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Supplementary Figure 1. Admixture plot of 642 CAAPA samples. This is the admixture 
estimation results, which also included non-admixted populations from phase 1 of 1000 
Genomes Project and the Native Americans from Bigham et al. 2010 as mentioned in 
the main text in the section titled “Estimation of Ancestry Proportions.” The proportion of 
African ancestry (red) was used as a key correlate to the variation we found for different 
categories.  
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Supplementary Table 1. Correlation of ancestry with number of PAVs per individual 
identified separately from each of the two databases with and without filtering. Full 
filtering implies the allele frequency filter and either a deleterious filter or Stop/Splice 
site. Correlation values are shown for PAVs found in only ClinVar, only HGMD, and 
either one. For each of these categories, correlation values are presented before 
filtering, after filtering out variants with a MAF > 0.05 in any of a number of populations, 
after filtering variants called deleterious by at least two in silico predictors, including stop 
or splice sites, and after all of these filters. Regardless of database origin, each time a 
filter is added, the positive correlation is reduced. With both filters added, PAVs from 
ClinVar show a significant negative correlation, while PAVs from HGMD or the union of 
ClinVar and HGMD show no correlation. 

Databases No Filtering Deleterious 
filter 

AF ≤ 0.05 
filter 

Stop/Splice 
sites 

Full filter 

ClinVar r=0.539 p=0.031 r=-0.644 
p=0.007 

r=-0.549 
p=0.028 

r=0.249 
p=0.352 

r=-0.612 
p=0.012 

HGMD r=0.992 
p=6.12x10-14 

r=0.889 
p=3.99x10-6 

r=0.703 
p=0.002 

r=-0.183 
p=0.498 

r=0.344 
p=0.192 

HGMD and 
ClinVar 

r=0.989 
p=4.82x10-13 

r=0.554 
p=0.026 

r=0.551 
p=0.027 

r=0.094 
p= 0.730 

r=0.094 
p=0.729 
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Supplementary Table 2. Genes significantly correlated with African Ancestry. Genes 
whose pathogenic annotated variants (PAVs) were significantly correlated with African 
Ancestry are listed. No genes had statistically significant positive correlation with African 
Ancestry. In other words, these correlations were negative and so individuals with 
greater African ancestry had fewer pathogenic variants in these genes. Significance 
was calculated after correcting for multiple testing (Bonferonni correction): Two 
asterisks (**) signify family-wide significance at the 0.05 level before removing genes 
with a minimum number of total pathogenic variants summed across all individuals, and 
a single asterisk (*) signifies similar significance after removal of such genes 
(representing increased power via removing weak signal genes and reducing number of 
statistical tests). 
 

Gene Symbol r P-Value 

AXIN1 -0.778 5.44e-05* 

CHD1L -0.783 4.40e-05* 

POMGNT1 -0.794 2.87e-05* 

ORC4 -0.799 2.41e-05* 

PKP2 -0.822 8.49e-06* 

NAT1 -0.836 4.42e-06* 

INO80 -0.842 3.18e-06* 

BMPR2 -0.855 1.57e-06** 

TMEM67 -0.880 3.06e-07** 

SPTA1 -0.915 1.66e-08** 
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Supplementary Table 3. 68 Variants driving ClinVar correlation change. Annotation 
information and and associated diseases for the 68 Variants that drive the correlation 
between PAVs in ClinVar and African Ancestry to switch from positive to negative 
between March and April 2014. 
 

Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

1 11106666 RCV000005520.1 MASP2_deficiency 

1 21546501 RCV000009704.3 Hirschsprung_disease,cardiac
_defects,and_autonomic_dysf
unction 

1 45797228 RCV000005614.6|RC
V000005615.2|RCV00
0079501.3|RCV00011
5748.4|RCV00012159
8.1|RCV000144637.1 

MYH-
associated_polyposis|Endome
trial_carcinoma|not_provided|
Hereditary_cancer-
predisposing_syndrome|not_s
pecified|Carcinoma_of_colon 

1 45799121 RCV000119223.3|RC
V000126890.3,RCV00
0005617.3|RCV00016
3049.1 

MYH-
associated_polyposis|Heredita
ry_cancer-
predisposing_syndrome,MYH-
associated_polyposis|Heredita
ry_cancer-
predisposing_syndrome 

1 63872032 RCV000023375.1|RC
V000081558.5 

Congenital_disorder_of_glyco
sylation_type_1C|not_specifie
d 

1 94473287 RCV000008346.1|RC
V000085773.3 

Stargardt's_disease|not_provi
ded 

1 94505604 RCV000008361.1|RC
V000085583.1 

Cone-
rod_dystrophy_3|not_provided 

1 115231254 RCV000077975.2 not_provided 

1 172627498 NA-
not_in_'Current'_Clinv
ar_Version 

NA-
not_in_'Current'_Clinvar_Versi
on 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

1 182555149 RCV000013878.23 Prostate_cancer,hereditary,1 

2 10188123 RCV000006872.1 Maturity-
onset_diabetes_of_the_young,
type_7 

2 63131731 RCV000001429.1 Prostate_cancer,hereditary,12 

2 136608646 RCV000008124.1 Lactase_persistence 

2 167129256 RCV000023304.1|RC
V000080039.5 

Small_fiber_neuropathy|not_s
pecified 

2 167133540 RCV000023304.1|RC
V000080038.5 

Small_fiber_neuropathy|not_s
pecified 

2 190925077 RCV000055914.1 Muscle_hypertrophy 

3 12393125 RCV000118044.2 not_specified 

3 165547569 RCV000014116.23|R
CV000014117.16|RCV
000014118.23|RCV00
0014119.23 

Bche,fluoride_2|BCHE,FLUOR
IDE-
RESISTANT_II|CHE*390V|BC
HE*390V 

3 165548529 RCV000014102.23|R
CV000014103.16 

Postanesthetic_apnea|BCHE,
dibucaine-resistant_i 

4 5755524 RCV000005670.2 Chondroectodermal_dysplasia 

4 187158034 RCV000012817.23 Prekallikrein_deficiency 

5 35072712 RCV000074480.10 Multiple_fibroadenomas_of_th
e_breast 

5 110454719 RCV000001647.3 Glaucoma_1,open_angle,G 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

5 172662014 RCV000009572.2|RC
V000009573.2|RCV00
0023017.2|RCV00002
3018.4|RCV00002301
9.2|RCV000030339.1|
RCV000037968.2|RC
V000146755.1 

Tetralogy_of_Fallot|Hypothyroi
dism,congenital,nongoitrous,5|
Interrupted_aortic_arch|Trunc
us_arteriosus|Hypoplastic_left
_heart_syndrome_2|Congenit
al_heart_disease|not_specifie
d|Malformation_of_the_heart_
and_great_vessels 

6 18139228 RCV000013559.22|R
CV000013561.16 

Thiopurine_methyltransferase
_deficiency|Thiopurine_methyl
transferase_deficiency 

6 29080004 RCV000033138.1 C3hex,ability_to_smell 

6 29080344 RCV000033139.1 C3hex,ability_to_smell 

6 31910938 RCV000012914.3 Age-
related_macular_degeneration
_14 

6 32007887 RCV000055820.1,RC
V000012934.2|RCV00
0012935.1|RCV00001
2936.1 

21-hydroxylase_deficiency,21-
hydroxylase_deficiency|Adeno
ma,cortisol-
producing|Carcinoma,adrenoc
ortical,androgen-secreting 

6 32008198 RCV000012951.2 21-hydroxylase_deficiency 

7 99382096 RCV000018417.2|RC
V000018418.23 

CYP3A4_PROMOTER_POLY
MORPHISM|Cyp3a4-v 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

7 122635173 RCV000005659.1|RC
V000005660.1 

Beta-
glycopyranoside_tasting|Alcoh
ol_dependence,susceptibility_t
o 

7 142640113 RCV000024078.1 KEL6_ANTIGEN 

7 150878511 RCV000043658.2 Glaucoma_1,open_angle,F 

7 157160110 RCV000024241.1,RC
V000024240.1 

Limb-
girdle_muscular_dystrophy,typ
e_1E,Limb-
girdle_muscular_dystrophy,typ
e_1E 

9 6589230 RCV000012765.16 Non-ketotic_hyperglycinemia 

9 135781205 RCV000005405.1|RC
V000042078.2|RCV00
0118691.2|RCV00012
5629.1|RCV00016326
5.1 

Tuberous_sclerosis_1|Tubero
us_sclerosis_syndrome|not_s
pecified|not_provided|Heredita
ry_cancer-
predisposing_syndrome 

10 51549496 RCV000015312.24 Prostate_cancer,hereditary,13 

10 54531226 RCV000015425.20 Mannose-
binding_protein_deficiency 

10 135348544 RCV000018384.26 CYP2E1*6_ALLELE 

11 27680107 RCV000019266.26 Congenital_central_hypoventil
ation 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

11 46761055 RCV000014237.17|R
CV000014238.1|RCV0
00022729.1 

Thrombophilia|Ischemic_strok
e,susceptibility_to|Pregnancy_
loss,recurrent,susceptibility_to,
2 

11 69462910 RCV000014762.3|RC
V000083293.3|RCV00
0087019.3 

Colorectal_cancer,susceptibilit
y_to|Multiple_myeloma,translo
cation_11\x2c14_type|VON_H
IPPEL-
LINDAU_SYNDROME,MODIF
IER_OF 

12 6925407 RCV000022781.22 Okt4_epitope_deficiency 

12 121416650 RCV000016074.1|RC
V000016075.25|RCV0
00117233.3|RCV0001
25370.1 

Insulin_resistance,susceptibilit
y_to|Serum_hdl_cholesterol_l
evel,modifier_of|not_specified|
not_provided 

14 75514138 RCV000005900.1|RC
V000005901.1 

Endometrial_carcinoma|Hered
itary_nonpolyposis_colorectal_
cancer_type_7 

14 94847415 RCV000019555.1|RC
V000019556.26,RCV0
00019553.1|RCV0000
19554.26|RCV000151
834.1 

PI_M1-
ALA213|PI,M1V,PI_M1-
ALA213|PI,M1A|not_specified 

15 28230318 RCV000001014.2 Skin/hair/eye_pigmentation,va
riation_in,1 

15 28365618 RCV000005011.2 Skin/hair/eye_pigmentation,va
riation_in,1 

16 3293403 RCV000083740.1 Familial_Mediterranean_fever 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

16 16251599 RCV000006948.1|RC
V000132640.1 

Pseudoxanthoma_elasticum|n
ot_provided 

16 48258198 RCV000003737.3|RC
V000003738.2|RCV00
0003739.2 

Apocrine_gland_secretion,vari
ation_in|Axillary_odor|Colostru
m_secretion 

17 3550800 RCV000004700.2 Cystinosis,atypical_nephropat
hic 

17 8790433 RCV000041972.2 Ataxia-oculomotor_apraxia_3 

17 12899902 RCV000005359.1 Prostate_cancer,hereditary,2 

17 16852187 RCV000005623.1|RC
V000005624.1 

Common_variable_immunodef
iciency_2|Immunoglobulin_A_
deficiency_2 

19 7125518 RCV000015822.26|R
CV000117280.1 

Diabetes_mellitus_type_2|Pin
eal_hyperplasia_AND_diabete
s_mellitus_syndrome 

19 41858921 RCV000013360.25|R
CV000013361.2|RCV0
00032141.1 

Cystic_fibrosis|Breast_cancer,i
nvasive,susceptibility_to|Diaph
yseal_dysplasia 

19 51323676 RCV000015766.25 Kallikrein,decreased_urinary_
activity_of 

20 3193893 RCV000015868.24 Inosine_triphosphatase_defici
ency 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

21 44483184 RCV000000141.3|RC
V000000142.3|RCV00
0078111.3 

Homocystinuria,pyridoxine-
responsive|HYPERHOMOCY
STEINEMIA,THROMBOTIC,C
BS-RELATED|not_provided 

22 42524947 RCV000018385.22 Debrisoquine,poor_metabolis
m_of 

22 42526694 RCV000018389.22 Debrisoquine,poor_metabolis
m_of 

X 8536293 RCV000010696.1 Kallmann_syndrome_1 

X 31496398 RCV000012020.16|R
CV000080812.3|RCV0
00124711.1 

Becker_muscular_dystrophy|n
ot_specified|not_provided 

X 31496426 RCV000012019.16|R
CV000080811.3|RCV0
00124710.1 

Duchenne_muscular_dystroph
y|not_specified|not_provided 

X 153763492 RCV000011073.3|RC
V000011075.6|RCV00
0011076.4|RCV00001
1077.4|RCV00001107
8.4|RCV000011079.4|
RCV000011109.1|RC
V000079405.3 

G6PD_A+|Glucose_6_phosph
ate_dehydrogenase_deficienc
y|G6PD_BETICA|G6PD_CAS
TILLA|G6PD_DISTRITO_FED
ERAL|G6PD_TEPIC|G6PD_S
ANTAMARIA|not_provided 
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Chromosome Position ClinVar Accession ID CLNDBN: Variant Disease 
Name Field 

X 153764217 RCV000011075.6|RC
V000011076.4|RCV00
0011077.4|RCV00001
1078.4|RCV00001107
9.4|RCV000011157.2|
RCV000079404.3 

Glucose_6_phosphate_dehydr
ogenase_deficiency|G6PD_B
ETICA|G6PD_CASTILLA|G6P
D_DISTRITO_FEDERAL|G6P
D_TEPIC|G6PD_ASAHI|Anem
ia,nonspherocytic_hemolytic,d
ue_to_G6PD_deficiency 

 
 
  



12 

Supplementary Table 4. Thresholds for calling deleterious variants with in silico 
predictors. In silico prediction thresholds that were used in applying the deleteriousness 
filter are shown. A variant had to be in the top ten percent of possible deleteriousness 
scores for a predictor in order to be considered deleterious by that prediction method. 
Two different prediction methods, out of eleven, were required to pass the 
deleteriousness filter.  
 

in silico predictor from 
ANNOVAR 

Threshold (10th 
percentile) 

LR score7 
≥0.695 

RadialSVM score7 
≥0.425 

MutationAssessor score8 
≥3.085 

phyloP 46way placental9 
≥2.648 

SiPhy 29way logOdds10 
≥18.213 

Polyphen2 HVAR score11 ≥0.999 

GERP++ RS12 ≥5.73 

CADD Phred Score2 ≥20 

LRT score13 "="0 

SIFT score14 “=“0 

FATHMM score15 ≤-2.45 
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Supplementary Table 5. Classifier profile for deleterious PAVs and deleterious NAVs. 
For each of 11 in silico prediction methods, counts are shown for the total number of 
deleterious PAVs and deleterious NAVs called deleterious by that predictor. The 
percentage of total deleterious calls for PAVs and NAVs made up by each predictor is 
also shown. The column labeled “Percentile Difference” shows the difference between 
deleterious PAVs and deleterious NAVs as a percentage of total deleteriousness hits 
made by each predictor. The larger the percentage of difference, the larger the 
percentage of total deleteriousness hits that was called by that predictor in PAVs 
compared to NAVs. Conversely, the smaller the percentage of difference, the larger the 
percentage of total deleteriousness hits that was called by that predictor in NAVs 
compared to PAVs. Percent differences ≤ -1% are seen in conservation dominant 
algorithms, signifying that conservation algorithms make up a higher percentage of 
deleterious calls amongst NAVs. Percentage differences ≥1% are seen in machine 
learning dominant algorithms, representing that machine learning algorithms make up a 
higher percentage of deleterious calls amongst PAVs. These differences may explain 
why the application of the deleterious prediction filter seems to reduce the positive 
correlation in PAVs by a much greater amount than in NAVs. 
 

Predictor Del 
PAV 
Count 

Del 
PAV % 

Del 
NAV 
Count 

Del 
NAV % 

% 
Difference 

Train with  
Clinical 
Data 

FATHMM15 3442 0.1306 3682 0.0762 0.0543 yes 

SIFT14 2278 0.0864 5947 0.1232 -0.0367 no 

LRT13 5229 0.1984 11268 0.2333 -0.0350 no 

LR7 2665 0.1011 3356 0.0695 0.0316 yes 

SiPhy 29way 
logOdds10 1492 0.0566 3452 0.0715 -0.0149 no 

CADD2 3308 0.1255 6847 0.1418 -0.0163 no 

phyloP 46way 
placental9 1467 0.0556 3178 0.0658 -0.0102 no 

GERP++ RS12 1138 0.0432 2088 0.0432 -7.15E-05 no 

Polyphen2 HVAR11 1510 0.0573 3060 0.0634 -0.0061 yes 

RadialSVM7 2508 0.0951 2865 0.0593 0.0358 yes 

MutationAssessor8 1325 0.0503 2546 0.0527 -0.0025 no 
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Supplementary Table 6. Cost survey of custom single variant clinical validation. Cost 
and information pertaining to single variant validation options at different institutions are 
shown. As can be seen, dollar amounts are between $240-$920 per variant 
 

Lab Test Price Website 

Medical College of 
Wisconsin- 
Developmental and 
Neurogenetics 
Sequencing 
Laboratory 

Custom Clinical 
Sanger 
Sequencing 

$275.00 http://www.hmgc.mcw.edu/clinical/t
ests/CCS.htm 

Cincinnati 
Children's Hospital 
Medical Center, 
Molecular Genetics 
Laboratory 

Custom Gene 
Sequencing 

$684.89 http://www.cincinnatichildrens.org/
molecular-genetics/ 

Emory University 
School of Medicine, 
Emory Molecular 
Genetics 
Laboratory 

Familial 
Mutation 
Testing: 
Targeted 
Sequencing 

$350.00 http://www.geneticslab.emory.edu/ 

Baylor College of 
Medicine, Medical 
Genetics 
Laboratories 

Custom 
Proband 
Sequence 
Analysis (1 amp) 

$550 
(insuranc
e), $920 
(private 
payment) 

http://www.bcm.edu/geneticlabs/ 

UCLA 
Custom 
Proband 
Sequencing 

$240.00 http://www.ncbi.nlm.nih.gov/pubme
d/24406459 

University of 
Chicago Genetic 
Services Lab 

Custom 
mutation 
analysis of 
Proband 

$540.00 
http://dnatesting.uchicago.edu/sites
/default/files/01CustomMutAnalysis
_5.pdf 

University of 
Chicago Genetic 
Services Lab 

Custom 
mutation 
analysis of 
additional family 
members 

$390.00 
http://dnatesting.uchicago.edu/sites
/default/files/01CustomMutAnalysis
_5.pdf 

http://www.hmgc.mcw.edu/clinical/tests/ccs.htm
http://www.hmgc.mcw.edu/clinical/tests/ccs.htm
http://www.cincinnatichildrens.org/molecular-genetics/
http://www.cincinnatichildrens.org/molecular-genetics/
http://www.bcm.edu/geneticlabs/
http://www.ncbi.nlm.nih.gov/pubmed/24406459
http://www.ncbi.nlm.nih.gov/pubmed/24406459


15 

 
Supplementary Note 1 

 In order to explore the change over time in correlation of ancestry with PAVs 

from ClinVar1, we analyze the list of variants that differed between March and April 

2014, which represented the months with the largest correlation difference.  For each of 

these variants, we filter on allele frequencies, protein function, in silico predictions of 

deleteriousness, and then calculate the correlation between African ancestry and the 

total number of ClinVar1 PAVs at this site in all individuals. This correlation is weighted 

as described in the main text, and is calculated in the same way as the overall 

correlations with ancestry for each ClinVar1 data release time point. Starting with the 

complete ClinVar1 variant data from April 2014, we selectively include and exclude any 

of these variants that differ between March and April 2014 depending on their 

correlation coefficients and significance. Variants from the March release that are 

missing from the April release and had significant positive or negative correlations (p <= 

0.05), are added to the April variant data, while variants from the April release that are 

not in the March release and had significant positive or negative correlations (p <= 0.05) 

are subtracted from the April variant data.  

After adding or subtracting, we identify a total of 68 variants (see Supplementary 

Table 4) that largely recapitulate the correlation differences. These 68 SNVs come from 

every chromosome, and do not have a particularly different distribution of database 

origin or disease association. When selectively considering these 68 SNVs, we are able 

to recapitulate 94.65% of March’s correlation (r=0.733), thus altering April’s correlation 

coefficient (r) from -0.683 to 0.658. Since April 2014, there has been a steady increase 
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in the number of overall pathogenic variants in the ClinVar1 database (Figure 2, black 

line), and with it, a rebound in the correlation of ancestry with total number of PAVs from 

ClinVar1 per individual. Interestingly, the general reintroduction into ClinVar1 of these 68 

SNVs corresponds to when the correlation rebounded in the July 2, 2014 version and all 

subsequent versions. Since the biases for African Americans, and likely non-Europeans 

in general, clearly change as this database evolves, and this effects interpretation of 

variation, it is important for the medical genetics and precision medicine communities to 

regularly evaluate how to best use ClinVar1, particularly for minority patients. 

 

Supplementary Discussion 

Asthma Focus In The CAAPA Dataset  

 The CAAPA cohort consists of samples collected for investigation into the 

genetics of asthma. To verify our assumption that the ascertainment of individuals with 

asthma should not effect our results or enrich for pathogenic, deleterious, and/or truly 

causal variants, we used our per gene analysis framework to demonstrate that genes 

implicated in asthma have no meaningful effect on our results and conclusions. After 

calculating ancestry-based bias in each gene, we looked at the subset of genes with the 

most bias, including genes with both meaningfully positive and negative correlations 

between African-ancestry and pathogenic variant counts per gene. Using subsets of the 

most bias genes (even before multiple testing correction), we found no evidence at all 

for enrichment of any disease networks or pathways, as annotated by the gene ontology 

consortium database (GO), as well as by curated Mendelian, recessive, dominant, and 

X-linked genes. Furthermore, we found no evidence in highly biased genes for 
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enrichment of GWAS catalogue genes, which should contain any genes that were the 

most significant hits in any GWAS, including those looking at associations with asthma. 

Finally, the most significantly biased genes after multiple testing (~10) have not been 

implicated in asthma. 

 

Ancestry specific genomic data and databases 

 One might ask what the increasing numbers of whole African-ancestry genomes 

being deposited into public resources (through NHBLI and NHGRI etc) may do to the 

biases we report here, and whether such action might cause these biases to disappear. 

While such increased sequencing of whole African-ancestry genomes is surely a step in 

the right direction, one serious limitation to the disappearing of the biases we report is 

that most of the current and upcoming African-ancestry genome sequencing is not 

being done on cohorts that have the necessary and robust phenotype data that 

comparable studies of predominantly European-ancestry individuals use to populate 

databases such as ClinVar (i.e. in annotating variants as pathogenic etc). Instead, these 

African-centric studies are more focused on the complex disease genetics that underlie 

medical illnesses in foundational areas such as cardiology, pulmonology, and 

psychiatry. In addition, even if this phenotype data did exist, we still believe it would take 

significant time for the amount of African data in the databases to “catch up” to the 

dominant amount of European data currently populating these databases. Finally, if the 

databases were to theoretically become predominantly and disproportionately populated 

with data specific to African populations, our results suggest that other ancestry related 

biases might develop for non-African ancestry populations. Therefore, the genetics 
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community must be aware of the importance of accounting for population specificities, 

particularly when using databases to prioritize variants in the context of precision 

genomic medicine. 

 
Supplementary Methods  

Per gene analysis 

 To explore the correlation between PAVs in ClinVar1 and African ancestry further, 

we conduct a similar correlation analysis on a per gene basis. By counting up the total 

number of PAVs in each gene for each person, we run a weighted correlation analysis 

as described above on each of 24,043 human genes as annotated in UCSC’s hg19 

RefGene list. After multiple testing correction, only 3 genes have significant correlations 

(Supplementary Table 2). Since many of the genes had very small total numbers of 

PAVs, even across all individuals, we rerun the correlation analysis after excluding all 

genes with less than 5 total PAVs across all individuals. This leaves a total of 645 

genes, and by cutting away the multitude of underpowered genes with low counts, we 

identify 10 genes with significant correlations after multiple testing correction 

(Supplementary Table 2). For both analyses, follow-up is qualitatively the same, and so 

we describe in the main text approaches and results for the larger full gene analysis. 

The fact that our filtering of low count genes does little to quantitatively change our 

follow-up analysis, even after the removal of over 97% of genes, provides support that 

raising the minimum number of PAVs per gene further would do little to increase our 

power or improve our analysis. 

 

Gene enrichment analyses 
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 After calculating correlation value per gene, we make a list of 74 genes that have a 

significant positive association before multiple testing correction and another list of 198 genes 

that have a significant negative correlation before multiple testing correction. Using additional 

gene lists compiled from OMIM3, ClinVar1, and HGMD4, and the GWAS catalogue5, we 

find no significant enrichment for Mendelian, dominant, recessive, X-linked or GWAS 

catalogue genes amongst positive and negative correlation genes (Pearson's Chi-

squared test and Wilcoxon rank sum test). Our lists overlap and contain 2050 

mendelian genes, 670 dominant genes, 1050 recessive genes, 491 X-linked genes, and 

5045 GWAS catalogue genes. GWAS catalogue genes are defined as genes that 

contain at least one variant that was a top genome wide hit in a GWAS study of a 

complex trait.5 We also test whether Mendelian, dominant, recessive, X-linked or 

GWAS catalogue genes have different correlation values than genes outside of these 

categories, but results are non-significant in each of these cases. As we found no 

evidence of an enrichment of highly biased genes in any of the annotated mendelian, 

recessive, or dominant gene categories, as would be expected if a model based on 

dominance was particularly relevant to our results, we feel that the additive approach 

we have taken is best. Additionally, since our goal in assessing the variants present in 

each individual is to build up population level evidence, it is important to consider each 

allele independently in assessing the population wide evidence of the likelihood that a 

variant is casual. Using the GORILLA program6, we tested our significant positive and 

negative correlation gene lists for enrichment of GO terms, but results were 

unremarkable for all tests, especially at genome-wide significance levels.  
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