Supplementary information
Supplementary information

7

6

- 8 Supplementary Figure 1 | Characterization of the lysozyme fibrils by atomic force microscopy
- 9 (AFM) and scanning electron microscopy (SEM). (a) & (b) The height of lysozyme mature fibrils is
- 10 15 nm on average, measured by AFM. (c) A SEM image reveals that the average length of
- 11 lysozyme fibrils is around 600 nm.

Supplementary Figure 1

12

13 Supplementary Figure 2

15 Supplementary Figure 2 | Supporting evidences showing that almost complete accumulation of

16	0.05 wt% lysozyme fibrils at the interface of W/W emulsion droplets. (a) In a solution mixture
17	containing Nile Red-labelled fibrils and dextran-in-PEG emulsion droplets, a colorless PEG-rich
18	continuous phase is observed after the sedimentation of dextran-in-PEG emulsion droplets. The
19	concentrations of dextran in the dextran-rich bottom phases are 13.9%, 14.3% 15.0% for samples
20	F, G and H, respectively. b , A fluorescence microscope image confirms that dyed fibrils
21	accumulate at the droplet interface.

23	When the amount of fibrils is insufficient to cover the created interfacial area of W/W
24	emulsions, almost all the fibrils go to the interface and only a very little amount of fibrils go to
25	the bulk phases. Experimentally, fibrils with a low concentration of less than 0.08 wt% is labelled
26	with Nile red for direct imaging of the distribution of fibrils under natural light. After
27	homogenization, stable dextran-in-PEG droplets sink down to the bottom of the vial due to
28	gravity. Consequently, a colorless PEG-rich phase appears on the top (Supplementary Figure 2).
29	When a blue laser is used to excite Nile Red, a red color is emitted from the W/W interface,
30	suggesting the accumulation of fibrils at the interface of the emulsion droplets.

32 Supplementary Figure 3

33

34 Supplementary Figure 3 | Effect of interfacial tension on the stability of the fibril-coated 35 dextran-in-PEG emulsions. (a), Graphical representation of a single fibril adsorbed at the W/W 36 interface. (b), The wetting angle of a dextran-rich droplet at the interface between a fibril film 37 and a PEG-rich phase is about 142°. (c), Interfacial tension between two aqueous phases, $\gamma_{W/W}$, 38 increases as the equilibrium concentrations of the PEG-rich and dextran-rich phases increase (see 39 square dots in figure S5c). After the adsorption of fibrils, the interfacial tension slightly reduces 40 (round dots in figure S5c. (d), With decreasing interfacial tensions from sample E to A, the 41 sedimentary dextran-in-PEG emulsions become less stable. Correspondingly, more fibrils detach 42 from the droplet interface and migrate to the PEG-rich top phase, as indicated from the 43 fluorescence of ThT-bounded fibrils from sample E to B. For sample E, the dextran-rich emulsions 44 sink down at the bottom of the vial due to gravity, so the fluorescence signals are only observed at the bottom of the vial. For sample A, fibrils distribute evenly in the mixture since their 45

46 interaction with the W/W interface is weak compared to the thermal energy of a few *kT*.

47	As the interfacial tension $\gamma_{\!W/\!W}$ decreases, the desorption energy of fibrils from the W/W
48	interface decreases, resulting in the declining stability of dextran-in-PEG emulsions. In our
49	experiment, we reduced the interface tension by decreasing the concentration of dextran and
50	PEG in the emulsion mixture while keeping an equal volume of the dextran-rich phase and
51	PEG-rich phases. The dextran-in-PEG emulsions are found to destabilize faster as the interfacial
52	tension decreases; correspondingly, more desorbed fibrils leave the droplet interface and enter
53	the PEG-rich phase, as shown by the fluorescence of ThT-labeled fibrils from sample E to A in
54	figure S5d. For each sample, a schematic figure is drawn below to illustrate that the decreased
55	emulsion stability is due to the decreased adsorption of fibrils at the droplet interface.

56

58

57 Supplementary Figure 4

59 Supplementary Figure 4 | Desorbed lysozyme fibrils preferentially enter the PEG-rich phase 60 rather than the dextran-rich phase. When the amount of fibrils added is larger than that 61 required to cover the droplet interface, the remaining non-adsorbed fibrils preferentially enter 62 the PEG-rich phase. To visualize the lysozyme fibrils in this condition, we labelled the fibrils with 63 (a) ThT and (c) Nile red. Their partitioning to both the emulsion interfaces and the PEG-rich phase 64 can be confirmed by the fluorescence microscope images. In comparison, without addition of 65 fibrils, the dye of (b) ThT and (d) Nile red do not exhibit observable partitioning effects in either 66 the PEG-rich phase or the W/W interface.

67

68 Supplementary Figure 5

69

70

Supplementary Figure 5 | Seeded growth of the fibril layers at all-aqueous interfaces is quantitively studied by adding monomeric lysozyme at different concentrations. The total amount of fibrils at different time points is determined by measuring the intensity of fluorescence of ThT-labeled fibrils.

75

In our experiment, we first dissolve 2% dextran, 8% PEG and 0.05% fibrils in 200 mM HCl solution by vortex mixing, obtaining dextran-in-PEG emulsion stabilized by fibril monolayers. We then add lysozyme monomers (0 wt%- 2 wt%) into the emulsion mixture at different concentrations and incubate the mixture at 65 °C.

- 80
- **Supplementary Figure 6** 81
- Multilayered protein fibrils better stabilize w/w emulsions than monolayered fibrils 82
 - а monolayer $\gamma = \gamma th$ 50 um 30 days 0 day b multilayer $\gamma = \gamma th$ 50 0 day 30 days
- after 30 days of aging. 83

Supplementary Figure 6 | Optical microscope images of the w/w emulsions stabilized by 85 86 monolayered and multilayered fibrils. (a) While a monolayer of fibril fails to stabilize w/w 87 emulsion after 30 days, (b) the multilayered fibrils can stabilize the w/w droplets and maintain 88 the initial droplet sizes. The interfacial tension of the w/w emulsion is kept at the threshold 89 values for interfacial adsorption of single fibril, $\gamma = \gamma_{th}$. The compositions of the emulsion droplets 90 are denoted by point B in the phase diagram of figure 4f in the main text.

93 Supplementary Figure 7

Supplementary Figure 7 | Osmotic shrinkage of the fibrillosomes (a) Osmolarity of the dextran
solution as a function of the concentration of dextran. (b) An optical microscope images showing
the buckling morphology of the shrinking fibrillosomes in a hypertonic dextran solution (25 wt%,
181 mOsm/Kg).

99

100 A 15 wt% dextran (48mOsm/Kg) solution is first encapsulated inside the fibrillosomes by using 101 dextran-in-PEG emulsions as templates. To generate an osmotic pressure across the membrane 102 of fibrillosomes, we transferred the fibrillosomes into different dextran solutions with their 103 concentrations ranging from 4 wt% to 25 wt% (Reaching the solubility limit of dextran in water). 104 The corresponding osmolarity of the dextran external liquid changes from near zero to 105 181mOsm/Kg, as shown in the supplementary figure 7a. Due to the gradient in the concentration 106 of dextran across the wall of the fibrillosomes, an osmotic pressure appears at the very beginning. 107 The initial osmotic pressure can be calculated by using the osmolarity of the internal dextran 108 solution minus that of the external dextran solution. With a positive osmotic pressure, water is 109 sucked out of the fibrillosomes, leading to the shrinkage of fibrillosomes. On the contrary, the

fibrillosomes swell in a hypotonic dextran solution. Although dextran can slowly penetrate through the membrane of fibrillosomes, water diffuses across the membrane at a much faster speed, due to their much smaller sizes. Therefore, the osmotic effect still controls the swelling or shrinkage of fibrillosomes.

114

123

115 Supplementary Note 1

116 A calculation on the adsorption energy of lysozyme monomers to the w/w interface

117 We treat lysozyme monomers as sphere-shaped colloidal particles with the hydrodynamic 118 diameter of 5 nm³⁸. Ignoring the curvature of the W/W interface, the created area of W/W 119 interface can be expressed as $S_{w/w} = \pi r^2 \sin^2 \theta$, and the removed dextran/fibril contact area 120 $S_{dex} = 2\pi r^2 (1 - \cos \theta)$. The adsorption energy of lysozyme monomer at W/W interface 121 (desorption energy) can be calculated as¹¹

122 Supplementary Equation 1:

$$\Delta G_{mono} = \pi r^2 \gamma_{w/w} (1 - |\cos\theta|)^2 \le \pi r^2 \gamma_{w/w} = 3.14 \times (\frac{5nm}{2})^2 \times 10^{-5} N / m = 2 \times 10^{-23} J_{w/w} = 10^{-$$

124 Where *r* is the hydrodynamic radius of lysozyme monomer, and θ is the contact angle. The

125 maximum desorption energy is acquired when θ = 90°.

However, this adsorption energy is still much less than the kinetic energy driving thedetachment of lysozyme monomer from the w/w interface, which is estimated as

128 Supplementary Equation 2:

129
$$\Delta E_k = kT = 1.38 \times 10^{-23} J \bullet K^{-1} \times 300 K = 4 \times 10^{-21} J$$

130 This suggests the thermal kinetic energy dominates the motion of monomers, and the 131 monomers can freely enter and leave the interface with negligible energy compensation. The 132 situation is equally established for monomers at all contact angles ($0^{\circ} < \theta < 180^{\circ}$). According to

134	droplets or stabilize W/W emulsions.
135	
136	
137	
138	
150	
139	
140	
141	Supplementary Note 2
142	A calculation of the minimum thickness of fibril coating suggesting the stabilized W/W
143	emulsion droplets are coated by a monolayer of fibrils. When the concentrations of fibrils are
144	kept at 0.025 wt%, 0.05 wt% and 0.075 wt%, the stabilized interfacial areas are approximately
145	0.02 m^2 , 0.04 m^2 and 0.06 m^2 , respectively (Fig. 2e in the main text). From the slope of the curve,
146	1 gram fibrils can stabilize an interfacial area of 0.02 $m^2/0.025\% = 80 m^2$. Assuming the uniform
147	distribution of fibrils at W/W interface, the weight of fibrils covering an interfacial area of 1 m^2 is
148	1/80 = 0.0125 g.
149	We suppose that the W/W emulsions are stabilized by fibril layers with a coverage ratio of $\mathcal{C}_{f_{\mathcal{P}}}$
150	then the weight of fibril layers coated on 1 m ² of the W/W interface, W_{fib} , can also be expressed
151	as,
152	Supplementary Equation 3 : $W_{fib} = \rho_{fib}V = \rho_{fib}$ (1 m ² × C_{fib} × d) = 0.0125 g,
153	where $ ho_{fib}$ and V are the density and volume of the fibril layers; d is the height of fibril layers
154	packed at the W/W interface. Density of fibril layers, $ ho_{fib}$ is estimated as 1.03 ± 0.02 g/cm ³ . When
155	a mixture solution of dextran, PEG, and fibrils is centrifuged at a high rotation rate (6500 rpm), a

our theory, stabilizer of this kind can not form an effective barrier to prevent the direct contact of

156	fibril-rich phase is formed between the PEG-rich top phase and the dextran-rich bottom phase,
157	suggesting the density of fibril-rich phase is between the dextran-rich (ρ_{dex} = 1.057 g/cm ³) and the
158	PEG-rich phase (ρ_{PEG} = 1.01 g/cm ³). The coverage ratio of fibrils, C_{fib} , is approximately 60-70 %,
159	which can be measured roughly from SEM images (Fig. 2f). Therefore, thickness of the fibril layers
160	at the W/W interface, T_{fib} can be predicted as:
161	Supplementary Equation 4: $T_{fib} = W_{fib} / [\rho_{fib} (1 \text{ m}^2 \times C_{fib})] = 0.0125 / (1.03 \times 10^6 \times 0.7) = 1.7 \times 10^{-8} \text{ m}$
162	The resultant thickness of fibril layer (17 nm) is approximately equal to the fibril width (15
163	nm), suggesting that stabilization of W/W emulsions require a monolayer of fibrils to cover the
164	interface. This prediction is also confirmed from the SEM observation (Fig. 2d).
165	
166	Supplementary Note 3
167	A model for calculating the adsorption energy of single fibril at the W/W interface
167 168	A model for calculating the adsorption energy of single fibril at the W/W interface
167 168 169	A model for calculating the adsorption energy of single fibril at the W/W interface
167 168 169 170	A model for calculating the adsorption energy of single fibril at the W/W interface
167 168 169 170 171	A model for calculating the adsorption energy of single fibril at the W/W interface
167 168 169 170 171 172	A model for calculating the adsorption energy of single fibril at the W/W interface When a single piece of fibril leaves the W/W interface and enters the PEG-rich continuous
167 168 169 170 171 172 173	A model for calculating the adsorption energy of single fibril at the W/W interface When a single piece of fibril leaves the W/W interface and enters the PEG-rich continuous phase, the adsorption/desorption energy can be estimated from the change in the total
167 168 169 170 171 172 173 174	A model for calculating the adsorption energy of single fibril at the W/W interface When a single piece of fibril leaves the W/W interface and enters the PEG-rich continuous phase, the adsorption/desorption energy can be estimated from the change in the total interfacial energy, as illustrated in the Supplementary Figure 3a. By accounting for the eliminated
167 168 169 170 171 172 173 174 175	A model for calculating the adsorption energy of single fibril at the W/W interface When a single piece of fibril leaves the W/W interface and enters the PEG-rich continuous phase, the adsorption/desorption energy can be estimated from the change in the total interfacial energy, as illustrated in the Supplementary Figure 3a. By accounting for the eliminated area of W/W interface (S _{W/W}) and the created PEG/fibril contact area (S _{PEG/fib}), the free energy
167 168 169 170 171 172 173 174 175 176	A model for calculating the adsorption energy of single fibril at the W/W interface When a single piece of fibril leaves the W/W interface and enters the PEG-rich continuous phase, the adsorption/desorption energy can be estimated from the change in the total interfacial energy, as illustrated in the Supplementary Figure 3a. By accounting for the eliminated area of W/W interface (S _{W/W}) and the created PEG/fibril contact area (S _{PEG/fib}), the free energy change can be expressed as

177 Supplementary Equation 5: $\Delta G_{fibril} = \gamma_{w/w} S_{w/w} + S_{dex} (\gamma_{PEG/fib} - \gamma_{dex/fib})$

178	Ignoring the curvature of the W/W interface for simplicity, these areas are expressed as $S_{W/W}$
179	= 2 <i>RL</i> sin α and S_{dex} = 2 α <i>RL</i> , where 2 <i>R</i> (15 nm) is the cross-sectional diameter of fibrils, <i>L</i> (600 nm,
180	Supplementary Figure 1) is the average length of fibrils and 2 $lpha$ is the angle subtended by the two
181	three-phase contact lines. The fibril contact angle, $ heta$, is the supplementary angle of $lpha$ in the
182	Supplementary Figure 3a, $\theta + \alpha = \pi$. Since the contact angle cannot be easily measured directly,
183	due to the small sizes of fibrils, we deposited a film of lysozyme fibrils on a solid substrate and
184	measured the wetting angle of a dextran-rich droplet at the PEG/fibrils interface. The measured
185	wetting angle is $142^\circ\pm7^\circ$ (see supplementary Figure 3b). This contact angle remains almost
186	constant as the equilibrium concentrations of the two aqueous phases change. A static force
187	equilibrium along the radial direction of the fibrils results in the following relationship,
188	Supplementary Equation 6: $\gamma_{PEG/fib} - \gamma_{dex/fib} + \gamma_{w/w} \cos(\pi - \theta) = 0$.
189	Combining Supplementary Equations 5 and 6, the adsorption energy can be expressed as,
190	Supplementary Equation 7: $\Delta G_{fibril} = 2R\gamma_{w/w}L(\sin\theta + \pi\cos\theta - \theta\cos\theta)$.
191	
192	
193	
194	
195	
196	Supplementary Note 4
197	A physical model to calculate the energy barriers for coalescence of dextran-in-PEG emulsion
198	and PEG-in-dextran emulsion.

199

Supplementary Schematic 1: Desorption of fibrils from W/W interface when two adjacent droplet coalesce. (a) Coalescence of two PEG-in-dextran drops requires fibrils to detach from W/W interface and enter the PEG-rich droplet phase. The corresponding desorption energy is expressed as $\Delta G_{fib-to-PEG}$; (b) Coalescence of two dextran-in-PEG drops requires fibrils to detach from W/W interface and enter into the dextran-rich droplet phase. The desorption energy in this process is expressed as $\Delta G_{fib-to-dex}$.

206 Interfaces of two adjacent emulsion droplets must touch before they can merge into a single 207 droplet. The role of fibrils is to form a physical barrier that separates the two interfaces. When 208 two dextran-in-PEG emulsion drops approach with each other, the fibrils transiently desorb from 209 W/W interface and enter either the PEG-rich continuous phase or the dextran-rich droplet phase. 210 If fibrils transiently enter the PEG-rich continuous phase, they will separate the two dextran-rich 211 droplets and prevent their direct contact. To coalesce, fibrils must enter the dextran-rich phase; 212 however, this often requires consuming higher energy than entering to the PEG-rich phase, deduced from the calculation on the interfacial energy in the following paragraph. 213

When a single fibril transiently leave the W/W interface and enter the PEG-rich phase, the desorption energy can be estimated from the change in the total interfacial energy, as illustrated in Supplementary Schematic 1a. By accounting for the eliminated area of W/W interface ($S_{W/W}$) and the created PEG/fibril contact area ($S_{PEG/fib}$), the free energy change can be expressed as

218 Supplementary Equation 8: $\Delta G_{fib-to-PEG} = \gamma_{w/w} S_{w/w} + S_{dex} (\gamma_{peg/fib} - \gamma_{dex/fib})$

- Assuming a flat interface, the contact area of a fibril to the dextran-rich phase is calculated as
- **Supplementary Equation 9:** $S_{dex} = 2\alpha RL$.
- 221 Such that Supplementary Equation 8 becomes

222 Supplementary Equation 10:
$$\Delta G_{fib-to-PEG} = 2R\gamma_{w/w}L(\sin\theta + \pi\cos\theta - \theta\cos\theta) = 0.186\gamma_{w/w}RL$$

- 223 Instead, when a single fibril transiently enters the dextran-rich emulsion phase, the associated
- desorption energy (see Supplementary Schematic 1b) can be estimated by

225 Supplementary Equation 11:
$$\Delta G_{fib-to-dex} = \gamma_{w/w} S_{w/w} + S_{peg} (\gamma_{dex/fib} - \gamma_{peg/fib})$$

Assuming a flat interface, the contact area of a fibril to the PEG-rich phase is calculated as,

227 Supplementary Equation 12:
$$S_{PEG}=2(\pi - \alpha)RL$$

228 Such that Supplementary Equation 11 becomes

230

By comparing the desorption energy under the two conditions, the energetic cost is 25 times for getting a single fibril into the dextran-rich phase than to the PEG-rich phase. This explains why fibrils preferentially partition in the PEG-rich phase upon destabilization.

- 234 The calculation also denotes that the dextran-in-PEG emulsions must overcome a high energy
- 235 barrier before coalescence can occur. In comparison, coalescence of PEG-in-dextran emulsions

236	occurs more easily because of the low energy barrier for fibrils to transiently enter the PEG-rich
237	emulsion phase. Therefore, even with the same interfacial tension and calculated adsorption
238	energy, fibril-coated dextran-in-PEG emulsion droplets are much more stable than the
239	PEG-in-dextran emulsion droplets. However, when the interfacial tension declines to near zero,
240	both of the two kinds of energy barrier becomes negligible compared to thermal energy. In this
241	condition, fibrils almost distribute homogenously in the mixture.