
Reviewers' comments:  
 
Reviewer #1_Cancer Metabolism  
(Remarks to the Author):  
 
This paper demonstrates that cancers undergo a tissue-specific metabolic rewiring, which 
converges on downregulation of mitochondrial genes. This is associated with the worst clinical 
outcome across all cancer types and correlates with induction of epithelial-to-mesenchymal 
transition (EMT). I think the paper is done well and very important for the field.  
 
I have one issue with the paper in interpretation.  
 
I don't think it is appropriate to equate down regulation of mitochondrial genes with mitochondrial 
dysfunction. It is well known that mitochondrial genes/enzymes are in excess. Thus even 50-75% 
decrease will not impact oxidative phosphorylation. So please remove that language regarding 
mitochondrial dysfunction.  
 
Also it is important they clearly state that mitochondria can undergo oxidative and reductive 
metabolism. Another words, mitochondria always have to engaged in cancer for tumorigenesis. 
After all mitochondria provides citrate, aspartate and succinyl-CoA necessary for lipid, nucleotide 
and heme synthesis, respectively.  
See recent paper in Cell by Ralph Deberardinis.  
Given this what is the advantage to down regulate these genes? Maybe to increase or decrease 
ROS for metastasis?  
 
The paper reads as if mitochondria are not necessary for tumorigenesis. Please change language 
to appropriately reflect the role of mitochondria in tumorigenesis and metastasis.  
 
How do they reconcile their data with Raghu Khalluri's data in Nature Cell Biology?  
 
Reviewer #2_System Metabolomics  
(Remarks to the Author):  
 
Summary  
In addition to biochemical studies focusing on representative in vitro and in vivo models of cancer, 
we require to understand what is the heterogeneity of metabolism across cancers and how this 
heterogeneity impacts choice of therapy and patient survival. The work by Gaude & Frezza is a 
significant contribution in this direction. In particular, the report that mitochondrial metabolism is 
down regulated in cancers and that it correlates with poor prognosis is in my opinion sufficient to 
recommend publication in a high impact journal. However, there are some points where the 
authors should provide additional evidence  
 
Major comments  
1- Throughout the manuscript there are frequent statements of being up regulated, down 
regulated, correlated, etc. However, the authors should demonstrate that those associations 
cannot be obtained just by chance. They should report the statistical significance of those 
associations.  
2- Hu et al [1] have previously reported the up regulation of purine and pyrimidine metabolism in 
cancers. The author's conclusions in this specific aspect are not novel. They should cite that 
previous work. Interestingly, Hu et al reported no association between TCA cycle and OxPhos and 
cancers. In contrast, the authors report a down regulation of TCA and OxPhos in cancer, which is 
one of the key conclusions of this work. The authors should explain why the discrepancy between 
the report by Hu et al and their results. Is the pruning of promiscuous genes a key methodology to 
uncover the association between reduces TCA cycle/OxPhos in cancers?  
3- The observation of up regulation of purine and pyrimidine metabolism in cancers could follow 



from the observation of increased proliferation in cancer and the requirement of purines and 
pyrimidines for cell growth. The authors should determine up to what extent the expression of 
purine and pyrimidine metabolism gene signatures follow signatures of cell proliferation.  
4- Related to point 3, is also the decrease in mitochondrial gene signatures associated with an 
increase cell proliferation?  
 
References  
1. Hu J, Locasale JW, Bielas JH, O'Sullivan J, Sheahan K, Cantley LC, Vander Heiden MG, Vitkup D: 
Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat 
Biotechnol 2013, 31(6):522-U511.  
 
 
Reviewer #3_Gene regulatory network  
(Remarks to the Author):  
 
This manuscript describes an analysis of gene expression data from The Cancer Genome Atlas 
Project, comprising more than 8000 samples across 20 different cancer entities. To study gene 
expression in metabolic pathways, the authors compile expression values for genes in these 
pathways into a pathway score based on gene set enrichment analysis methods. They find a 
number of metabolic pathways to be dysregulated, including purine biosynthesis, glycolysis, citric 
acid cyle and oxidative phosphorylation.  
 
Major remarks  
1. The authors do not cite and discuss some recent related work, including Gross, Kreisberg & 
Ideker 2015 (PLOS ONE 10:e0142618, 2015) and Reznik & Sander 2015 (PLOS Comput Biol 
11:e1004176, 2015). They also do not compare their work in real detail with Hu et al. (Nat 
Biotechnol 2013, ref. #4). This needs to be addressed, and the authors should comment on the 
novelty and originality of their findings compared to already published work.  
 
2. The cellular composition of normal tissues is quite different from tumors, and this may heavily 
bias gene expression. Also, protein concentrations are known to correlate only poorly with RNA 
abundance estimates (e.g., Zhang et al. Nature 513, 382-387, 2014). This needs to be discussed.  
 
3. Generating P values for each pathway constitutes a multiple testing problem, which needs to be 
appropriately corrected for. Promiscuity, or association of a particular gene to multiple pathways, 
presents another statistical challenge; the authors tried to address this by down-weighting their 
contribution by an ad-hoc approach which, however, is by no means statistically motivated. I 
highly recommend to consult a professional statistician to get this (and other issues, see below) 
right.  
 
4. Mixing parametric and non-parametric approaches to estimate correlation (i.e. Pearson's vs 
Spearman's correlation) will result in non-comparable measures; one should use just one of them.  
 
5. Calculating a mean expression value per pathway is a very crude method to estimate its 
activity. Consider, e.g., a single gene which is crucial for regulation and changes expression by 2-
fold compared to normal tissues. This may happen at low or high levels of the enzyme. A low level 
will probably not significantly influence the mean value for the pathway while a high level will. 
Furthermore, this will be more pronounced in small pathways (few other contributions to the 
mean) than in large pathways, where the effect will be diluted by many other genes. Note that 
most metabolic pathways are regulated at only few points. It may still be useful to use mean 
expression per pathway as a first approach, but its limitations need to be discussed.  
 
6. The assignment into "high-survival group" and "low-surival group" is severely flawed. First, by 
construction the time-to-event or time-to-last-observation intervals overlap. Discriminating by 
event status will not help since in some cancer entities many samples have short observation 



times (early censoring), and patients may have died quickly after the last observation. These 
patients would, however, be assigned to the "high-survival group" since they have not been known 
to die of cancer. Second, baseline survival will severly differ between different cancer types, which 
is, e.g., dramatically short in glioblastoma or pancreatic cancer but multiple times longer in breast 
cancer or prostate cancer. Finally, TCGA data is severely biased by including multiple therapy 
regimens (in GBM, e.g. more than 200!), and by notorious incompleteness of clinical data. Thus, 
survival analysis has to be limited to those cancer entities where a decent fraction has follow-up 
information, most patients reach sufficient observation times, and therapies are rather similar 
between them. In addition, the analysis should be done per entity and different cancer types not 
be mixed.  
 
7. The association with EMT is not directly with the phenotype, which is based on morphology, but 
with a gene expression signature derived from a cell line experiment. Some researchers even 
doubt that EMT exists in vivo, and would call it an in-vitro phenotype. The limitations by using an 
indirect method here should be discussed.  
 
8. Correlation is not causation. Thus, the association of metabolic phenotype with aggressiveness 
does not indicate that down-regulation of oxidative phosphorylation is actually causing aggresive 
behavior. Rather, both may be characteristics of an underlying biological state that is characterized 
by increased metastatic traits but also by reduced energy demands compared to that of primary 
tumors.  
 
Minor remarks  
 
1. The mathematical notation needs to be corrected; subscripts and superscripts appear in line 
with the symbols.  
 
2. It is not clear which version of the data has been used. The authors should designate more 
precisely whether they used "level 3 data", on which transcript model, and add version information 
to the Supplementary Material. Also, version numbers for the software packages need to be 
provided.  
 
3. Supplemental Figures 5, 6, and 8 appear to be missing from the PDF document. This may be a 
system incompatibility using a particular version of Adobe Reader on a Mac, but I'd highly prefer to 
see the contents that I'm supposed to review.  
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Gaude and Frezza 

NCOMMS-16-05237 

 

Response to Reviewers 

 

Reviewers (R): italic 

Authors (Au): plain text 

 

Reviewer #1_Cancer Metabolism 

 

R: This paper demonstrates that cancers undergo a tissue-specific metabolic rewiring, which 

converges on downregulation of mitochondrial genes. This is associated with the worst 

clinical outcome across all cancer types and correlates with induction of epithelial-to-

mesenchymal transition (EMT). I think the paper is done well and very important for the 

field.  

 

Au: We thank the reviewer for this very supportive feedback on our work. 

 

R: I have one issue with the paper in interpretation. I don't think it is appropriate to equate 

down regulation of mitochondrial genes with mitochondrial dysfunction. It is well known that 

mitochondrial genes/enzymes are in excess. Thus even 50-75% decrease will not impact 

oxidative phosphorylation. So please remove that language regarding mitochondrial 

dysfunction.  

 

Au: We are aware that mitochondrial dysfunction is multifactorial and we agree with the 

reviewer that appropriate language should be used to avoid misinterpretation of our findings. 

We have now amended the parts of text were down-regulation of mitochondrial genes was 

inadvertently linked to mitochondrial dysfunction.  

 

R: Also it is important they clearly state that mitochondria can undergo oxidative and 

reductive metabolism. Another words, mitochondria always have to engaged in cancer for 

tumorigenesis. After all mitochondria provides citrate, aspartate and succinyl-CoA necessary 

for lipid, nucleotide and heme synthesis, respectively. See recent paper in Cell by Ralph 

Deberardinis. Given this what is the advantage to down regulate these genes? Maybe to 
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increase or decrease ROS for metastasis? The paper reads as if mitochondria are not 

necessary for tumorigenesis. Please change language to appropriately reflect the role of 

mitochondria in tumorigenesis and metastasis.  

 

Au: We fully agree with the reviewer that mitochondrial function is far from dispensable in 

cancer initiation and progression. We have now expanded the discussion to include a 

description of the important role of mitochondria in cancer. Please see line 249-268 of the 

manuscript for details. 

 

R: How do they reconcile their data with Raghu Khalluri's data in Nature Cell Biology? 

 

Au: LeBleu et al (Nat Cell Biol 2014) made two important findings. First, by analyzing the 

metabolic phenotype of circulating cells and metastasis generated from orthotopic breast 

cancer, they observed that the expression of OXPHOS genes is increased in circulating tumor 

cells and it is decreased in metastatic cells, compared to parental cells. Second, they showed 

that high expression of PGC1α is associated with decreased survival in a cohort of 161 

patients with invasive ductal carcinoma. These results are in partial agreement with our 

analyses. Indeed, in line with LeBleu et al we also observed a decreased expression of 

OXPHOS genes in metastatic cells. However, we could not find a significant change in the 

expression levels of PGC1α neither between metastatic and primary melanoma cancer 

patients (BH-p value = 0.37), nor between metastatic and parental 786-O cell lines (BH-p 

value = 0.51). It is therefore possible that Kalluri’s observations are valid in a particular 

cohort of invasive ductal breast cancers, and the role of PGC1α in supporting formation of 

metastasis might be cancer-specific. In line with a possible tissue-specific role of PGC1α in 

cancer metastasis, a recent study found that down-regulation of PGC1α is linked with 

prostate cancer progression and metastasis, and genetic reactivation of PGC1α suppresses the 

formation of prostate cancer metastases (Torrano et al., 2016). We have now included a 

discussion of these findings in our manuscript (please see lines 281-294 of the manuscript for 

details).  

 

Reviewer #2_System Metabolomics 

 

R: Summary. In addition to biochemical studies focusing on representative in vitro and in 

vivo models of cancer, we require to understand what is the heterogeneity of metabolism 
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across cancers and how this heterogeneity impacts choice of therapy and patient survival. 

The work by Gaude & Frezza is a significant contribution in this direction. In particular, the 

report that mitochondrial metabolism is down regulated in cancers and that it correlates with 

poor prognosis is in my opinion sufficient to recommend publication in a high impact 

journal.  

 

Au: We thank the reviewer for appreciating the impact of our work. 

 

R: However, there are some points where the authors should provide additional evidence  

Major comments  

1- Throughout the manuscript there are frequent statements of being up regulated, down 

regulated, correlated, etc. However, the authors should demonstrate that those associations 

cannot be obtained just by chance. They should report the statistical significance of those 

associations. 

  

Au: We are aware of the importance of accounting for random (or chance) variation in 

statistics and indeed our analyses were performed applying stringent statistical tests. For 

instance, differential expression of metabolic genes was determined by applying Wald’s 

statistical test and p-values were corrected for multiple testing with Benjamini-Hochberg 

method. A false discovery rate (FDR) of 5% was applied by considering Benjamini-

Hochberg-corrected p-values < 0.05 as statistically significant. To determine up- or down-

regulation of metabolic pathways gene set enrichment analysis (GSEA) was performed. 

Enrichment p-values were corrected for multiple testing with Benjamini-Hochberg correction 

method. When correlation was used to determine the relationship between variables, 

Spearman method was applied and p-values were calculated. As above, p-values were 

corrected with Benjamini-Hochberg method to account for type 1 error. Details of all 

statistical tests and analyses are reported in the methods section. P-values of tests applied 

(Wald’s statistics, GSEA), as well as correlation coefficients and p-values, are included as 

supplementary material.   

 

R: 2- Hu et al [1] have previously reported the up regulation of purine and pyrimidine 

metabolism in cancers. The author's conclusions in this specific aspect are not novel. They 

should cite that previous work. Interestingly, Hu et al reported no association between TCA 

cycle and OxPhos and cancers. In contrast, the authors report a down regulation of TCA and 
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OxPhos in cancer, which is one of the key conclusions of this work. The authors should 

explain why the discrepancy between the report by Hu et al and their results. Is the pruning 

of promiscuous genes a key methodology to uncover the association between reduces TCA 

cycle/OxPhos in cancers?  

 

Au: We have now expanded the discussion on the work of Hu et al, which was already cited 

in our manuscript, and explained more in details the differences and similarities between this 

work and our results (please see lines 224-233 for details). The reviewer hypothesizes that the 

different behavior of TCA cycle and OXPHOS between our study and Hu et al’s is caused by 

pruning promiscuous genes. However, it is worth noting that OXPHOS ranked in our top-

altered metabolic pathways both in the non-corrected and promiscuity-corrected analyses (see 

Supplementary Figure 2). We think that the discrepancy between Hu et al and our work is 

due to differences in the metabolic gene set definition: while Hu et al applied the structure of 

metabolic pathways offered by the Kioto Encyclopedia of Genes and Genomes (KEGG), we 

manually curated metabolic gene sets. More in detail, we used metabolic genes and pathways 

as defined in the genome-scale human reconstruction of metabolic network Recon1 (Duarte 

et al., 2007) and we manually curated the assignment of genes into pathways by referring not 

only to KEGG, but also to the Human Metabolome DataBase (HMDB) and OMIM libraries, 

as well as by referring to several studies in the literature. In some cases, this led to the 

definition of different metabolic gene sets. For instance, while the TCA cycle is composed of 

30 genes according to KEGG database, our manually curated gene set included 58 genes as 

part of the TCA cycle. Our assignment of metabolic genes into pathways is provided as 

supplementary material.  

 

R: 3- The observation of up regulation of purine and pyrimidine metabolism in cancers could 

follow from the observation of increased proliferation in cancer and the requirement of 

purines and pyrimidines for cell growth. The authors should determine up to what extent the 

expression of purine and pyrimidine metabolism gene signatures follow signatures of cell 

proliferation.  

4- Related to point 3, is also the decrease in mitochondrial gene signatures associated with 

an increase cell proliferation?  

 

Au: In the original version of our manuscript we investigated the link between nucleotide 

synthesis and proliferation of cancer cells by assessing the correlation between expression of 
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purine biosynthesis pathway and growth rate of the NCI-60 panel of cancer cell lines 

(Supplementary Figure 3 and lines 93-96, main text). We found a highly significant and 

positive correlation between expression of purine biosynthesis and proliferation of cancer 

cells (Supplementary Figure 3a). Of note, we also found a very strong association between 

cancer cell growth and PAICS, the gene of purine biosynthesis most commonly up-regulated 

among cancers (Supplementary Figure 3b). Finally, we also observed a positive (r2=0.36) and 

near-significance (p-value=0.051) correlation of pyrimidine biosynthesis with cell growth of 

the NCI-60 cell lines.  

We also assessed the correlation of mitochondrial pathways with cell proliferation of 

the NCI-60 panel of cancer cell lines. Surprisingly, we observed that both TCA cycle and 

OXPHOS are positively correlated (r2=0.42 and 0.39, respectively) and significant (p-

value=0.02 and 0.04, respectively) with cancer cells proliferation. Such discrepancy might be 

due to the fact that the NCI-60 cell lines are grown in vitro, where metabolic requirements are 

different from those observed in vivo, where the great majority of the analyses were carried 

out.  

 

Reviewer #3_Gene regulatory network 

 

R: This manuscript describes an analysis of gene expression data from The Cancer Genome 

Atlas Project, comprising more than 8000 samples across 20 different cancer entities. To 

study gene expression in metabolic pathways, the authors compile expression values for 

genes in these pathways into a pathway score based on gene set enrichment analysis 

methods. They find a number of metabolic pathways to be dysregulated, including purine 

biosynthesis, glycolysis, citric acid cyle and oxidative phosphorylation. 

Major remarks 

1. The authors do not cite and discuss some recent related work, including Gross, Kreisberg 

& Ideker 2015 (PLOS ONE 10:e0142618, 2015) and Reznik & Sander 2015 (PLOS Comput 

Biol 11:e1004176, 2015). They also do not compare their work in real detail with Hu et al. 

(Nat Biotechnol 2013, ref. #4). This needs to be addressed, and the authors should comment 

on the novelty and originality of their findings compared to already published work. 

 

Au: We thank the reviewer for pointing out these papers. We have expanded the discussion to 

include these relevant studies and compared our findings to their results (please see line 223-

237 of our manuscript for details). 
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R: 2. The cellular composition of normal tissues is quite different from tumors, and this may 

heavily bias gene expression. Also, protein concentrations are known to correlate only poorly 

with RNA abundance estimates (e.g., Zhang et al. Nature 513, 382-387, 2014). This needs to 

be discussed. 

 

Au: We agree with the reviewer that the comparison of tumor and normal samples presents 

several caveats, of which we are aware. Qualitative and quantitative differences in cellular 

composition can exist between cancer and normal tissues, among which infiltration of 

immune cells, as well as other blood-derived cells, are well known. Indeed, we were 

impressed to observe that, in line with Hu et al, expression of metabolic genes in cancer 

samples was highly reminiscent of their tissue of origin, when compared to other tissues. 

These results indicate that, despite differences in cellularity, cancer samples maintain the 

metabolic identity of their tissue of origin and suggest that differences in cell infiltrates might 

contribute to background noise variation between samples. 

We agree with the reviewer that estimating protein concentrations from abundance of 

RNA transcript levels is not devoid of assumptions. We have discussed these limitations in 

line 295-299 of the manuscript.   

 

R: 3. Generating P values for each pathway constitutes a multiple testing problem, which 

needs to be appropriately corrected for. Promiscuity, or association of a particular gene to 

multiple pathways, presents another statistical challenge; the authors tried to address this by 

down-weighting their contribution by an ad-hoc approach which, however, is by no means 

statistically motivated. I highly recommend to consult a professional statistician to get this 

(and other issues, see below) right. 

 

Au: The reviewer raises concerns about the strength of our analyses. Our analyses underwent 

extensive statistical validation. For instance, to determine up- or down-regulation of 

metabolic pathways we performed gene set enrichment analysis (GSEA). Enrichment p-

values were corrected for multiple testing with Benjamini-Hochberg correction method and a 

false discovery rate (FDR) of 5% was applied on Benjamini-Hochberg-corrected p-values.  

For the correction of promiscuous genes, we applied a heuristic method designed for 

the ad-hoc down-weighting of promiscuous genes to account for metabolic pathways that are 

composed predominantly by promiscuous genes. A similar approach for down-weighting 
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promiscuous genes was proposed by Tarca and colleagues (Tarca et al., 2012), where they 

used the frequency of each gene across gene sets to construct a score for down-weighting 

genes statistics in enrichment analysis. Our approach presents a more stringent down-

weighting applied on t-statistics. Of note, this approach was discussed with a professional 

statistician, who is now formally acknowledged in our manuscript.  

 

R: 4. Mixing parametric and non-parametric approaches to estimate correlation (i.e. 

Pearson's vs Spearman's correlation) will result in non-comparable measures; one should 

use just one of them. 

 

Au: We thank the reviewer for raising this concern. We have re-calculated the relevant 

correlation analyses by uniformly applying Spearman’s method. New results are now 

displayed in the manuscript:  

- Fig. 2a: correlation analysis of metabolic gene expression between normal and cancer 

samples. 

- Fig. 3c: correlation of mean OXPHOS values with mean EMT values. 

- Supplementary Table 6: correlation coefficients and p-values of metabolic gene expression 

between normal and cancer samples. 

- Supplementary Figure 4: correlation of mean pathway expression with metabolite 

abundance in breast cancer patients. 

- Supplementary Figure 8: scatter plots of mean OXPHOS vs mean EMT values for each 

cancer type. 

We amended the results section in order to display new results obtained (lines 126 and 129), 

as well as we updated methods and figure legends accordingly. Importantly, this new analysis 

did not affect our final conclusions. 

 

R: 5. Calculating a mean expression value per pathway is a very crude method to estimate its 

activity. Consider, e.g., a single gene which is crucial for regulation and changes expression 

by 2-fold compared to normal tissues. This may happen at low or high levels of the enzyme. A 

low level will probably not significantly influence the mean value for the pathway while a 

high level will. Furthermore, this will be more pronounced in small pathways (few other 

contributions to the mean) than in large pathways, where the effect will be diluted by many 

other genes. Note that most metabolic pathways are regulated at only few points. It may still 

be useful to use mean expression per pathway as a first approach, but its limitations need to 
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be discussed. 

 

Au: We are aware of the limitations of using mean pathway expression to investigate 

pathway activity and the reviewer raises a valid concern. We accounted for differential 

effects of low and high expressed genes by applying variance stabilizing transformation 

(Huber et al., 2002), an approach to manage the dependence of variance of an intensity from 

its mean. As explained in our methods, mean expression of pathways was calculated on 

variance-stabilized gene intensities.  

The reviewer raised a valid concern about the effect of pathway size on determining 

intra-pathway variability of gene expression changes. To address this concern, we assessed 

whether pathway size influences the dispersion of gene expression changes. We could not 

find a strong link between pathway size and interquartile range of gene fold change between 

tumor and normal samples (please see Figure 1 for reviewer only for a representative 

example), suggesting that the size of the pathway is not a strong determinant of mean 

pathway expression. Yet, more work is required to dissect to what extent each individual 

enzyme contributes to the overall function of the pathway. The limitations of our approach 

have been described in the discussion section of our manuscript (lines 300-302 for details) 

 

Figure 1 for Reviewer only. Effect of pathway size 
on intra-pathway dispersion of gene expression 
changes. Number of genes in each pathway (x axis) is 
plotted against the interquartile range of mean gene 
fold changes (y axis) between tumor and normal 
samples, for BRCA, GBM, KIRP and PRAD datasets.
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R: 6. The assignment into "high-survival group" and "low-surival group" is severely flawed. 

First, by construction the time-to-event or time-to-last-observation intervals overlap. 

Discriminating by event status will not help since in some cancer entities many samples have 

short observation times (early censoring), and patients may have died quickly after the last 

observation. These patients would, however, be assigned to the "high-survival group" since 

they have not been known to die of cancer. Second, baseline survival will severly differ 

between different cancer types, which is, e.g., dramatically short in glioblastoma or 

pancreatic cancer but multiple times longer in breast cancer or prostate cancer. Finally, 

TCGA data is severely biased by including multiple therapy regimens (in GBM, e.g. more 

than 200!), and by notorious incompleteness of clinical data. Thus, survival analysis has to 

be limited to those cancer entities where a decent fraction has follow-up information, most 

patients reach sufficient observation times, and therapies are rather similar between them. In 

addition, the analysis should be done per entity and different cancer types not be mixed. 

 

Au: The criticisms raised by the reviewer on our survival analyses are not fully justified and 

indicate that some clarification to our method of analysis of patient’s survival is needed. 

Although the definition of “Low” and “High survival” groups is based on event status, we 

designed the analyses to take into account early censoring. The “High survival” group 

includes only patients that have been censored alive for an amount of time greater than or 

equal to the 75th percentile of the “Low survival” observation time. This method allowed us 

to filter out patients with short observation times based on the cancer type-specific window of 

observation. We expanded the methods section (lines 386-396) by explaining more in detail 

the definition of “High” and “Low survival” patient groups and by showing how this method 

applies to the BRCA dataset as an example. Importantly, “High” and “Low survival” groups 

were defined for each cancer type individually, which allowed us to account for differences 

in baseline survival time. Metabolic pathways significantly enriched from the analysis of 

each cancer type individually were then pooled together to find metabolic pathways that are 

changed between “High” and “Low survival” patients in at least 25% of cancer types. 

As noticed by the reviewer the integration of treatment regimen information into survival 

analysis of TCGA data can be a daunting task. Despite the important effects that therapeutic 

treatments can have on survival of cancer patients, subdividing patients would result in very 

small number being tested (or in patient-specific cases), thus impinging on statistical power 

of the analysis. Based on these considerations, we decided that accounting for therapeutic 

treatment in our analysis of “High” vs “Low survival” patients would lead to over-fitting and, 
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as such, we assumed it would be confined to background noise. The integration of therapeutic 

treatments into survival analysis would require a thorough investigation of several statistical 

techniques, beyond the scope of this manuscript.  

 

R: 7. The association with EMT is not directly with the phenotype, which is based on 

morphology, but with a gene expression signature derived from a cell line experiment. Some 

researchers even doubt that EMT exists in vivo, and would call it an in-vitro phenotype. The 

limitations by using an indirect method here should be discussed. 

 

Au: We feel this reviewer’s comment might derive from a misunderstanding of our analyses. 

The association of poor patient survival with EMT was obtained by considering gene 

expression profiles of human cancer samples, it was not obtained from in vitro experiments. 

The reviewer raises also some concerns about the relevance of EMT in cancer metastasis in 

vivo. To corroborate this aspect of our work, we performed GSEA on metastatic vs primary 

melanoma cancer samples and found that EMT is strongly up-regulated in metastatic 

samples. We validated these results on metastatic vs parental 786-O cell lines and found that 

EMT is highly induced in the metastatic counterpart. Furthermore, we have replaced the 

enrichment analyses of OXPHOS genes in metastatic 786-O cells with a volcano plot to 

further support the claim that this pathway is the most downregulated metabolic pathway in 

these cells (New Fig. 4b). Although these results do not prove that EMT drives metastasis, 

they further corroborate the association between suppression of OXPHOS genes, presence of 

EMT signature and metastasis. We have now included these observations in Supplementary 

Figure 9 and in line 184/185 and 196/197 of the results section.  

 

R: 8. Correlation is not causation. Thus, the association of metabolic phenotype with 

aggressiveness does not indicate that down-regulation of oxidative phosphorylation is 

actually causing aggressive behavior. Rather, both may be characteristics of an underlying 

biological state that is characterized by increased metastatic traits but also by reduced 

energy demands compared to that of primary tumors. 

 

Au: We agree with the reviewer on the limitations and potential pitfalls of drawing 

conclusions from correlation analyses. We believe that co-variation of different factors can 

help in generating hypotheses that, despite their statistical robustness, have to be validated 

with appropriate experimental work in order to establish a more direct causal link. Given the 
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importance and potential impact of these assumptions we expanded the discussion in order to 

account for the limitations of our approach (line 302-307) Moreover, we corrected the 

language in the results section where correlation results were inadvertently linked to 

mechanistic conclusions.  

 

R: Minor remarks 

1. The mathematical notation needs to be corrected; subscripts and superscripts appear in 

line with the symbols. 

 

Au: We have now corrected the mathematical notation.  

 

R: 2. It is not clear which version of the data has been used. The authors should designate 

more precisely whether they used "level 3 data", on which transcript model, and add version 

information to the Supplementary Material. Also, version numbers for the software packages 

need to be provided. 

 

Au: Detailed information about the level and type of RNAseq data used, as well as version 

numbers of software and packages, are now included in the methods section. 

  

R: 3. Supplemental Figures 5, 6, and 8 appear to be missing from the PDF document. This 

may be a system incompatibility using a particular version of Adobe Reader on a Mac, but I'd 

highly prefer to see the contents that I'm supposed to review. 

 

Au: We were unaware of any problem with the file formats sent to reviewers and understand 

the frustration of not having the chance to fully access the material object of revision. We are 

disappointed as much as this reviewer to discover that the process of file reformatting failed 

to provide a complete version of the material we submitted. Other reviewers did not mention 

this problem, so it might be a platform-specific issue. 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The paper is acceptable!  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have provided a satisfactory response to my previous comments. This work is an 
important contribution to our understanding of cancer metabolism that supports is publication in 
Nature Communications.  
 
 
Reviewer #3 (Remarks to the Author):  
 
I appreciate that the authors have signifcantly improved the manuscript and addressed most of my 
points. 
 
The most important original finding of the authors compared to previous studies is the association 
of metabolic pathways, in particular primary energy metabolism in the mitochondria, with clinical 
aggressiveness, survival and metastatic phenotype. I still have some concerns with respect to the 
analysis that the authors carried out.  
 
1. I could not directly confirm the correctness of the underlying gene expression values. Mean 
expression as well as log2-fold change and log2-standard deviation are given in Supplementary 
Table 2. I was struck by the unexpectedly high mean counts for most genes (many above 1000), 
which follow an unusal distribution. The authors state in the manuscript that they used RSEM 
abundance estimates as provided by TCGA. I used the cbio portal (http://cbioportal.org), which 
hosts the very same values from the very same sets. In the attachment, I provide three 
examplary plots generated from this portal. These are co-expression plots, but the only relevant 
dimension here is on the x-axis, which has RNA RSEM expression values for the very same set, 
PCPG (pheochromocytoma and paraganglioma). As can be seen for A4GALT, the values on the cbio 
portal range from 0 to about 1800, with an approximate mean expresssion of 200. The authors 
report 3116.05 as "baseMean" in their supplementary table. For A4GNT, the values range from 0 
to 7, with an approximate mean somewhere below 1. The authors, on the contrary, report 1219.8 
as "baseMean". For ABCB11, the values on the cbio portal range from 0 to 6 (mean below 1) while 
the authors report 116.4. Neither the absolute values nor their relation are anywhere close to the 
values from cbio.  
 
2. The authors seem to not always follow their own method to define "high surival" and "low 
survival" groups. Briefly, they take the 75th percentile of the surival times for the patients with 
status "dead" and declare patients with status "alive" as members of the "high survival" group if 
their survival time is greater than this percentile. That means that, for patients in the "low 
survival" group, the time where the KM estimate curve crosses 0.25 should be an absolute 
boundary for observation times in the "high survival" group. Indeed, that is what can be observed 
for most cancer types in Supplementary Figure 6. However, for some cancer types (i.e. HNSC, 
KIRP, LUAD, LUSC, STAD, and UCEC) there are many patients in the "high surival" group which 
have been censored at substantially shorter observation times. I provide an example for LUAD, 
where the horizontal green bar at 0.25 on the y axis marks the fraction of 25% survival in the "low 
survival" group (somewhere between 3 and 4 years). However, almost all patients in the "high 
survival" group have been censored at shorted times (within the light blue area). In fact, there are 
only four patients for which observation time is sufficiently high - these are marked by crosses 
(censoring) on the black survival curve outside of the blue area. Given the poor prognosis for most 
lung adenocarcinoma patients, a substantial fraction of patients with short observation times who 



are currently designated "alive" may have died later and thus should be in fact in the "low 
survival" group. Consequently, any difference in gene expression for metabolic genes in these 
groups is likely not attributable to prognosis or survival. I would thus recommend that analysis for 
the cancer types mentioned is re-calculated using appropriate definition of groups, with the 
constraint that analysis should not be done if groups get too small (e.g., 4 high survivors versus 
about 100 low survivors does not make really sense).  
 
3. Even if the method is followed correctly, it will create biases. Let me take pancreatic 
adenocarcinoma as an example. This cancer type has an extremely bad prognosis, with 5-year 
survival rates way below 5%. I have re-calculated the survival curves according to the authors' 
definition (see attached figure). The samples on the red part of the survival curves are exluded 
("alive", but survival time below 75th percentile, which is 596.5 days). The samples on the green 
part of the curve are in the "high survival" group. But, from the blue curve it is obvious that many 
(if not virtually all) of the remaining patients will die between 600 and 1500 days, thus you'd 
expect that would also apply to the patients designated "alive" in the high survival group with 
observation time in this range. This again will significantly distort the analysis of differential gene 
expression as only 7 or so of the originally 38 patients in the "high survivor" group have really 
survived and thus had a significantly better prognosis than those in the "low survivor" group. This 
reasoning will not apply to all cancer types equally as it depends on the prior probability of 
surviving at a given time (here: at the threshold for the "high survival" group), or in other words 
on which level the KM estimate curve approximates at very long times (lower bound). To avoid 
these biases, I propose to add a different type of analysis. Gene expression values for the 
respective pathways should be used to discriminate patients for each cancer type into different 
groups (e.g., quartiles). Then, suvival fits can be performed for each of these groups, and the 
extreme quartiles can be compared by a log-rank test. This way, the biases that may be in the 
recording of follow-up can be somehow avoided, under the assumption that they distribute 
similarly in the different groups defined by metabolic pathway gene expression.  
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Reviewers (R): italic 

Authors (Au): plain text 

 

Reviewer #1:  
R: The paper is acceptable! 

 Au: Thank you for appreciating the revised version of the manuscript  
Reviewer #2:  
R: The authors have provided a satisfactory response to my previous comments. 

This work is an important contribution to our understanding of cancer metabolism 

that supports is publication in Nature Communications. 

 

Au: Thanks for appreciating the revised version of the manuscript and for 

emphasizing the relevance of our work. 

 
Reviewer #3: 
 
R: I appreciate that the authors have signifcantly improved the manuscript and 

addressed most of my points. The most important original finding of the authors 

compared to previous studies is the association of metabolic pathways, in particular 

primary energy metabolism in the mitochondria, with clinical aggressiveness, 

survival and metastatic phenotype. 

 

Au: We thank the reviewer for appreciating the improvements of the revised version 

of the manuscript and for highlighting the novelty of our work.  
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R: I still have some concerns with respect to the analysis that the authors carried out. 

I could not directly confirm the correctness of the underlying gene expression values. 

Mean expression as well as log2-fold change and log2-standard deviation are given 

in Supplementary Table 2. I was struck by the unexpectedly high mean counts for 

most genes (many above 1000), which follow an unusal distribution. The authors state 

in the manuscript that they used RSEM abundance estimates as provided by TCGA. I 

used the cbio portal (http://cbioportal.org), which hosts the very same values from the 

very same sets. In the attachment, I provide three examplary plots generated from this 

portal. These are co-expression plots, but the only relevant dimension here is on the 

x-axis, which has RNA RSEM expression values for the very same set, PCPG 

(pheochromocytoma and paraganglioma). As can be seen for A4GALT, the values on 

the cbio portal range from 0 to about 1800, with an approximate mean expresssion of 

200. The authors report 3116.05 as "baseMean" in their supplementary table. For 

A4GNT, the values range from 0 to 7, with an approximate mean somewhere below 1. 

The authors, on the contrary, report 1219.8 as "baseMean". For ABCB11, the values 

on the cbio portal range from 0 to 6 (mean below 1) while the authors report 116.4. 

Neither the absolute values nor their relation are anywhere close to the values from 

cbio. 

 

A: We thank the reviewer for thoroughly checking our analytical pipeline. We wish to 

clarify that the values used for gene expression analysis are mRNA Read Counts and 

not RSEM values, as wrongly indicated in the method section. We apologize for the 

confusion generated by this error, which has been now corrected (line 328). 

Furthermore, we would like to point out that the presented data have been processed 

using the R package DEseq2 (as described in methods). This step is crucial for the 

reproduction of our analyses.  

 

R: The authors seem to not always follow their own method to define "high surival" 

and "low survival" groups. Briefly, they take the 75th percentile of the surival times 

for the patients with status "dead" and declare patients with status "alive" as 

members of the "high survival" group if their survival time is greater than this 

percentile. That means that, for patients in the "low survival" group, the time where 

the KM estimate curve crosses 0.25 should be an absolute boundary for observation 
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times in the "high survival" group. Indeed, that is what can be observed for most 

cancer types in Supplementary Figure 6. However, for some cancer types (i.e. HNSC, 

KIRP, LUAD, LUSC, STAD, and UCEC) there are many patients in the "high surival" 

group which have been censored at substantially shorter observation times. I provide 

an example for LUAD, where the horizontal green bar at 0.25 on the y axis marks the 

fraction of 25% survival in the "low survival" group (somewhere between 3 and 4 

years). However, almost all patients in the "high survival" group have been censored 

at shorted times (within the light blue area). In fact, there are only four patients for 

which observation time is sufficiently high - these are marked by crosses (censoring) 

on the black survival curve outside of the blue area. Given the poor prognosis for 

most lung adenocarcinoma patients, a substantial fraction of patients with short 

observation times who are currently designated "alive" may have died later and thus 

should be in fact in the "low survival" group. Consequently, any difference in gene 

expression for metabolic genes in these groups is likely not attributable to prognosis 

or survival. I would thus recommend that analysis for the cancer types mentioned is 

re-calculated using appropriate definition of groups, with the constraint that analysis 

should not be done if groups get too small (e.g., 4 high survivors versus about 100 

low survivors does not make really sense). 

 

Even if the method is followed correctly, it will create biases. Let me take pancreatic 

adenocarcinoma as an example. This cancer type has an extremely bad prognosis, 

with 5-year survival rates way below 5%. I have re-calculated the survival curves 

according to the authors' definition (see attached figure). The samples on the red part 

of the survival curves are exluded ("alive", but survival time below 75th percentile, 

which is 596.5 days). The samples on the green part of the curve are in the "high 

survival" group. But, from the blue curve it is obvious that many (if not virtually all) 

of the remaining patients will die between 600 and 1500 days, thus you'd expect that 

would also apply to the patients designated "alive" in the high survival group with 

observation time in this range. This again will significantly distort the analysis of 

differential gene expression as only 7 or so of the originally 38 patients in the "high 

survivor" group have really survived and thus had a significantly better prognosis 

than those in the "low survivor" group. This reasoning will not apply to all cancer 

types equally as it depends on the prior probability of surviving at a given time (here: 

at the threshold for the "high survival" group), or in other words on which level the 
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KM estimate curve approximates at very long times (lower bound). To avoid these 

biases, I propose to add a different type of analysis. Gene expression values for the 

respective pathways should be used to discriminate patients for each cancer type into 

different groups (e.g., quartiles). Then, suvival fits can be performed for each of these 

groups, and the extreme quartiles can be compared by a log-rank test. This way, the 

biases that may be in the recording of follow-up can be somehow avoided, under the 

assumption that they distribute similarly in the different groups defined by metabolic 

pathway gene expression. 

 

A: We thank the reviewer for highlighting potential bias generated by the definition of 

High and Low Survival groups. Since this is an critical aspect of our work, we have 

comprehensively revised our analyses taking into account referee’s suggestions. We 

first performed the analysis suggested by the reviewer by subdividing patients into 

quartiles of mean pathway expression for each cancer type. We then estimated the 

effect of pathway expression on overall patient survival. With this analysis we found 

that whilst some metabolic pathways were linked to patient survival, the associations 

were very weak and not widespread across different cancer types. We hypothesize 

that lack of strong correlations is due to the fact that mean pathway expression is not a 

strong predictor of metabolic signature, as also pointed out by this referee in a 

previous comment. To overcome this issues and strengthen our analyses, we re-

designed the definition of High and Low survival groups and applied metabolic 

GSEA to these groups. For each cancer type we have included in the High Survival 

group patients that have been censored alive for longer than the 75th percentile of the 

total duration of the follow-up study. On the other hand, the Low Survival group 

included patients that have died within the 75th percentile of the total follow-up study 

duration (see Figure 1 for reviewer only for a graphical representation of this 

classification). New Supplementary Figure 6 has been updated to show survival 

curves for each cancer type based on this improved classification. 
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Figure 1. Classification of High and Low survival patients used in our 
study. Dashed line indicates the 75th percentile of the total study duration, and 
demarcate the separation between High and Low survival patients. Bladder 
Cancer is used here as a representative example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of note, this new method avoids overlap between High and Low survival groups and 

potential biases that could arise from short follow-up recordings, as pointed out by the 

referee. This new classification affected group size of High and Low survival patients 

for each cancer type, resulting in some groups being poorly represented. We followed 

the reviewer’s suggestion and excluded from gene expression analysis those cancer 

types where the High or Low survival group were smaller than 5 patients. Cancer 

types excluded were CHOL, PCPG, PRAD, READ, THCA. Importantly, OXPHOS 

was confirmed as the most down-regulated pathway in Low Survival patients 

compared to the High survival group, demonstrating the robustness of our findings 

even under more stringent conditions. Figure 3a and 3b have been amended to display 

new results, and Results (lines 166-173) and Methods (lines 376-395) sections have 

been updated with new findings and procedures, respectively. We have also included 

results of this new gene expression analysis, together with each group’s size, in 

Supplementary Table 9.    
  



Reviewer #3 (Remarks to the Author):  
 
I appreciate the additional work of the authors, which addresses all of my remaining points.  
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R: I appreciate the additional work of the authors, which addresses all of my 

remaining points. 

 Au: Thank you for appreciating the revised version of the manuscript 
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