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Supplementary Figure 1: Floquet-Bloch pseudospin textures at K and K′. (a) At K the
pseudospin texture interpolates between p-wave (vp 6= 0, vd = 0) and d-wave (vp = 0, vd 6= 0) winding
upon increase of trigonal distortion. Given a priori knowledge that the band structure remains gapped
globally, a topological invariant can be assigned by introducing a regularizer η that ensures that the
pseudospin points into the z direction for k → ∞ and the k-space manifold can thus be compactified
to a sphere. Trigonal distortion is seen clearly when zooming into the vicinity (black squares) of the K
point, shown enlarged in (b). Here, while the local p-d wave texture appears distorted, globally either
p-wave or d-wave winding is recovered as seen in (a). At K′, the pseudospin is trivial, with a vanishing
y-component, depicted in (c).
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Supplementary Figure 2: Photo-induced inversions in WS2 for strong pump fields. (a) A suf-
ficiently blue-detuned pump field closes the equilibrium gap selectively at a single valley K′, transitioning
into a C = 1 phase. One of the two trivial equilibrium edge states disappears, leaving a single chiral edge
mode that spans the band gap. The corresponding phase diagram of Floquet Chern numbers at strong
pump strengths is depicted in (b), with (a) corresponding to parameters A = 0.9, ω = 2.7eV . Further
increase of the pump amplitude or decrease of frequency triggers additional gap closings at K, Γ, and
around the second conduction band minimum Q, inducing a mosaic of possible Chern numbers for the
photo-modulated valence band. Closing the gap at K, K′ changes the Chern number by ±1, whereas C3

symmetry dictates closing the gap at Q must happen at three points in the Brillouin zone, triggering a
change of the Chern number by ±3. Progressive flattening of the valence band dispersion at strong pump
fields indicates the onset of Wannier-Stark physics.
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Supplementary Table 1: The single group C3h

(a) C3h single group character table, with Ω = exp(2πi/3).

E C+
3 C−3 σh S+

3 S−3 invariants

A′ 1 1 1 1 1 1 x2 + y2, z2

E′ 1 Ω Ω̄ 1 Ω Ω̄ x− iy, (x+ iy)2

Ē′ 1 Ω̄ Ω 1 Ω̄ Ω x+ iy, (x− iy)2

A′′ 1 1 1 -1 -1 -1 z
E′′ 1 Ω Ω̄ -1 -Ω -Ω̄ (x− iy)z
Ē′′ 1 Ω̄ Ω -1 -Ω̄ -Ω (x+ iy)z

(b) Selection rules for electric dipole transitions, for circular polarization

A′ E′ Ē′

A′ 	 �
E′ � 	
Ē′ 	 �

2



Supplementary Table 2: The double group C̄3h

(a) C̄3h double group character table, with complex characters Ω = exp(2πi/3).

E C+
3 C−3 σh S+

3 S−3 Ē C̄+
3 C̄−3 σ̄h S̄+

3 S̄−3 invariants

Γ1 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

Γ2 1 Ω Ω̄ 1 Ω Ω̄ 1 Ω Ω̄ 1 Ω Ω̄ x− iy, (x+ iy)2

Γ3 1 Ω̄ Ω 1 Ω̄ Ω 1 Ω̄ Ω 1 Ω̄ Ω x+ iy, (x− iy)2

Γ4 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 z
Γ5 1 Ω Ω̄ −1 −Ω −Ω̄ 1 Ω Ω̄ −1 −Ω −Ω̄ (x− iy)z
Γ6 1 Ω̄ Ω −1 −Ω̄ −Ω 1 Ω̄ Ω −1 −Ω̄ −Ω (x+ iy)z
Γ7 1 −Ω −Ω̄ i −iΩ iΩ̄ −1 Ω Ω̄ −i iΩ −iΩ̄ ↑z
Γ8 1 −Ω̄ −Ω −i iΩ̄ −iΩ −1 Ω̄ Ω i −iΩ̄ iΩ ↓z
Γ9 1 −Ω −Ω̄ −i iΩ −iΩ̄ −1 Ω Ω̄ i −iΩ iΩ̄

Γ10 1 −Ω̄ −Ω i −iΩ̄ iΩ −1 Ω̄ Ω −i iΩ̄ −iΩ
Γ11 1 −1 −1 i −i i −1 1 1 −i i −i
Γ12 1 −1 −1 −i i −i −1 1 1 i −i i

(b) single-group and double-group irreducible representations of the Wannier orbital basis

state single group IR double group IR

|d3z2−r2 , ↑〉 A′ Γ7∣∣dx2−y2 − id2xy, ↑
〉

E′ Γ10∣∣dx2−y2 + id2ixy, ↑
〉

Ē′ Γ11

|dxz−iyz, ↑〉 E′′ Γ8

|dxz+iyz, ↑〉 Ē′′ Γ12

|d3z2−r2 , ↓〉 A′ Γ8∣∣dx2−y2 − id2xy, ↓
〉

E′ Γ12∣∣dx2−y2 + id2xy, ↓
〉

Ē′ Γ9

|dxz−iyz, ↓〉 E′′ Γ11

|dxz+iyz, ↓〉 Ē′′ Γ7

(c) Selection rules for electric dipole transitions, for circular polarization

C̄3h IR
⇑ ⇓

Γ7 Γ10 Γ11 Γ8 Γ12 Γ9

Γ7 	 �

⇑ Γ10 � 	

Γ11 	 �

Γ8 	 �

⇓ Γ12 � 	

Γ9 	 �
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Supplementary Note 1 Symmetry Analysis and the Role of Spin-Orbit
Coupling

In the absence of spin-orbit coupling (SOC), the relevant bands near K,K′ can be classified according
to the single-group irreducible representations (IRs) of the point group C3h, denoted A′, E′, Ē′, E′′, Ē′′

[1, 2]. The corresponding character table and relevant invariants are depicted in Supplementary Table 2.
As discussed in the main text, reflection symmetry σh guarantees that bands A′, E′, Ē′ remain decoupled
from E′′, Ē′ across the entire Brillouin zone [3, 4, 5, 6, 7], and the analysis can therefore be constrained to
three relevant bands A′, E′, Ē′ only. In 2H monolayer TMDCs, the conduction band transforms as A′ and
is dominantly composed of the transition metal d3z2−r2 orbital, whereas the valence and relevant higher-
energy band transform as E′, Ē′ with a dominant contribution of dx2−y2 ± id2xy orbitals. Furthermore,
spin z is a good quantum number.

In equilibrium, the band structure can be expanded in k around K,K′ by starting from Hamiltonian

Ĥ = Ĥ0 + ĤSOC + Ĥk (S1)

where

Ĥ0 =
1

2m0
p̂2 + V (r) (S2)

ĤSOC =
~

4m2
0c

2
0

p̂ · σ̂ ×∇V (r) (S3)

Ĥk =
~2k2

2m0
+

~
2m0

k ·
[
p̂ +

~
4m2

0c
2
0

σ̂ ×∇V (r)

]
(S4)

Here, σ̂ are the Pauli matrices, and V (r) is the crystal potential.
The role of SOC can now be understood in two complementary ways, by either considering the

eigenstates of Ĥ0 as IRs of the C3h single group and treating SOC as a perturbation, or by starting
from the true Bloch eigenstates of Ĥ0 + ĤSOC at K,K′, as IRs of the C̄3h double group. In the former
case, the eigenstates of Ĥ0 are spin-z eigenstates with a given single-group IR, namely |A′[d3z2−r2 ], σ〉,∣∣E′[dx2−y2 + id2xy], σ

〉
and

∣∣Ē′[dx2−y2 − id2xy], σ
〉

with σ =↑z, ↓z. To understand the effect of SOC, it is

useful to decompose ĤSOC, Ĥ
′
k:

Ĥz
SOC = σ̂z [p̂x∂y − p̂y∂x]V (r) (S5)

Ĥ↑↓SOC = 2iσ̂− [p̂z∂+V (r)− p̂+∂zV (r)] + h.c. (S6)

Ĥz
k =

~2k2

2m0
+

~
2m0

[
k+ ·

(
p̂− iσ̂z

~
4m2

0c
2
0

∂−V (r)

)
+ h.c.

]
(S7)

Ĥ↑↓k =
~

2m0
k+ ·

(
p̂ + iσ̂−

~
4m2

0c
2
0

∂zV (r)

)
+ h.c. (S8)

Here, Ĥz
SOC transforms as A′ and acts as a mere Zeeman shift, whereas the spin-flip contribution Ĥ↑↓SOC

transforms as E′′, Ē′′ and hence couples states with opposite parity under σh. The latter entails a mixing
between conduction band state |A′, σ〉 and

∣∣E′′(Ē′′),−σ〉 as well as between the higher-energy conduction
band

∣∣Ē′, ↑〉 and |E′′, ↓〉 while leaving the opposite spin
∣∣Ē′, ↓〉 unmixed. This mixing of ↑z, ↓z states

is however suppressed since the energy difference between the A′, E′ and E′′ bands is larger than the
spin-orbit coupling, and the SOC at K,K′ can be well-captured as an effective Zeeman shift while ap-
proximately leaving spin as a good quantum number [5, 7, 8, 9, 10]. Away from K,K′, Ĥz

k transforms

as E′, Ē′ and imparts an additional momentum-dependent Zeeman shift. Conversely, Ĥ↑↓k transforms as
A′′, which does not couple the A′ states of the original conduction band while weakly mixing the E′, E′′

bands.
Consider now the double group, with its character table given in Supplementary Table 2. Spin-flip

mixing with the E′′, Ē′′ bands necessarily reduces the number of band IRs from 5 IRs ×2 spin orientations,
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to 6 double-group IRs. These again decompose into two manifolds denoted ⇑,⇓ that remain decoupled over
the entire Brillouin zone. The identification of band states with single group and double group IRs is given
in Supplementary Table 2(b). Note that the states listed are not an eigenbasis of Ĥ0 + ĤSOC: instead, the
true eigenbasis will be a superposition of states of equal double-group IR, governed by the strength of SOC.
At K,K′, one can immediately deduce that the eigenbasis entails mixing of |d3z2−r2 , σ〉 and |dxz+σ·iyz,−σ〉,
of
∣∣dx2−y2+2ixy + id2xy, ↑

〉
and |dxz−iyz, ↓〉, and of|dxz+iyz, ↑〉 and

∣∣dx2−y2 − id2ixy, ↓
〉
, while leaving states∣∣dx2−y2 − id2xy, ↑

〉
and

∣∣dx2−y2 + id2xy, ↓
〉

unmixed and as proper eigenstates of Ĥ0 + ĤSOC.
Here, the k.p perturbation transforms as Γ2,Γ3 and couples the three ⇑ IRs Γ7,Γ10,Γ11 (⇓ IRs

Γ8,Γ9,Γ12) in an equivalent manner as in the single-group case of A′, E′, Ē′ without spin-orbit coupling,
or with SOC but without spin-flip terms. Consequently, the selection rules of electric dipole transitions
for circular polarization are exactly equivalent, as shown in Supplementary Table 2(c). For this reason,
we chose to simply adopt the single-group notation and label the spin manifolds as ↑z, ↓z, while keeping in
mind that SOC is indeed significant for certain TMDCs and enters through a one-to-one correspondence
with the double group IRs and spin manifolds ⇑,⇓.

Supplementary Note 2 Floquet k.p Theory

A central result of the main text, the effective Floquet k.p Hamiltonians (1) and (2), as determined from
symmetry considerations of the non-equilibrium problem, characterize the photo-induced band inversions
at K and K′ and describe transitions between zero, one and two chiral edge modes as a function of pump
strength and frequency. To further shed light on the procedure of Floquet k.p theory as outlined in the
Methods section, we consider here an explicit derivation of Eqns. (1) and (2) of the main text, in the
limit of small A.

We set ~ = 1. The first step concerns finding the time-dependent Floquet eigenbasis directly at K,K′,
as eigenfunctions of Ĥeq + Ĥpump(t) [Eq. (7), (8) in the Methods section]. Working with C3h IRs, this
equivalently amounts to solving the time-independent Floquet eigenbasis of the Floquet Hamiltonian:

Ĥ0F =
∑
mnα

(
εnα +mΩ +

e2A2

2m0

)
|m;αn〉〈m;αn|

+ eA
∑
mnn′

(
gA

′E′
nn′

∣∣m+ 1;A′, n
〉〈
m;E′, n′

∣∣
+ gĒ

′A′
nn′

∣∣m+ 1; Ē′, n
〉〈
m;A′, n′

∣∣
+ gE

′Ē′
nn′

∣∣m+ 1;E′, n
〉〈
m; Ē′, n′

∣∣+ h.c.
)

(S9)

Here, m is the Floquet index; n, α index the nth band in the C3h IRs α = A′, E′, Ē′, and gαα
′

nn′ =
1

2m0
〈α, n|(π̂x − iπ̂y)|α′, n′〉 are the momentum matrix elements for allowed dipole transitions that are

obtained from ab initio calculations.
Having determined the new eigenbasis of (S9) that admixes different Floquet side bands and IRs of

C3h, deviations in momentum away from K,K′ can now be treated as a perturbation in Ĥ ′(t) [Eq. (9) in
the Methods section]:

Ĥ ′ = k+

{∑
mnα

e

m0

A

2
|m− 1;α, n〉〈m;α, n|

+
∑
mnn′

(
gA

′E′
nn′

∣∣m;A′, n
〉〈
m;E′, n′

∣∣
+ gĒ

′A′
nn′

∣∣m; Ē′, n
〉〈
m;A′, n′

∣∣
+ gE

′Ē′
nn′

∣∣m;E′, n
〉〈
m; Ē′, n′

∣∣)}+ h.c. (S10)
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At K, and in the limit of small A, the Floquet eigenstates of Ĥ0F that compose the eigenbasis of Eq.
(1) of the main text can be found perturbatively:

|ΨK,1〉 =
∣∣0;A′,CB

〉
+ eA

[∑
n

(gA
′E′

CB,n)? |−1;E′, n〉
εA′,CB − εE′,n + Ω

+
∑
n

gĒ
′A′

n,CB

∣∣+1; Ē′, n
〉

εA′,CB − εĒ′,n − Ω

]
+O(A2) (S11)

|ΨK,2〉 =
∣∣−1; Ē′,XB

〉
+ eA

[∑
n

(gĒ
′A′

XB,n)? |−2;A′, n〉
εĒ′,XB − εA′,n + Ω

+
∑
n

gE
′Ē′

n,XB |0;E′, n〉
εĒ′,XB − εE′,n − Ω

]
+O(A2) (S12)

In a second step, one can now start from this eigenbasis and perturb in k, which amounts to a perturbation
in Ĥ ′ [Eqns. (9), (11) in the Methods section]. Here, a coupling between |Ψ1〉, |Ψ2〉 is mediated via the
m = 0;E′ VB (and via all other bands of E′ IR) to linear order ∼ Ak−, as well as via the m = −1;A′

CB or the m = 0; Ē′ XB to quadratic order ∼ Ak2
+. To second order in k, we arrive at the effective

Hamiltonian (1) quoted in the main text, where, to linear order in A, we obtain p- and d-wave couplings
of the form

vp = eA
∑
n

gA
′E′

CB,n g
E′Ē′
n,XB

(
1

εA′,CB − εE′,n + Ω
+

1

εĒ′,XB − εE′,n − Ω

)
+O(A2) (S13)

vd = eA

{
1

4m0
(gĒ

′A′
XB,CB)?

(
1

εA′,CB − εĒ′,XB

− 1

Ω
+

1

Ω
+

1

εĒ′,XB − εA′,CB

)
+

+
1

2

∑
nn′

gE
′Ē′

n,XB

(
gE

′Ē′
nn′ gĒ

′A′
n′,CB

)?
εĒ′,XB − εE′,n − Ω

(
1

εA′,CB − εĒ′,n′
+

1

εE′,n − εĒ′,n′

)
+

+
1

2

∑
nn′

gA
′E′

CB,n′

(
gĒ

′A′
XB,ng

A′E′
nn′

)?
εA′,CB − εE′,n′ + Ω

(
1

εE′,n′ − εA′,n
+

1

εĒ′,XB − εA′,n

)+O(A2) (S14)

together with Dirac and band mass terms

M = εĒ′,XB − εA′,CB − Ω + O(A2)︸ ︷︷ ︸
Stark shift

(S15)

B =
∑
nγ


∣∣∣gγ,A′

n,CB

∣∣∣2
εA′,CB − εn,γ

−

∣∣∣gγ,Ē′

n,XB

∣∣∣2
εĒ′,XB − εn,γ

+O(A2) (S16)

As can be seen from the above derivations, an essential consequence of the minimally three-band
description of electron-photon coupling in TMDCs is the appearance of the linear “Dirac” coupling vp
on the level of the effective Floquet Hamiltonian for K. Indeed, vp necessarily depends on dipole matrix

elements that couple all three bands ∼ gA
′E′

CB,n g
E′Ē′
n,XB with n the VB or further bands of E′ IR. Therefore,

besides naturally precluding the appearance of a red-detuned regime, equilibrium two-band toy models
of TMDCs can never capture a non-equilibrium transition between C = 2 and C = 1 in the blue-detuned
regime.

Conversely, at K′, the perturbative Floquet eigenstates of Ĥ0F that compose the eigenbasis of Eq. (2)
in the main text read:

∣∣ΨK′,1

〉
=
∣∣0;A′,CB

〉
+ eA

[∑
n

(gA
′E′

CB,n)? |−1;E′, n〉
εA′,CB − εE′,n + Ω

+
∑
n

gĒ
′A′

n,CB

∣∣+1; Ē′, n
〉

εA′,CB − εĒ′,n − Ω

]
+O(A2) (S17)

∣∣ΨK′,2

〉
=
∣∣−1;E′,XB

〉
+ eA

[∑
n

(gE
′Ē′

XB,n)?
∣∣−2; Ē′, n

〉
εE′,XB − εĒ′,n + Ω

+
∑
n

gA
′E′

n,XB |0;A′, n〉
εE′,XB − εA′,n − Ω

]
+O(A2) (S18)
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Here,
∣∣ΨK′,1

〉
and

∣∣ΨK′,2

〉
remain decoupled to linear order in k. Instead, we arrive at a quadratic coupling

of the form ∼ Ak+k− = Ak2 as discussed in the main text, with

v′ = eAgA
′,E′

CB,XB

1

4m0

(
1

εA′,CB − εE′,XB
− 1

Ω
+

1

Ω
+

1

εE′,XB − εA′,CB

)
+

+
∑
nn′

eA
gA

′E′
n′,XB

εE′,XB − εA′,n′ − Ω

[
gĒ

′A′
n,n′ (gĒ

′A′
n,CB)?

(
1

εA′,CB − εĒ′,n

+
1

εA′,n − εĒ′,n′

)
+

+ (gA
′E′

n′n )?gA
′E′

CB,n

(
1

εA′CB − εE′,n
+

1

εA′,n′ − εE′,n

)]
+

+
∑
nn′

eA
gA

′E′
CB,n

εA′,CB − εE′,n + Ω

[
gA

′E′
n′,XB(gA

′E′
n′,n )?

(
1

εE′,n − εA′,n′
+

1

εE′,XB − εA′,n′

)
+

+ (gE
′Ē′

XB,n′)?gE
′Ē′

n,n′

(
1

εE′,n − εĒ′,n′
+

1

εE′,XB − εĒ′,n′

)]
(S19)

Supplementary Note 3 Topological Classification and Pseudospin Tex-
tures

The main text classifies photo-induced topological phase transitions via local effective Floquet k.p Hamil-
tonians at K,K′. The key idea is to understand the global topology via a local classification of band
inversions at K,K′, which relies on a-priori knowledge that 1) the Floquet spectrum is gapped globally
and 2) the Berry curvature behaves benign at other high-symmetry points in the Brillouin zone. Armed
with this knowledge, a complementary view of local band inversions follows from considering so-called
pseudospin textures around K and K′. Starting from the local Floquet k.p Hamiltonians ĤK(k) and
ĤK′(k) of equations 1 and 2 of the main text, we can recast these in terms of pseudospin Pauli matrices
σ:

Ĥν=K,K′(k) = ε0(k) + ε(k) d̂ν(k) · σ (S20)

Here, ε0(k) ± ε(k) is the dispersion of ĤK(k) or ĤK′(k), and d̂ν(k) is the pseudospin vector, with
|d̂ν(k)| = 0. Here, ν = K,K′. The pseudospin vector equivalently follows from taking the expectation
value 〈σ〉 of the Floquet-Bloch states around K,K′.

As discussed in the main text, the band inversion at K′ is trivial, and the pseudospin obeys dyK(k) = 0.
Conversely, at K, the pseudospin becomes

d̂K(k) =
1

N(k)

[
vpkx + vd(k

2
x − k2

y), vpky − 2vdkxky, M −B|k|2
]>

(S21)

with a normalization N(k) to ensure that |d̂K(k)| = 1.
At K, the effective Hamiltonian S20 can be viewed as a d-wave generalization of the conventional

massive Dirac Hamiltonian, with an additional band mass term in analogy to the k.p model at Γ for
HgTe/CdTe quantum wells. Supplementary Figure 1 depicts the pseudospin textures upon increasing
vd/vp to enhance trigonal distortion. vp 6= 0, vd = 0 recovers the conventional massive Dirac fermion with
a quadratic band mass term; here, the pseudospin has a p-wave winding around K′ and the Chern number
becomes C = 1. In the opposite limit vp = 0, vd 6= 0, the pseudospin acquires a d-wave winding around
K. Here, since the band mass term is quadratic only, the winding in dx(k), dy(k) persists in principle to
k → ∞. Given the knowledge that the band structure is gapped globally and that the band inversion
should be confined to high-symmetry points, this behavior is an artifact of the lower-order k.p expansion.

More rigorously, quantization of the integral C = 1
2π

∫
R2 dkF(k) necessitates a compactification of

k-space R2 to a non-contractible manifold. This can be motivated as follows: Since the Floquet k.p
theory can be expected to faithfully represent the physics only in the close vicinity around K, momenta
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k far away from K should not affect C. This can be enforced rigorously by adding to Ĥ an infinitesimal
rotationally-symmetric regularizer −ηB′σ̂z|k|4 with η → 0, leading to:

d̂
(reg)
K′ (k) =

1

N(k)

[
vpkx + vd(k

2
x − k2

y), vpky − 2vdkxky, M −B|k|2(1 + η|k|2)
]>

(S22)

It follows that the unit vector d̂
(reg)
K′ (|k| → ∞) = −sgn(B)êz does not depend on the polar angle θ of k, and

R2 can be compactified to a sphere S2 by identifying ∞ with the north pole without loss of information.
The choice σ̂z of the regularizer is motivated by noting that |B| � |vd| for any choice of pump field
entails that d̂(|k| → ∞) ∼ −sgn(B)êz + vd

|B| [cos(2θ)êx − sin(2θ)êy] already approximately points in the
z-direction.

The band inversion can be seen clearly by looking at the behavior of dz(k) close to K, which switches
sign when going from k = 0 to k→∞. The intermediate regime of p-d-wave winding leads to a distorted
pseudospin texture when looking at the close vicinity of K, whereas a d-wave (or p-wave) texture is
retained at large k to arrive at a C = 2 or C = 1 phase.

Supplementary Note 4 Strong Pumping and Inversion of the Equilib-
rium Band Gap

Discussions on photo-induced chiral edge states have focused so far solely on dynamically-generated gaps
within the equilibrium conduction and valence bands, since a sizeable energy scale ∼ 1.5eV in WS2

protects the equilibrium band gap from closing for weak pump fields. This picture changes conceivably
when approaching the regime of Wannier-Stark physics at significantly higher pump strength. In the
high-frequency limit, broken time-reversal symmetry then bestows an optical Stark shift of equal and
opposite magnitude on K and K′, that bridges the equilibrium band gap at a critical field strength A.
The gap closes and reopens at K′ to eliminate one branch of the trivial equilibrium edge states, leaving
a single chiral edge state to bridge the Floquet-Bloch band gap at K, as depicted in Supplementary
Figure 2(a). Upon even further increase of A, the gap finally closes and reopens at Γ, returning to a
trivial regime without chiral edge modes. Näıvely, the flattening of the bands upon crossover to Wannier-
Stark ladders at increasing pump strengths A or decreasing frequencies Ω suggests that one should not
expect to continue attributing special significance to the original high-symmetry points in this regime.
Nevertheless, the system can undergo a series of gap closings confined to K,K′,Γ upon further decrease
of Ω. The associated topological transitions change the Floquet Chern number by ±1, leading to a
mosaic of photo-induced topological phases at high pump intensities. In addition, gap closures occur near
the second conduction-band minimum Q in WS2. As this is not a high-symmetry point, C3 rotation
symmetry dictates that the gap must instead close simultaneously at three distinct points in the Brillouin
zone, changing the Chern number by ±3. We verified the corresponding phase diagram in Supplementary
Figure 2(b) by numerically evaluating the Floquet Chern number.
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