (fold)	Coverage (percent)	accession
0.ANT1a_42013	162	63.19	93.93	ADPG0000000 47685
0.ANT1b_CMCC49003	172	66.88	94.59	ADQX0000000 47685
0.ANT1c_945	185	50.49	92.05	ADPV0000000 47685
0.ANT1d_164	179	47.76	93.37	ADOW0000000 47685
0.ANT1e_CMCC8211	188	55.41	94.27	ADRD0000000 47685
0.ANT1f_42095	185	47.24	93.98	ADPJ0000000 47685
0.ANT1g_CMCC42007	185	53.09	93.43	ADQV0000000 47685

0.ANT1h_CMCC43032	182	38.54	93.05	ADQW0000000 47685	
0.ANT2_B42003004	90	94.52	95.25	NZ_AAYU00000000	
0.ANT2a_2330	90	66.53	92.44	ADOY0000000 47685	
0.ANT3a_CMCC38001	93	67.2	93.74	ADQU0000000 47685	
0.ANT3b_A1956001	91	66.62	93.98	ADPX00000000 47685	
0.ANT3c_42082	92	27.29	92.06	ADPH00000000 47685	
0.ANT3d_CMCC21106	99	42.78	91.74	ADQP0000000 47685	
0.ANT3e_42091b	98	85.13	93.89	ADP100000000 47685	
0.PE2_PEST-F	507	92.06	93.07	NC_009381	
0.PE2b_G8786	567	51.87	91.33	ADSG0000000 47685	
0.PE3_Angola	889	89.73	91.04	NC_010159	
0.PE4_Microtus91001	351	93.27	94.25	NC_005810	
0.PE4Aa_12	267	49.15	92.27	ADOV0000000 47685	
0.PE4Ab_9	264	46.84	93.04	ADPT00000000 47685	
0.PE4Ba_PestoidesA	315	93.44	94.42	NZ_ACNT00000000	
0.PE4Ca_CMCCN01002	005	04.40	00.0		
5	325	61.42	92.9	ADR10000000 47685	
0.PE4Cb_M0000002	316	49.02	93.05	ADS10000000 47685	
0.PE4Cc_CMCC18019	322	35.08	93.45	ADQ00000000 47685	
0.PE4Cd_CMCC93014	331	52.98	94.06	ADRM0000000 47685	
0.PE4Ce_CMCC91090	333	87.7	93.18	ADRJ0000000 47685	
0.PE7b_620024	444	38.79	92.68	ADPM0000000 47685	
1.ANT1_Antiqua	156	93.95	94.9	NC_008150	
1.ANT1_UG05-0454	163	91.51	92.34	NZ_AAYR00000000	
1.IN1a_CMCC11001	48	52.46	93.59	ADQK0000000 47685	
1.IN1b_780441	51	54.96	94.66	ADPS00000000 47685	
1.IN1c_K21985002	62	60.58	92.21	ADSS00000000 47685	
1.IN2a_CMCC640047	43	45.14	92.33	ADRA00000000 47685	
1.IN2b_30017	46	89.81	94.69	ADPC00000000 47685	
1.IN2c_CMCC31004	46	56.78	92.84	ADQR0000000 47685	
1.IN2d_C1975003	40	49.75	92.45	ADPZ00000000 47685	
1.IN2e_C1989001	50	47.25	95.07	ADQB0000000 47685	
1.IN2f_710317	49	42.58	94.17	ADPP0000000 47685	
1.IN2g_CMCC05013	50	24.84	93.45	ADQF0000000 47685	
1.IN2h_5	49	36.98	93.36	ADPK0000000 47685	
1.IN2i_CMCC10012	53	59.62	93.98	ADQG0000000 47685	
1.IN2j_CMCC27002	54	46.36	92.45	ADQQ0000000 47685	
1.IN2k_970754	55	61.24	93.04	ADPW0000000 47685	
1.IN2I_D1991004	52	38.21	94.56	ADRX0000000 47685	
1.IN2m_D1964002b	53	76.63	94.7	ADRV0000000 47685	
1.IN2n_CMCC02041	56	62.95	94.48	ADQC0000000 47685	
1.IN2o_CMCC03001	54	41.46	92.42	ADQD0000000 47685	

1.IN2p_D1982001	50	47.49	93.11	ADRW00000000 47685
1.IN2q_D1964001	52	33.69	92.63	ADRU0000000 47685
1.IN3a_F1954001	48	60.11	95.31	ADSC0000000 47685
1.IN3b_E1979001	44	40.72	94.92	NZ_AAYV00000000
1.IN3c_CMCC84038b	45	70.76	94.72	ADRF0000000 47685
1.IN3d_YN1683	46	32.63	93.19	ADTD0000000 47685
1.IN3e_YN472	44	57.37	95.34	ADTH00000000 47685
1.IN3f_YN1065	45	60.74	94.36	ADTC00000000 47685
1.IN3g_E1977001	45	50.42	93.47	ADRY0000000 47685
1.IN3h_CMCC84033	44	38.97	94	ADRE00000000 47685
1.IN3i_CMCC84046	48	66.26	95.35	ADRG0000000 47685
1.ORI1_CA88	13	94.97	95.69	NZ_ABCD00000000
1.ORI1_CO92	0	95.06	95.74	NC_003143
1.ORI1a_CMCC114001	26	44.58	92.37	ADQL0000000 47685
1.ORI1b_India195	28	92.74	93.47	NZ_ACNR00000000
1.ORI1c_F1946001	34	42.44	94.74	ADSB0000000 47685
1.ORI2_F1991016	40	94.5	95.2	NZ_ABAT00000000
1.ORI2a_YN2179	41	40.78	92.33	ADTE00000000 47685
1.ORI2c_YN2551b	42	44.84	94.5	ADTF00000000 47685
1.ORI2d_YN2588	40	48.06	91.99	ADTG0000000 47685
1.ORI2f_CMCC87001	38	59.25	94.71	ADRH00000000 47685
1.ORI2g_F1984001	40	42.89	92.63	ADSD0000000 47685
1.ORI2h_YN663	38	56.2	92.37	ADTI00000000 47685
1.ORI2i_CMCCK100001a	38	70.87	95.36	ADRR0000000 47685
1.ORI2i_CMCCK110001b	39	50.54	92.56	ADRS0000000 47685
1.ORI3_IP275	42	94.47	95.21	NZ_AAOS0000000
1.ORI3_MG05-1020	34	94.73	95.36	NZ_AAYS00000000
1.ORI3a_EV76	30	50.95	91.01	ADSA0000000 47685
2.ANT1_Nepal516	138	91.87	92.7	NZ_ACNQ0000000
2.ANT1a_34008	122	61.73	92.57	ADPD0000000 47685
2.ANT1b_34202	122	53.84	93.97	ADPE00000000 47685
2.ANT2a_2	117	52.78	93.05	ADOX0000000 47685
2.ANT2b_351001	121	40.92	92.98	ADPF00000000 47685
2.ANT2c_CMCC347001	119	32.57	93.87	ADQS0000000 47685
2.ANT2d_G1996006	117	56.48	94.12	ADSE0000000 47685
2.ANT2e_G1996010	121	68.03	94.21	ADSF00000000 47685
2.ANT2f_CMCC348002	120	57.17	94.3	ADQT0000000 47685
2.ANT3a_CMCC92010	128	60.52	91.48	ADRL0000000 47685
2.ANT3b_CMCC95001	126	49.74	92.38	ADRN0000000 47685
2.ANT3c_CMCC96001	127	74.21	94.22	ADRO0000000 47685
2.ANT3d_CMCC96007	129	69.28	92.53	ADRP0000000 47685
2.ANT3e_CMCC67001	137	62.64	91.29	ADRB00000000 47685

2.ANT3f_CMCC104003	126	71.42	93.99	ADQH0000000 47685
2.ANT3g_CMCC51020	127	50.32	93.12	ADQY0000000 47685
2.ANT3h_CMCC106002	126	68.1	93.94	ADQ10000000 47685
2.ANT3i_CMCC64001	133	56.49	91.43	ADQZ0000000 47685
2.ANT3j_H1959004	124	51.89	93.69	ADSI0000000 47685
2.ANT3k_5761	131	52.31	91.38	ADPL0000000 47685
2.ANT3I_735	135	49.37	92.53	ADPR00000000 47685
2.MED1b_2506	158	70.57	93.99	ADPA00000000 47685
2.MED1c_2654	157	29	93.57	ADPB00000000 47685
2.MED1d_2504	158	37.87	92.65	ADOZ0000000 47685
2.MED2_KIM10	171	93.81	94.65	NC_004088
2.MED2b_91	131	77.47	91.46	ADPU0000000 47685
2.MED2c_K11973002	129	59.49	93.09	NZ_AAYT00000000
2.MED2d_A1973001	129	31.97	91.78	ADPY00000000 47685
2.MED2e_7338	132	62.53	90.23	ADPQ0000000 47685
2.MED3a_J1963002	134	51.58	93.19	ADSP00000000 47685
2.MED3b_CMCC125002	404	40.50	00.00	ADON0000000 47005
	134	49.53	93.86	ADQN0000000 47685
2.MED3C_11969003	133	73.87	93.97	ADSK0000000 47685
2.MED30_J1978002	122	60.65	94.71	ADSQ0000000 47685
2.MED3f_I1970005	139	46.96	93.47	ADSL0000000 47685
	136	41.71	93.66	ADRQ0000000 47685
2.MED3h_CMCC90027	136	50.58	91.2	ADRI0000000 47685
2.MED3i_CMCC92004	140	42.18	91.35	ADRK0000000 47685
2.MED3j_12001001	137	78.49	94.82	ADS00000000 47685
2.MED3k_CMCC12003	138	51.11	91.09	ADQM0000000 47685
2.MED3I_I1994006	141	62.9	93.9	ADSN0000000 47685
2.MED3m_SHAN11	142	51.92	92.72	ADTA00000000 47685
2.MED3n_SHAN12	142	42.92	93.19	ADTB00000000 47685
2.MED3o_I1991001	140	48.81	91.82	ADSM0000000 47685
2.MED3p_CMCC107004	141	100.25	94.78	ADQJ0000000 47685
3.ANT1a_7b	96	65.01	94.49	ADPN0000000 47685
3.ANT1b_CMCC71001	95	42	92.33	ADRC0000000 47685
3.ANT1c_C1976001	92	59.96	95.27	ADQA0000000 47685
3.ANT1d_71021	94	44.74	94.2	ADPO0000000 47685
3.ANT2a_MGJZ6	112	54.85	91.3	ADSX00000000 47685
3.ANT2b_MGJZ7	107	40.09	91.68	ADSY0000000 47685
3.ANT2c_MGJZ9	111	56.22	93.67	ADSZ00000000 47685
3.ANT2d_MGJZ11	113	53.19	94.25	ADSU0000000 47685
3.ANT2e_MGJZ3	111	63.11	93.09	ADSW0000000 47685
4.ANT1a_MGJZ12	94	55.06	93.32	ADSV0000000 47685
BD 8124_8291_11972	65	16.7	88.07	SRR341961,

				SRR341962
Altenerding	157	17.9	91.5	PRJEB14851
Aschheim	120	3.94	30.24	SRP033879
Y. pseudotuberculosis	1238			
(outgroup)	9	88.08	91.16	NC_006155

Table S5:	157 chr	omosomal SNPs called for	the Altenerdin	g genome compared to
the CO92	referen	ce (5X coverage and SNP a	allele frequency	of at least 90%)
		Coverage in		

			Coverage in			
Position	CO92	Altenerding	Altenerding	Ancestral/Derived	SNP type	
74539	С	Т	31 Anc		non-synonymous	
86824*	A	G	8	der	intergenic	
130643	G	A	24	Anc	non-synonymous	
155747*	A	G	20	Anc	synonymous	
189227*	С	Т	19	Anc	non-synonymous	
189912*	A	G	18	der	intergenic	
228268	T	G	31	Anc	synonymous	
260148*	С	Т	15	der	non-synonymous	
271114*	С	A	19	der	non-synonymous	
286528*	Т	A	17	Anc	synonymous	
325836	Т	с	24	Anc	synonymous	
341720	A	G	19	Anc	non-synonymous	
399533	С	A	17	Anc	non-synonymous	
420208*	G	Т	7	Anc	intergenic	
485976*	С	Т	15	der	synonymous	
545488	Т	с	25	Anc	stop lost	
547131	Т	G	18	Anc	synonymous	
				7		

549767*	Т	С	10	Anc	intergenic
557841*	С	Т	14	der	non-synonymous
699494	A	G	22	Anc	synonymous
699647	Т	С	22	Anc	synonymous
727741	G	A	14	der	non-synonymous
779365*	С	Т	17	der	synonymous
877258	Т	С	26	Anc	non-synonymous
898980	A	Т	11	der	intergenic
918790	С	Т	13	Anc	non-synonymous
1017647	Т	С	16	Anc	synonymous
1025278	т	G	20	Anc	non-synonymous
1051913	A	G	26	Anc	non-synonymous
1067966	С	A	20	der	non-synonymous
1098675*	A	с	15	Anc	non-synonymous
1102174	A	G	14	Anc	non-synonymous
1178178	Т	С	9	Anc	intergenic
1178459	Т	С	28	Anc	synonymous
1211729*	A	С	18	der	synonymous
1251046	Т	С	10	Anc	non-synonymous
1263337	G	A	5	Anc	intergenic
1272559	Т	С	16	Anc	non-synonymous
1296743*	С	Т	27	der	non-synonymous
1306718	Т	С	17	Anc	intergenic

1385780	Т	С	23	Anc	synonymous
1387701*	С	Т	13	der	intergenic
1387756*	A	G	16	der	intergenic
1413031*	С	A	8	der	intergenic
1434752*	С	A	16	der	non-synonymous
1489055	С	Т	31	der	synonymous
1512930	A	G	17	Anc	non-synonymous
1530658	С	A	12	der	non-synonymous
1540754	A	G	17	Anc	synonymous
1609461*	Т	с	14	der	non-synonymous
1705810	A	с	14	Anc	non-synonymous
1735263	A	с	26	Anc	synonymous
1749443	Т	с	15	Anc	synonymous
1754708	С	Т	22	der	non-synonymous
1804559	С	Т	12	Anc	synonymous
1808946	Т	С	19	Anc	intergenic
1859946*	Т	с	15	Anc	non-synonymous
1868678	G	т	11	der	intergenic
1871476	G	A	10	Anc	intergenic
1956162	Т	С	9	der	intergenic
2012524	Т	G	19	Anc	non-synonymous
2022335	A	С	16	Anc	intergenic
2092152*	С	Т	21	der	synonymous

2097520	G	Т	22	der	synonymous
2098628	Т	С	16	Anc	non-synonymous
2262577	Т	G	31	Anc	non-synonymous
2277583	G	A	8	Anc	intergenic
2278317	A	G	20	Anc	non-synonymous
2300659	Т	G	23	Anc	non-synonymous
2352174*	Т	G	17	der	non-synonymous
2356003	Т	A	20	Anc	non-synonymous
2419529*	G	A	25	der	synonymous
2495165*	С	A	8	der	intergenic
2508389	Т	С	22	Anc	non-synonymous
2655012	С	т	13	Anc	intergenic
2656129*	Т	G	20	Anc	synonymous
2684793	A	G	18	Anc	intergenic
2721828	С	A	16	Anc	synonymous
2725715	С	т	11	der	intergenic
2739149	С	A	13	Anc	synonymous
2744933	A	G	9	Anc	non-synonymous
2753572*	A	т	14	der	synonymous
2773647	A	G	18	Anc	non-synonymous
2797988*	A	G	13	Anc	synonymous
2812384	G	Т	18	Anc	non-synonymous
2829833	A	G	32	Anc	non-synonymous

2903882	Т	G	18	Anc	non-synonymous
2934972	С	G	22	Anc	synonymous
2936268	G	A	18	Anc	non-synonymous
2950954	G	A	11	Anc	non-synonymous
2958327	С	Т	23	Anc	intergenic
2977542*	С	A	26	der	non-synonymous
2995771	A	G	8	Anc	intergenic
3078807*	С	A	21	der	non-synonymous
3085079	A	G	16	Anc	non-synonymous
3096319	G	A	17	Anc	non-synonymous
3145523	A	С	22	Anc	non-synonymous
3179828*	С	A	30	der	synonymous
3190399	A	G	35	Anc	non-synonymous
3210101	A	G	18	Anc	synonymous
3223359*	С	A	5	Anc	intergenic
3244204	A	G	26	Anc	non-synonymous
3267118*	A	G	16	Anc	non-synonymous
3274298*	A	Т	8	der	synonymous
3324959	A	G	18	Anc	intergenic
3360963*	A	С	14	der	non-synonymous
3360984*	С	Т	6	der	non-synonymous
3362591	A	G	18	Anc	non-synonymous
3397040*	A	G	16	Anc	synonymous

3398153	G	A	12	der	synonymous
3409414	Т	С	5	der	intergenic
3421335	A	G	10	Anc	non-synonymous
3426560*	A	G	20	Anc	synonymous
3442617*	A	Т	15	Anc	non-synonymous
3500922	Т	G	20	der	non-synonymous
3535148*	G	Т	11	der	non-synonymous
3560088	G	A	31	der	non-synonymous
3564026	С	Т	24	Anc	non-synonymous
3568597	С	Т	23	der	non-synonymous
3571531	A	G	30	Anc	synonymous
3616733	A	G	17	Anc	non-synonymous
3645151*	С	G	20	Anc	non-synonymous
3658233*	Т	G	12	Anc	non-synonymous
3667806	A	G	13	Anc	non-synonymous
3726726	A	G	18	Anc	stop lost
3750736	G	A	16	der	intergenic
3755861	С	Т	7	der	intergenic
3767613	С	Т	11	Anc	intergenic
3806677	С	Т	12	Anc	non-synonymous
3843195	С	A	5	der	synonymous
3892488*	С	Т	21	Anc	non-synonymous
3973746	С	Т	27	Anc	non-synonymous

4066494*	С	Т	22	der	non-synonymous
4080579	Т	С	19	Anc	non-synonymous
4081612	Т	С	17	Anc	intergenic
4082562*	Т	С	21	Anc	synonymous
4083536	A	G	19	Anc	intergenic
4087224	Т	С	28	Anc	intergenic
4173149	A	с	6	Anc	intergenic
4194600	G	A	21	Anc	non-synonymous
4243823	A	Т	9	Anc	non-synonymous
4307755	G	A	25	der	non-synonymous
4339366	Т	G	21	Anc	non-synonymous
4371886*	A	G	19	Anc	synonymous
4399470	A	G	29	Anc	non-synonymous
4412624*	A	G	12	der	intergenic
4421633	Т	С	36	Anc	non-synonymous
4421689	A	G	32	Anc	non-synonymous
4423366*	G	A	38	der	synonymous
4460688	С	Т	18	der	non-synonymous
4465967	С	A	24	der	synonymous
4518401	G	A	18	Anc	synonymous
4527483	A	G	14	Anc	intergenic
4579183	A	G	20	Anc	non-synonymous
4628496	С	A	13	der	synonymous

4629169	G	А	33	der	intergenic
4634287	A	G	13	Anc	non-synonymous

* Chromosomal SNPs detected in the Altenerding genome that were not called in the Wagner et al. Aschheim genome.

Table S6: 11 SNPs called for plasmids pCD1 and pMT1 (5X coverage and SNP frequency of 90% minimum).

Plasmid	Position	CO92	Altenerding	Coverage
pCD1 (NC_003131.1)	23564	Т	G	67
	29959	А	G	40
	50462	Т	С	33
	54237	Т	G	44
	55839	G	А	53
	66608	С	Т	83
pMT1 (NC_003134.1)	12976*	А	С	70
	32569	Т	G	82
	47365	С	Т	79
	62994	Т	С	90
	82435	С	Т	99

* pMT1 SNP detected in the Altenerding genome and not called in the Wagner et al. Aschheim genome.

Table S7: SNPs published by Wagner et al. for the Aschheim genome that were not called in the Altenerding genome

Position	CO92	Altenerding	Coverage in	Aschheim	Coverage in the	Re-analyzed	Coverage in the	Variant	Reason SNP
in CO92			Altenerding	genome	Aschheim	Aschheim	re-analyzed	frequency in the	was not called
				published	genome	genome	Aschheim	re-analyzed	in the
				in Wagner	published in		genome	Aschheim	Altenerding
				et al.	Wagner et al.			genome (%)	genome
105187	A	С	17	С	19	С	14	100	Excluded non-
									core region
107738	А	G	14	G	13	G	10	100	Excluded non-
		-							

									core region
221811	А	A	24	G	63	G	7	70	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
225902	А	A	16	Т	6	N/A	0	0	Potential false
									positive in
									Wagner et al.:
									position not
									covered in the re-
									analysis of
									Wagner et al
333342	Δ	Δ	22	G	46	G	5	63	Potential false
000042	^		22	0	40	0	5	00	
									Wagner et al :
									beterogeneous
									necerogeneous
									abriormal cover
447000	0		0	•			40	100	peak in region
417323	G	А	3	А	30	А	18	100	Excluded non-
1 10 100	-		4.0		40			100	core region
442439	I	С	19	С	46	С	33	100	Excluded non-
	_								core region
497800	Т	Т	17	A	122	А	13	72	False positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
567757	С	А	2	A	6	А	6	100	Excluded non-
									core region
698477	С	A	19	A	21	A	15	100	Excluded non-
									core region
754287	Т	С	13	С	18	С	13	100	Excluded non-
									core region
773110	Т	С	17	С	24	С	13	100	Excluded non-
									core region
809132	А	G	15	G	13	G	9	100	Excluded non-
									core region
1044488	А	N/A	0	G	23	G	17	100	Less than 5X
									coverage in
									Altenerding
1137603	G	Т	13	т	6	Т	2	100	Excluded non-
									core region

1138676	G	Т	22	Т	6	Т	5	83	Excluded non-
									core region
1237756	С	N/A	0	Т	8	т	3	100	Less than 5X
									coverage in
									Altenerding
1371020	С	С	17	А	8	С	1	100	Potential false
									positive in
									Wagner et al.:
									SNP does not
									exist in the re-
									analysis of
									Wagner et al.
1371025	С	С	18	Т	24	Т	6	86	False positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
1440494	А	С	29	С	12	С	11	100	Excluded non-
									core region
1444672	А	G	2	G	9	G	7	88	Less than 5X
									coverage in
									Altenerding
1796044	Т	С	14	С	16	С	13	93	Excluded non-
									core region
1864793	А	А	16	G	162	G	7	54	Potential false
									positive in
									Wagner et al .:
									heterogeneous
									position with
									abnormal cover
									peak in region
1895361	С	A	22	A	14	A	10	100	Excluded non-
									core region
1914093	Т	С	19	С	14	С	8	100	Excluded non-
									core region
1982740	А	С	11	С	9	С	8	89	Excluded non-
									core region
2072914	G	G	35	A	13	A	4	80	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
2117516	G	А	12	А	22	А	15	100	Excluded non-
									core region

2119347	Т	Т	45	А	7	N/A	0	0	Potential false
									positive in
									Wagner et al.:
									position not
									covered in the re-
									analysis of
									Wagner et al
21/1222	т	C	27	<u> </u>	F	<u> </u>	2	60	Evoluded per
2141322		C	21	C	5	C	3	00	
01 11 01 0	<u> </u>		40	•	10		6	100	
2141910		А	18	А	10	А	б	100	Excluded non-
0040040	_	-	47	-	-	-		100	core region
2218046	G	1	17	1	5	I	1	100	Excluded non-
									core region
2235109	Т	С	1	С	12	С	11	100	Less than 5X
									coverage in
									Altenerding
2281856	А	N/A	0	С	10	С	7	100	Less than 5X
									coverage in
									Altenerding
2304950	А	G	11	G	27	G	14	100	Excluded non-
									core region
2317730	А	С	10	С	18	С	9	100	Excluded non-
									core region
2453454	А	G	14	G	11	G	7	100	Excluded non-
									core region
2548551	G	т	20	т	19	Т	12	100	Excluded non-
									core region
2575152	G	Α	4	Α	33	Α	14	100	Less than 5X
2010102									coverage in
									Altenerding
2577686	Δ	G	28	G	24	G	12	100	Excluded non-
2577000		0	20	0	24	0	12	100	
2607024	<u> </u>	-	00	т	10	<u>т</u>	15	100	
2607034		1	23	1	10	1	15	100	Excluded non-
0040044	-		15	<u> </u>			-	100	core region
2619611		G	15	G	9	G	5	100	Excluded non-
									core region
2787770	Т	G	25	G	13	G	2	100	Excluded non-
									core region
2865494	А	А	30	С	9	С	3	100	Potential false
									positive in
									Wagner et al.:
									less than 5X
									coverage in the
									re-analysis of
									Wagner et al.
2894703	Т	N/A	0	С	16	С	10	100	Excluded non-
									core region

2896636	А	G	10	G	41	G	21	88	Excluded non-
									core region
3143800	G	G	21	Т	29	G	1	100	Potential false
									positive in
									Wagner et al.:
									SNP does not
									exist in the re-
									analysis of
									Wagner et al.
3155055	G	G	26	С	54	С	5	71	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
3248223	Т	С	9	С	10	С	7	100	Excluded non-
									core region
3358603	G	Т	9	Т	30	Т	23	100	Excluded non-
									core region
3392897	A	A	22	G	79	G	11	85	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
3403167	G	Т	6	Т	16	Т	10	100	Excluded non-
									core region
3472427	G	A	17	A	18	A	16	100	Excluded non-
									core region
3725545	Т	С	14	С	19	С	12	100	Excluded non-
									core region
3732919	A	G	15	G	20	G	13	100	Excluded non-
									core region
3737968	G	A	13	A	19	A	11	100	Excluded non-
									core region
3739401	С	A	18	A	9	A	6	100	Excluded non-
									core region
3813424	С	С	10	A	23	A	4	100	Potential false
									positive in
									Wagner et al.:
									less than 5X
									coverage in the
									re-analysis of
									Wagner et al.;
									abnormal cover

									peak in region
3909258	Т	С	8	С	10	С	10	100	Excluded non-
									core region
4170791	А	А	25	G	87	G	20	80	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
4199187	А	А	47	G	70	А	3	75	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
4199190	Т	Т	27	С	123	С	3	38	Potential false
									positive in
									Wagner et al.:
									heterogeneous
									position with
									abnormal cover
									peak in region
4203596	G	G	22	Т	51	G	3	100	Potential false
									positive in
									Wagner et al.:
									SNP does not
									exist in the re-
									analysis of
									Wagner et al.
4210011	Т	Т	34	С	262	Т	8	100	Potential false
									positive in
									Wagner et al.:
									SNP does not
									exist in the re-
									analysis of
									Wagner et al.
4232217	С	N/A	0	Т	5	Т	5	100	Less than 5X
									coverage in
									Altenerding
4542642	А	G	8	G	9	G	7	100	Excluded non-
									core region

Position in CO92	SNP type defined in Wagner et al.	Gene
221811	Derived, non-synonymous	rpsJ
225902	Ancestral	
333342	Derived, synonymous	uvrA
497800	Derived, synonymous	dnaK
1371020	Ancestral	
1371025	Derived, synonymous	gyrA
1864793	Derived, synonymous	mnmA
2072914	Derived, synonymous	flil
2119347	Ancestral	
2865494	Ancestral	
3143800	Derived, non-synonymous	ynbD
3155055	Derived, synonymous	purl
3392897	Derived, synonymous	napA
3813424	Derived, synonymous	acnB
4170791	Derived, synonymous	aceA
4199187	Derived, synonymous	rpoC
4199190	Derived, synonymous	rpoC
4203596	Derived, synonymous	гроВ
4210011	Ancestral	

 Table S8: 19 potential false positive SNPs called by Wagner et al.

Table S9: 63 Unique SNPs in the Altenerding genome cross-referenced against all*Y. pestis* genomes in the data set (excluding the Aschheim genome)

Position in CO92	SNP type	Ancestral AA	Derived AA	Gene ID	Gene name
Chromosom					
86824*	intergenic	N/A	N/A		
189912*	intergenic	N/A	N/A		
260148*	non-synonymous	Р	S	YPO0257	
271114*	non-synonymous	L	I	YPO0270	
485976*	synonymous	A	А	YPO0460	thrB

557841*	non-synonymous	R	Н	YPO0517	hepA
727741	non-synonymous	E	К	YPO0668	parE
779365*	synonymous	S	S	YPO0717	flil
898980	intergenic	N/A	N/A		
1067966	non-synonymous	G	С	YPO0966	
1211729*	synonymous	V	V	YPO1068	proS
1296743*	non-synonymous	V	М	YPO1150	bioA
1387701*	intergenic	N/A	N/A		
1387756*	intergenic	N/A	N/A		
1413031*	intergenic	N/A	N/A		
1434752*	non-synonymous	D	Y	YPO1275	spr
1489055	synonymous	Q	Q	YPO1322	deoR
1530658	non-synonymous	R	I	YPO1363	
1609461*	non-synonymous	Т	A	YPO1417	
1754708	non-synonymous	Р	L	YPO1539	galU
1868678	intergenic	N/A	N/A		
1956162	intergenic	N/A	N/A		
2092152*	synonymous	G	G	YPO1847	yecS
2097520	synonymous	А	A	YPO1851	putA
2352174*	non-synonymous	V	G	YPO2071	
2419529*	synonymous	L	L	YPO2150	
2495165*	intergenic	N/A	N/A		
2725715	intergenic	N/A	N/A		
2753572*	synonymous	Ρ	Р	YPO2455	
2977542*	non-synonymous	S	I	YPO2649	nrdE
3078807*	non-synonymous	R	S	YPO2747	fadJ
3179828*	synonymous	S	S	YPO2847	yegM
3274298*	synonymous	A	А	YPO2930	pdxJ
3360963*	non-synonymous	Т	Р	YPO3008	
3360984*	non-synonymous	Н	Y	YPO3008	
3398153	synonymous	L	L	YPO3043	

3409414	intergenic	N/A	N/A		
3500922	non-synonymous	V	G	YPO3141	tesB
3535148*	non-synonymous	А	S	YPO3171	apbA
3560088	non-synonymous	Р	S	YPO3199	
3568597	non-synonymous	G	E	YPO3205	phoB
3750736	intergenic	N/A	N/A		
3755861	intergenic	N/A	N/A		
3843195*	synonymous	V	V	YPO3438	intB
3892488*	non-synonymous	A	Т	YPO3483	
4066494*	non-synonymous	V	I	YPO3646	рср
4307755	non-synonymous	A	V	YPO3839	
4412624*	intergenic	N/A	N/A		
4423366*	synonymous	A	A	YPO3938	glgP
4460688	non-synonymous	R	Q	YPO3963	
4465967	synonymous	S	S	YPO3966	
4628496	synonymous	A	A	YPO4107	yieG
4629169	intergenic	N/A	N/A		
pCD1 plasmid					
23564	synonymous	A	А	YPCD1.33c	lcrR
29959	non-synonymous	Ν	S	YPCD1.41	yscO
50462	non-synonymous	К	E	YPCD1.71c	уорЈ
54237	intergenic	N/A	N/A		
55839	intergenic	N/A	N/A		
66608	non-synonymous	L	F	YPCD1.92	
pMT1 plasmid					
32569	synonymous	Т	Т	YPMT1.30	
47365	synonymous	R	R	YPMT1.44	
62994	intergenic	N/A	N/A		
82435	intergenic	N/A	N/A		

*30 unique SNPs detected in the Altenerding genome that were not called in *Wagner et al.*

					Amino			
Position			Ancestral	Codon	Acid		Gene	
in CO92	CO92	Altenerding	/Derived	Change	Change	Gene ID	name	Gene function
Chromosor	ne						•	
74539	С	Т	Anc	GCC to ACC	A to T	YPO0063		
130643	G	A	Anc	ACC to ATC	T to I	YPO0122	glpE	thiosulfate sulfurtransferase
								para-aminobenzoate
189227*	С	Т	Anc	00110101	R to C	YPO0169	pabA	synthase component II
260148*	С	Т	der	CCG to TCG	P to S	YPO0257		type III secretion protein
								type III secretion system
				CTT to ATT				protein (iron-sulfur binding
271114*	С	А	der		L to I	YPO0270		protein)
341720	А	G	Anc	CAC to CGC	H to R	YPO0332	rhaS	transcriptional activator
				TTC to TTA				isovaleryl CoA
399533	С	А	Anc		F to L	YPO0383	aidB	dehydrogenase
				CGT to CAT			hepA	ATP-dependent helicase
557841*	С	Т	der		R to H	YPO0517	(RapA)	(transcription regulator)
				GAA to AAA				DNA to poisomerase IV
727741	G	А	der	0,010,00,000	E to K	YPO0668	parE	subunit B
				TTT to CTT				LysR family transcriptional
877258	Т	С	Anc		F to L	YPO0797	lysR	regulator
				CCA to CTA				2-deoxy-D-gluconate 3-
918790	С	т	Anc		P to L	YPO0839	kduD2	dehydrogenase
1025278	Т	G	Anc	TCT to GCT	S to A	YPO0932		
1051913	А	G	Anc	AGG to GGG	R to G	YPO0953		
1067966	С	А	der	GGC to TGC	G to C	YPO0966		kinase
1098675*	А	С	Anc	AGC to CGC	S to R	YPO0989	iucA	pseudo gene
				ACA to GCA				siderophore biosynthesis
1102174	А	G	Anc	10/10 00/1	T to A	YPO0993	iucD	protein
1251046	Т	С	Anc	ATC to ACC	I to T	YPO1107	GrpE	heat shock protein
1272559	Т	С	Anc	GTT to GCT	V to A	YPO1126		I-pal system protein YbgF
				GTG to ATG				adenosylmethionine-8-
1296743*	С	Т	der		V to M	YPO1150	bioA	amino-7-oxononanoate

Table S10: Non-synonymous SNPs compared to CO92

								aminotransferase (part of
								the Biotin operon)
								outer membrane lipoprotein
1434752*	С	А	der	GAITOTAI	D to Y	YPO1275	spr	(Murein hydrolase)
1512930	А	G	Anc	ACG to GCG	T to A	YPO1348		
1530658	С	А	der	AGA to ATA	R to I	YPO1363		virulence factor
1609461*	Т	С	der	ACA to GCA	T to A	YPO1417		iron-sulfur binding protein
1705810	А	С	Anc	GTG to GGG	V to G	YPO1502		alcohol dehydrogenase
								UTP-glucose-1-phosphate
1754708	С	т	der		P to L	YPO1539	galU	uridylyltransferase
				AGT to GGT				DNA-binding transcriptional
1859946*	Т	С	Anc		S to G	YPO1634	phoP	regulator
				TTG to GTG			hpal	2,4-dihydroxyhept-2-ene-
2012524	Т	G	Anc		L to V	YPO1767	(hpcH)	1,7-dioic acid aldolase
								trifunctional transcriptional
				AAT to AGT				regulator/proline
								dehydrogenase/pyrroline-5-
2098628	Т	С	Anc		N to S	YPO1851	putA	carboxylate dehydrogenase
2262577	Т	G	Anc	CTG to CGG	L to R	YPO1990		
2278317	А	G	Anc	GTT to GCT	V to A	YPO2005		
2300659	Т	G	Anc	GAC to GCC	D to A	YPO2029		
2352174*	Т	G	der	GTG to GGG	V to G	YPO2071		DEAD box family helicase
								long chain fatty acid CoA
2356003	Т	А	Anc		N to K	YPO2074	fadD	ligase
2508389	Т	С	Anc	ACA to GCA	T to A	YPO2234	cstA	carbon starvation protein A
				ATT to GTT				2-deoxyglucose-6-
2744933	А	G	Anc		I to V	YPO2446		phosphatase
2773647	А	G	Anc	GTC to GCC	V to A	YPO2472		
2812384	G	Т	Anc	CCG to CAG	P to Q	YPO2502	gutB	zinc-binding dehydrogenase
				TGC to CGC				SAM-dependent
2829833	А	G	Anc	10010000	C to R	YPO2519		methyltransferase
				TGT to GGT				sugar transport ATP-binding
2903882	Т	G	Anc	10110 001	C to G	YPO2582		protein
				CTT to TTT				glutamate/Faspartate
2936268	G	А	Anc		L to F	YPO2614	gltJ	transport system permease
				GCG to GTG				N-acetylglucosamine
2950954	G	А	Anc		A to V	YPO2625	nagC	regulatory protein
				AGC to ATC				ribonucleotide-diphosphate
2977542*	С	A	der	1.00 10 / 110	S to I	YPO2649	nrdE	reductase subunit alpha
				CGT to AGT			fadJ	multifunctional fatty acid
3078807*	С	А	der		R to S	YPO2747	(faoA)	oxidation complex subunit

								alpha
								penicillin-insensitive murein
3085079	А	G	Anc	ACTIOGET	T to A	YPO2752	терА	endopeptidase
				GGA to GAA				AraC family transcriptional
3096319	G	А	Anc		G to E	YPO2762		regulator
3145523	А	С	Anc	CTC to CGC	L to R	YPO2814	ynbD	
				CAG to CGG				DNA-binding transcriptional
3190399	А	G	Anc		Q to R	YPO2853	baeR	regulator
3244204	А	G	Anc	GTC to GCC	V to A	YPO2901		
				CTG to CCG				phosphoribosylformylglycina
3267118*	A	G	Anc		L to P	YPO2921	purL	midine synthase
				ACC to CCC				two-component sensor
3360963*	A	С	der		T to P	YPO3008		histidine kinase (TCSs)
								two-component sensor
3360984*	C	т	der	CAI tO TAT	H to Y	YP03008		histidine kinase (TCSs)
3300304						11 03000		
3362591	Δ	G	Anc	AGC to GGC	S to G	YP03009		regulator
0002001	~	0	7410		0.00	11 00000		thioredoxin-dependent thiol
3421335	Δ	G	Anc	ATG to GTG	M to V	YPO3064	bcp	neroxidase
3442617*	A	Т	Anc	AGA to AGT	R to S	YPO3086	conA	copper exporting ATPase
3500922	Т	G	der	GTG to GGG	V to G	YPO3141	tesB	acyl-CoA thioesterase
								2-dehvdropantoate 2-
				GCT to TCT			apbA	reductase (vitamin B5
3535148*	G	т	der		A to S	YPO3171	, (panE)	biosynthesis)
3560088	G	A	der	CCA to TCA	P to S	YPO3199		short chain dehydrogenase
3564026	С	Т	Anc	TGT to TAT	C to Y	YPO3201	proY	permease
							-	phosphate regulon
3568597	С	т	der	GGA to GAA	G to E	YPO3205	phoB	transcriptional regulator
3616733	A	G	Anc	CTA to CCA	L to P	YPO3247	hmwA	adhesin
3645151*	С	G	Anc	GCC to GGC	A to G	YPO3272	yfiQ	acetyltransferase
								23S rRNA pseudouridine
3658233*	т	G	Anc	AGA to AGC	R to S	YPO3277	rluD	synthase D
								two-component response-
3667806	А	G	Anc	AAA to GAA	K to E	YPO3287	yehT	regulatory protein
								hypoxanthine
3806677	С	Т	Anc	AGG to AAG	R to K	YPO3408	hpt	phosphoribosyltransferase
3892488*	С	Т	Anc	GCT to ACT	A to T	YPO3483		multidrug efflux protein
3973746	С	Т	Anc	ACT to ATT	T to I	YPO3559		
					1	1	рср	
4066494*	С	Т	der	GILUATI	V to I	YPO3646	(рсрҮ,	outer membrane lipoprotein

							slyB)	
								acetyl-CoA carboxylase
				CAC to CGC				biotin carboxyl carrier
4080579	Т	С	Anc		H to R	YPO3659	accB	protein subunit
4194600	G	A	Anc	GTT to ATT	V to I	YPO3742	thiG	thiazole synthase
								ubiquinone,menaquinone
				TTT to TAT				biosynthesis
4243823	А	т	Anc		F to Y	YPO3781	ubiE	methyltransferase
4307755	G	A	der	GCG to GTG	A to V	YPO3839		
				AGT to CGT				lipopolysaccharide
4339366	Т	G	Anc		S to R	YPO3865	wzzE	biosynthesis protein
				AGC to GGC				dihydrolipoamide
4399470	А	G	Anc		S to G	YPO3917		dehydrogenase
				GTG to GCG				glycerol-3-phosphate
4421633	Т	С	Anc		V to A	YPO3937	glpD	dehydrogenase
				ACA to GCA				glycerol-3-phosphate
4421689	A	G	Anc		T to A	YPO3937	glpD	dehydrogenase
				CGG to CAG				sugar transport system
4460688	С	Т	der		R to Q	YPO3963		permease
				AGC to GGC				formate dehydrogenase
4579183	A	G	Anc		S to G	YPO4060	fdhD	accessory protein
4634287	A	G	Anc	TCG to CCG	S to P	YPO4113	phoU	transcriptional regulator
pCD1								
								type III secretion apparatus
29959	А	G	der	AAC to AGC	N to S	YPCD1.41	<i>yscO</i>	component
							,	
						YPCD1.71		
50462	Т	С	der	AAA to GAA	K to E	с	уорЈ	targeted effector protein
66608	С	Т	der	CTT to TTT	L to F	YPCD1 92		
	Ũ					11 00 1.02		
pMT1	•	·				·		
						YPMT1.09		
12976*	А	С	anc	TAT to GAT	Y to D	с		minor tail fiber protein L

*SNPs detected in the Altenerding genome that were not called in the Wagner et al. Aschheim genome.

Table S11: Regions missing in CO92 but present in the Altenerding genome.Positions and annotated genes refer to the Yersinia pseudotuberculosis referencegenome (GenBank accession NC_006155)

		Region		ID of	Name of					
Start	End	Length	Mean	genes in	genes in					
Position	Position	(bp)	Coverage	region	region	Function				
						type II fructose 1,6-bisphosphatase (part of				
						the glpFKX operon that enables aerobic				
97811	98932	98932 1122		YPTB0085	glpX	glycerol fermentation).				
						glycerol kinase (part of the glpFKX operon				
						that enables aerobic glycerol				
				YPTB0086	glpK	fermentation).				
263822	264118	297	7.34	YPTB0221	ftsY	cell division protein				
369602	369881	280	12 98	VPTB0305	vtaP					
408757	409016	260	3.2	YPTB0343	ytan					
400707	400010	200	0.2							
				YPTB0344		coproporphyrinogen III oxidase				
						major facilitator superfamily transporter				
799654	799932	279	5.24	YPTB0668	setA (yadM)	sugar efflux pump				
807313	807587	275	5.88	Intergenic						
994244	994536	293	2.26	Intergenic						
						major facilitator superfamily xanthosine				
1433136	1448749	15614	20.85	YPTB1202	харВ	permease				
(DFR4)				YPTB1203	zraP	zinc resistance protein				
				YPTB1204		two component Histidine kinase sensor				
				YPTB1205	hydG	transcriptional regulator				
				YPTB1206	morB	morphinone reductase				
				YPTB1207		LysR family transcriptional regulator				
				YPTB1208						
				YPTB1209		multidrug ABC transporter permease				
				YPTB1210		multidrug ABC transporter permease				
				YPTB1211		ABC transporter ATPase				
				YPTB1212						
				YPTB1213		DNA binding transcriptional regulator				
				YPTB1214	rhIE	ATP dependent RNA helicase				
1753403	1753691	289	12.94	YPTB1458	helD	DNA helicase IV				

2222016	2222305	290	6.05	YPTB1880						
						taurine/sulfonate transporter (part of the				
2603581	2604597	1017	13.44	YPTB2210	tauB	tauABC operon)				
				YPTB2211	amn	AMP nucleosidase				
3877157	3879821	2665	18.66	YPTB3285		Va autotransporter				
				YPTB3286		Va autotransporter				
3975571	3975841	271	10.76	YPTB3344						
				YPTB3345	flil	flagellum specific ATP synthase				
4373203	4373468	266	12.02	YPTB3659		transferase				
4490444	4490698	255	15.12	YPTB3782	glpD	glycerol 3-phosphate dehydrogenase				
4510659	4510920	262	22.16	YPTB3789		Ig-like domain containing protein				

Supplementary figures

Fig.S1: *pla* gene qPCR amplification and melting curves used for sample screening. The standards of known copy number (22,300, 2230, 223, 22.3 and 2.23 copies/uL) are in duplicates, shown in yellow and grey. (a) Amplification curves. (b) Melting peaks.

Fig.S2: mapDamage fragment misincorporation plot based on the non-UDG treated Altenerding library mapped to the CO92 chromosome reference (5510 fragments).

Fig.S3: mapDamage fragment misincorporation plot based on the non-UDG treated Altenerding library mapped to the human hg19 reference (45,359 fragments).

Fig.S4: Maximum Parsimony tree excluding the Aschheim genome. Maximum Parsimony analysis of 2603 nucleotide positions from genomes of 132 *Y. pestis* strains (the Aschheim genome was excluded from this analysis). All positions containing missing data were eliminated. Bootstrap values are next to nodes and bootstrap values of 100 % are indicated by an asterisk. The tree is rooted using the genome of *Y. pseudotuberculosis* (strain IP32953). Branches leading to isolates from the historical pandemics are colored red and purple representing the second and first pandemics respectively. Number of isolates in a collapsed node is indicated in brackets.

Fig.S5: Maximum Likelihood tree excluding the Aschheim genome. Maximum Likelihood analysis of 2603 nucleotide positions from genomes of 132 *Y. pestis* strains (the Aschheim genome was excluded from this analysis). All positions containing gaps and missing data were eliminated. Bootstrap values in italics. The tree is rooted using the genome of *Y. pseudotuberculosis* (strain IP32953). Number of isolates in a collapsed node is indicated in brackets.

Fig.S6: Maximum Likelihood tree. Maximum Likelihood analysis of 1418 nucleotide positions from genomes of 133 *Y. pestis* strains. All positions containing gaps and missing data were eliminated. Bootstrap values in italics. The tree is rooted using the genome of *Y. pseudotuberculosis* (strain IP32953). Number of isolates in a collapsed node is indicated in brackets.

В

D

A T GACEGE CAGCACCCGATAAAAGGT CGATT CACTCGCCAGAT AAACCCCTTTATCCGCCAACCGTGGCACGATTTGCGGCGGCAGGTTGGCATACTCGGGTTGGCGGCAGACCGCCCCGTATCTGCTGCCTTTCTTCCACTCTCAAG

38

	·	1	3.343.740 be	I	3.10.70 lp 3.10.70 lp			I	151 bp			3.10.848 bp			3.10.6910		
Altenerding																	
Aschheim re-analyzed	(P - 10.00)													-			

Ν

GT CTT CANAATGAACCCCT GC CC CC CC CC CTT CAAT CAT CG CTT T CATTAAT T CAAACGCG TT CAG CACACCG CC CAAAACCCCG CTT C CG CAT CCG CG ACGAT CG CT AGGAAATAGT CGGT ATGG CCTT YA CT ACCT 56 CT CAG CAAT AT T ATT

R 151 bp ______ 4,203,540 bg 4.203.560 bp 4203.500 by 4.293.620 lp 4,203,640 bp 4,203,660 bg (0 - 27) Altenerding Aschheim re-analyzed T G C A C G T T C C A T A C C A D C G C C T A T C A C C A C G C G G A G A G C A C C G C C C T C A C G T T C C C C C A C G G T T G C C A C G G T T C C C A C G G C T C C A A C G C A C C A A C G G A T A C G A A T C G A A T C G A C C A A C G G A T A C G A T T G C A C C A A C G G A T A C G A T A C G A T A C G A T A C G A T A C G A T A C G A T A C G A T A C G A T A C G A C G C C A C G G T T G C A C G C C A C G G C T A C C A A C G G A T A C G A C G C C C C A C G G T A C C A A C G C A C G G A T A C

Fig.S7 (A-S): Visualization of positions containing potential false positive SNPs called by *Wagner et al.* **2014.** Reads were mapped to the CO92 reference with sensitivity of 0.1 and minimum mapping quality of 30 and visualized on IGV gene browser. Upper bend shows coverage plot for the region corresponding to the genome beneath. Upper scale shows position (bp) in reference sequence. Bottom sequence shows the 150 bp in the CO92 reference. Dotted line marks the potential false positive SNP.

(A) Position 221811: Re-analysis of the Aschheim raw data shows 70 % variant frequency for the "A" to "G" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "G" variants are located at end of reads in a region with an abnormal cover peak. The Altenerding mapping shows even 24 fold coverage in the region and a 96 % variant frequency that supports the "A" variant (identical to reference).

(B) Position 225902: Re-analysis of the Aschheim raw data shows no coverage in position 225902 called as an "A" to "T" SNP by Wagner et al., in contrast to a 6 fold coverage in the original analysis (Wagner et al. 2014). The Altenerding mapping shows even 16 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(C) Position 333342: Re-analysis of the Aschheim raw data shows 63 % variant frequency for the "A" to "G" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "G" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows even 22 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(D) Position 497800: Re-analysis of the Aschheim raw data shows 72 % variant frequency for the "T" to "A" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "A" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows even 17 fold coverage in the region and a 100 % variant frequency that supports the "T" variant (identical to reference).

(E) Position 137020: Re-analysis of the Aschheim raw data shows 1 fold coverage in position 137020 called as a "C" to "A" SNP by Wagner et al., in contrast with a 8 fold coverage in the original analysis (Wagner et al. 2014). The one read covering the position shows the "C" variant (identical to reference). The Altenerding mapping shows even 17 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference).

(F) Position 137025: Re-analysis of the Aschheim raw data shows 86 % variant frequency for the "C" to "T" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "T" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows even 18 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference).

(G) Position 1864793: Re-analysis of the Aschheim raw data shows 54 % variant frequency for the "A" to "G" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The reads containing the "G" variants are located in a region with an abnormal peak in coverage. The Altenerding mapping shows even 16 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

44

(H) Position 2072914: Re-analysis of the Aschheim raw data shows 80 % variant frequency for the "G" to "A" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "A" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows 37 fold coverage in the region and a 95% variant frequency that supports the "G" variant (identical to reference).

(I) Position 2119347: Re-analysis of the Aschheim raw data shows no coverage in position 2119347 called as a "T" to "A" SNP by Wagner et al., in contrast with a 7 fold coverage in the original analysis (Wagner et al. 2014). The Altenerding mapping shows even 45 fold coverage in the region and a 100 % variant frequency that supports the "T" variant (identical to reference).

(J) Position 2865494: Re-analysis of the Aschheim raw data shows 3 fold coverage in position 2865494 called as an "A" to "C" SNP by Wagner et al., in contrast with a 9 fold coverage in the original analysis (Wagner et al. 2014). Coverage is lower than the 5 fold minimum set by Wagner et al. The Altenerding mapping shows even 30 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(K) Position 3143800: Re-analysis of the Aschheim raw data shows 1 fold coverage in position 3143800 called as a "G" to "T" SNP by Wagner et al., in contrast with a 29 fold coverage in the original analysis (Wagner et al. 2014). The one read covering the position shows the "G" variant (identical to reference). The Altenerding mapping shows even 21 fold coverage in the region and a 100 % variant frequency that supports the "G" variant (identical to reference).

(L) Position 3155055: Re-analysis of the Aschheim raw data shows 71 % variant frequency for the "G" to "C" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "C" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows even 27 fold coverage in the region and a 100 % variant frequency that supports the "G" variant (identical to reference).

(M) Position 3392897: Re-analysis of the Aschheim raw data shows 85 % variant frequency for the A to G variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The reads containing the "G" variants are located

in a region with an abnormal peak in coverage. The Altenerding mapping shows even 22 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(N) Position 3813424: Re-analysis of the Aschheim raw data shows 4 fold coverage in position 3813424 called as a "C" to "A" SNP by Wagner et al., in contrast with a 23 fold coverage in the original analysis (Wagner et al. 2014). Coverage is lower than the 5 fold minimum set by Wagner et al. The A variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows 10 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference).

(O) Position 4170791: Re-analysis of the Aschheim raw data shows 80 % variant frequency for the "A" to "G" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set in Wagner et al. The reads containing the "G" variants are located in a region with an abnormal peak in coverage. The Altenerding mapping shows even 25 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(P) Position 4199187: Re-analysis of the Aschheim raw data shows 75 % variant frequency and 3 fold coverage for the "A" to "G" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % and coverage is lower than the 5 fold minimum set by Wagner et al. The only "G" variant is located at the end of a read in a region with an abnormal peak in coverage. The Altenerding mapping shows 47 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).

(Q) Position 4199190: Re-analysis of the Aschheim raw data shows 38 % variant frequency for the "T" to "C" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "C" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping also shows a cover peak in this region with 50 fold coverage and a 54% variant frequency of the "T" variant (identical to reference).

(R) Position 4203596: Re-analysis of the Aschheim raw data shows 3 fold coverage in position 4203596 called as a "G" to "T" SNP by Wagner et al., in contrast with a 51 fold coverage in the

original analysis (Wagner et al. 2014). All 3 reads contain the "G" variant (identical to reference). The Altenerding mapping shows even 22 fold coverage in the region and a 100 % variant frequency that supports the "G" variant (identical to reference).

(S) Position 4210011: Re-analysis of the Aschheim raw data shows 8 fold coverage in position 4210011 called as a "T" to "C" SNP by Wagner et al., in contrast with a 262 fold coverage in the original analysis (Wagner et al. 2014). All 8 reads contain the "T" variant (identical to reference). The Altenerding mapping shows 40 fold coverage in the position and an 85 % variant frequency of the "T" variant (identical to reference).

D

Н

J

Fig. S8 (A-K): Visualization of the abnormal coverage peaks in the re-analyzed Aschheim SNP enriched data and non-SNP enriched data, containing potential false positive SNPs called by *Wagner et al.* 2014. Reads were mapped to the CO92 reference with sensitivity of 0.1 and minimum mapping quality of 30 and visualized on IGV gene browser. Upper bend shows coverage plot for the region corresponding to the genome beneath. Upper scale shows position (bp) in reference sequence. Dotted line marks the SNP.

В

С

D

Н

Fig. S9 (A-J): Visualization of 10 positions containing true SNPs called for the re-analyzed Aschheim genome as well as for the Altenerding genome. The positions were randomly picked to represent visual patterns consistent with the set criteria for SNP calling and with a

relative even coverage, in contrast with the pattern of the abnormal coverage peaks shown in figures S4 and S5. Reads were mapped to the CO92 reference with sensitivity of 0.1 and minimum mapping quality of 30 and visualized on IGV gene browser. Upper bend shows coverage plot for the region corresponding to the genome beneath. Upper scale shows position (bp) in reference sequence. Bottom sequence shows the 150 bp in the CO92 reference. Dotted line marks the SNP. **A**: position 898980 (A to T) **B**: position 1067966 (C to A) **C**: position 1489055 (C to T) **D**: position 1530658 (C to A) **E**: position 1754708 (C to T) **F**: position 1868678 (G to T) **G**: position 1956162 (T to C) **H**: position 2725715 (C to T) **I**: position 3398153 (G to A) **J**: position 3500922 (T to G).

Α

D

С

F

G

Fig.S10 (A-H): Visualization of positions containing potential false positive SNPs specifically derived in the re-analyzed Aschheim. Reads were mapped to the CO92 reference with sensitivity of 0.1 and minimum mapping quality of 30 and visualized on IGV gene browser. Upper bend shows coverage plot for the region corresponding to the genome beneath. Upper scale shows position (bp) in reference sequence. Bottom sequence shows the 150 bp in the CO92 reference. Dotted line marks the false positive SNP.

- (A) Position 362357: Re-analysis of the Aschheim raw data shows 89 % variant frequency for the "C" to "T" variant at the position. The "T" variants are located in a region with an abnormal cover peak. The Altenerding mapping shows even 21 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference). This SNP was removed from final analysis by *Wagner et al.*, 2014 following a visual inspection.
- (B) Position 1371025: Re-analysis of the Aschheim raw data shows 86 % variant frequency for the "C" to "T" variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The "T" variants are located at end of reads in a region with an abnormal peak in coverage. The Altenerding mapping shows even 18 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference).
- **(C)Position 3250158:** Re-analysis of the Aschheim raw data shows 86 % variant frequency for the "A" to "G" variant at the position. The "G" variants are located at end of reads in a region with an abnormal cover peak. The Altenerding mapping shows even 11 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference). This SNP was not called by *Wagner et al.*, 2014.
- (D) Position 3386034: Re-analysis of the Aschheim raw data shows 83 % variant frequency for the "C" to "G" variant at the position. The "G" variants are located at end of reads in a region with an abnormal cover peak. The Altenerding mapping shows even 24 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference). This SNP was not called by *Wagner et al.*, 2014.

- (E) Position 3392897: Re-analysis of the Aschheim raw data shows 85 % variant frequency for the A to G variant called as SNP by Wagner et al. Variant frequency is lower than the minimum variant frequency of 95 % set by Wagner et al. The reads containing the "G" variants are located in a region with an abnormal peak in coverage. The Altenerding mapping shows even 22 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference).
- (F) Position 3672205: Re-analysis of the Aschheim raw data shows 86 % variant frequency for the "C" to "T" variant at the position. The "T" variants are located in a region with an abnormal cover peak. The Altenerding mapping shows even 28 fold coverage in the region and a 100 % variant frequency that supports the "C" variant (identical to reference). This SNP was not called by *Wagner et al.*, 2014.
- **(G)Position 3956001:** Re-analysis of the Aschheim raw data shows 83 % variant frequency for the "T" to "A" variant at the position. The "A" variants are located between two abnormal cover peaks, in a region with high variability. The Altenerding mapping shows even 18 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference). This SNP was removed from final analysis by Wagner et al., 2014 following a visual inspection.
- (H) Position 4575345: Re-analysis of the Aschheim raw data shows 90 % variant frequency for the "A" to "G" variant at the position. The "G" variants are located in a region with an abnormal cover peak. The Altenerding mapping shows even 23 fold coverage in the region and a 100 % variant frequency that supports the "A" variant (identical to reference). This SNP was removed from final analysis by Wagner et al., 2014 following a visual inspection.

Fig.S11: Genome-wide SNP allele frequency plot of the re-analyzed Aschheim draft genome. The x axis indicates the frequency of reads covering a SNP position in which the SNP was detected in the re-analyzed Aschheim draft genome. The y axis indicates the number of SNP calls with the respective frequency. The observed frequencies are not showing any bimodal pattern or any other pattern that could indicate an infection with multiple strains.

Fig.S12: Coverage plots across the CO92 reference for the Altenerding genome. Coverage across the reference was plotted using QualiMap version 2.1. (a) Coverage across the CO92 chromosome (NC_003143.1). (b) Coverage across the pCD1 plasmid (NC_003131.1). (c) Coverage across the pMT1 plasmid (NC_003134.1). Coverage in red, percent GC content in grey and mean GC content in dashed line.

Supplementary archaeological and historical information

The early medieval cemetery from Altenerding (also called Altenerding/Klettham) is located near Munich in southern Germany. It contains around 1450 inhumations and is therefore one of the largest early medieval cemeteries in Central Europe. Altenerding was excavated from 1966 to 1973 (Sage 1984) and was used from the second half of the fifth century until the seventh century AD (Losert and Pleterski 2003).

Within the cemetery 16 double burials and no multiple burials could be identified. Ten double burials were chosen randomly for screening of Y. pestis presence (Table S9). All of them contained grave furnishings, mostly a set of brooches and other dress ornaments for women and a combination of weapons for men, as is typical to this time period (Sage 1984). This is also true for the plague-positive individuals in the doubleburial 1175/1176. Here, a 25- to 30-year old woman was laid to rest together with a 20 to 25 year old male. The dead woman (1175) was buried with a variety of clothes and jewels (Fig. 1C) typical of the middle of the 6th century, including an iron arm ring; a belt with bronze belt buckle; a chatelaine with antler pendant; Roman brooches; iron keys; chained links and scales; a knife; a fragment of La Tène glass arm ring; a necklace of glass and amber beads and fragments of a blue Roman glass vessel. She wore a pair of garnet disk fibulas whose typology has been dated between ~530 and ~570 (Vielitz 2003) and among other ornaments she was equipped with a so-called Hercules- or Donar club amulet, which probably expresses a special hope for growth and fertility (Losert and Pleterski 2003). Due to her young age only minor expressions of degenerative lesions in the great joints and the spine are visible on the bones. However, the orbital roofs show porotic lesions on the bone surface (*cribra orbitalia*). These kinds of lesions are rather unspecific and can occur in a variety of diseases (Walker et al. 2009).

The young man was buried without weapons, but a bag hanging on a belt could be reconstructed as containing an iron knife, a lighter and nails (Fig. 1D). Despite the young age of the individual some degenerative lesions are visible in the spine including Schmorl's nodes. The right orbital roof shows porotic lesions on the bone surface (the left orbital roof is missing). Both tibiae exhibit an extensive inflammation of the bone

68

surface (periostitis). Both symptoms are rather unspecific and can be connected to different kinds of infectious diseases or anemia.

Wooden traces indicate the existence of two coffins or wooden planking in the grave. This is a further sign that the dead were carefully arranged. Furthermore, both individuals were buried with rather expensive clothes and jewels. This indicates that the victims had been dressed and prepared carefully for their funeral. Burial rites, which probably also included washing and public laying out of the body seem to have been conducted also for these plague victims. The same has been noted in the neighboring Aschheim cemetery (Gutsmiedl-Schümann et al. 2010).

No historical record has yet been adduced that mentions the impact of the Justinianic Pandemic in this region. In fact, an 8th-century historian who used some reliable early sources, with respect to the wave dated ~565-571 states explicitly that this outbreak went as far as this region, but stayed within "Italy": "In his [Narses] time, the greatest plague emerged, particularly in the province of Liguria.... And what is more, these evils occurred only within Italy up to the region of the Alamannian and Bavarian peoples, to the Romans alone." (Bethmann and Waitz 1878)

References

- Bethmann L and Waitz G. 1878. Paul the Deacon: History of the Lombards 2.4. Monumenta Germaniae historica, Scriptores rerum Langobardicarum: Hanover 74.3-26 (translation by McCormick).
- Gutsmiedl-Schümann D, Greipl EJ, Sommer S, für Denkmalpflege BL. 2010. Das frühmittelalterliche gräberfeld Aschheim-bajuwarenring. Lassleben.
- Losert H and Pleterski A. 2003. Das frühmittelalterliche gräberfeld von Altenerding in Oberbayern und die" ethnogenese" der Bajuwaren. Scrîpvaz-Verlag.
- Sage W. 1984. Das reihengräberfeld von Altenerding in Oberbayern: Katalog der Anthropologischen und Archäologischen funde und befunde. Gebrüder Mann Verlag.
- Vielitz K. 2003. Die granatscheibenfibeln der merowingerzeit. M. Mergoil.

- Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C. 2014. *Yersinia pestis* and the Plague of Justinian 541–543 AD: a genomic analysis. The Lancet Infectious Diseases 14 (4):319-26.
- Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA. 2009. The causes of porotic hyperostosis and *Cribra Orbitalia*: A reappraisal of the iron deficiency anemia hypothesis. Am J Phys Anthropol 139(2):109-25.