Supplementary Table 1. RT-qPCR primers

Primer name	Sequence	Amplified regions
CD133-F	TTGTGGCAAATCACCAGGTA	NM_006017.2
CD133-R	TCAGATCTGTGAACGCCTTG	742-903
KRT19-F	TTTGAGACGGAACAGGCTCT	NM_002276.4
KRT19-R	AATCCACCTCCACACTGACC	647-857
LAD1-F	ACCTACAGCAGCTCCCTCAA	NM_005558.3
LAD1-R	ATGGCCGTGTGGTATCTCTC	1316-1479
SHE-F	AAGCAGCAAGAGACGGTCAT	NM_001010846.2
SHE-R	TCACAGGGACTGTCAAGCAG	601-809
ID1-F	AAACGTGCTGCTCTACGACA	NM_181353.2
ID1-R	TAGTCGATGACGTGCTGGAG	291-407
GAPDH-F	CGACCACTTTGTCAAGCTCA	NM_001289746.1
GAPDH-R	AGGGGAGATTCAGTGTGGTG	1086-1288

Supplementary Table 2. Sequenom MassARRAY primers

Primer name	Sequence	Amplified regions
CD133-F	GTTAGATGGAGAATTGGGGTGTTTA	NC_000004.11, Chr4:
CD133-R	AACTCCAAAAACAACCTATTACAAAA	16084085-16084583
KRT19-F	TATTTTGTTTAGGTAGGAGGTTAGG	NC_000017.10, Chr17:
KRT19-R	CTCTCAAAAACCTACAAATTCCTCA	39684206-39684672
LAD1-F	TTTAAAGTTTAGTATTAGGGAGTAAGGA	NC_000001.10, Chr1:
LAD1-R	AAAACTTCCTACTCAAAACCAATCC	201368747-201369194
SHE-F	AAGTGGTTTAAGGAGTTTTTTTGAA	NC_000001.10, Chr1:
SHE-R	ACTTAATAATCTTACCCTTATCCAACTC	154473923-154474385
ID1-F	TTAGGGATTTTTAGTTGGAGTTGAA	NC_000020.10, Chr20:
ID1-R	TTCCTCTTACCCCCTAAATAACTAAA	30193495-30193949

Supplementary Table 3. (h) MeDIP-qPCR and ChIP-qPCR primers

Primer name	Sequence	Amplified regions	
CD133-F	CCCAGTGGATGGAAAGAAGA	NC_000004.11,	
CD133-R	ACTGGGGGTGTACAGTGAGG	Chr4:16084979-16085207	
KRT19-F	GTCGCGGATCTTCACCTCTA	NC_000017.10,	
KRT19-R	TTTGTGTCCTCGTCCTCCTC	Chr17:39684158-39684346	
LAD1-F	TAGGCCTCGCTGAGATGAAT	NC_000001.10,	
LAD1-R	CAAGGACAGTGCCTTTGACA	Chr1:201369024-201369172	
SHE-F	GTCCACCTTGATGAGCCTGT	NC_000001.10,	
SHE-R	AGCCTGCAGGGTCTGATTC	Chr1:154474050-154474184	
ID1-F	AAACGTGCTGCTCTACGACA	NC_000020.10,	
ID1-R	TAGTCGATGACGTGCTGGAG	Chr20:30193376-30193492	
Clorf14-F	CAGCACTTCGTCGCAATACA	NC_000001.10,	
C1orf14-R	GTGCCTGAGGATGAAGAGGA	Chr1:182921876-182921983	
Evpl-1F	GGCTTTCTGCTGTTTCTGCT	NT_165773.2,	
Evpl-1R	CCGAGTGTGGGAGATCCTTA	Chr11:27624419-27624638	
H2-T22-F	CTCAGGGGACATGGAGTGAT	NT_039649.7, Chr17:22362837-22362982	
H2-T22-R	AGTATTGGGAGCGGGAGACT		
Keng1-F	GAGCTGCTGACGGTCTTACC	NT_039207.7,	
Keng1-R	CCTGTCCGTTCTGTTTGTCA	Chr2:109135252-109135352	
Slc25a31-F	GCGTCCTCCAAGCAGATAAG	NT_039229.7,	
Slc25a31-R	TATGGGATGCTAAGGCCAAG	Chr3:58531-58646	
D1pas1-F	TGACAAAGCAGACGAGGATG	NT_039189.7,	
D1pas1-R	GTTATTCCCTGTCGCCTCAA	Chr1:3464325-3464463	
Actl7b-F	CTGGGCAGAGGAGACTCAAC	NT_109315.4,	
Actl7b-R	CTGGCTTCAAGGAGGAGATG	Chr4:14592202-14592309	

Supplementary Figure Legends

Supplementary Figure S1. Identification of 293T cells overexpressing TET2-WT and TET2-Mut. (A) Immunofluorescence analysis of TET2 in Mock, TET2-WT, and TET2-Mut 293T cells. (B) Immunofluorescence analysis of 5hmC in Mock, TET2-WT, and TET2-Mut 293T cells. (C) Dot blot analysis of 5hmC and 5mC in Mock, TET2-WT, and TET2-Mut 293T cells.

Supplementary Figure S2. Numbers of DHMRs (A) and DMRs (B) in TET2-WT and TET2-Mut cells (*vs.* Mock cells) at CGIs.

Supplementary Figure S3. MeDIP-qPCR analysis for 5mC at four representative hypermethylated CGIs. The *ID1* gene CGI was used as a negative control. Data are presented as mean \pm SD (n=3). *P<0.05.

Supplementary Figure S4. Effect of TET2 overexpression on H3K4me1, H3K4me2, H3K9me2 and H3K9me3 enrichment at four representative hypermethylated CGIs in 293T cells. ChIP-qPCR analysis of H3K4me1 (A), H3K4me2 (B), H3K9me2 (C), and H3K9me3 (D) in Mock, TET2-WT, and TET2-Mut 293T cells. The *ID1* gene CGI was used as a control. Data are presented as mean \pm SD (n=3). *P<0.05.

Supplementary Figure S5. ChIP-qPCR analysis of histone H3 occupation at four representative hypermethylated CGIs in Mock, TET2-WT, and TET2-Mut 293T cells. *ID1* and *C1orf14* gene CGIs were used as a control. Data are presented as mean \pm SD (n=3). *P<0.05.

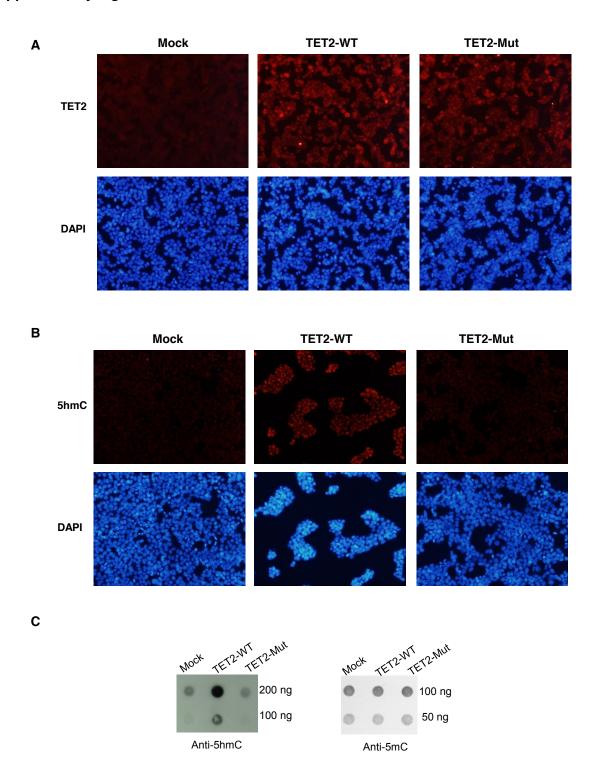
Supplementary Figure S6. Effect of TET2 overexpression on the global levels of histone modifications in 293T cells. Representative Western blot analysis of the global H3K4me3 and H3K27me3 levels in Mock, TET2-WT, and TET2-Mut 293T cells. Histone H4 was used as loading control.

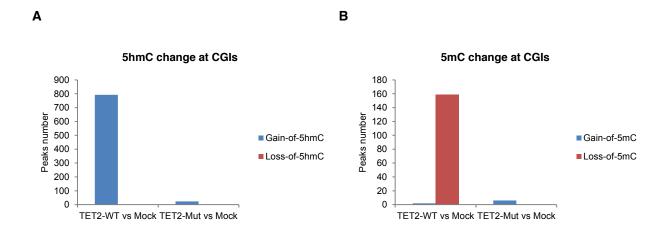
Supplementary Figure S7. RT-qPCR analysis of the mRNA expression of four representative hypermethylated CGI genes in Mock, TET2-WT, and TET2-Mut 293T cells. The *ID1* gene was used as a control. The mRNA expression levels are normalized to the value in Mock cells. Data are presented as mean \pm SD (n=6). *P<0.05.

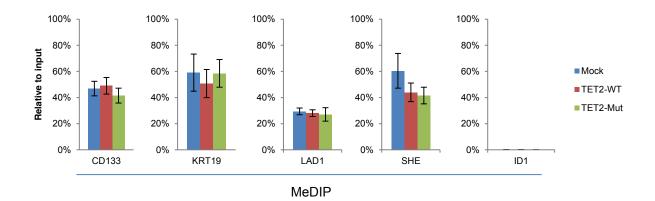
Supplementary Figure S8. Effect of 5-Aza-CdR treatment on the bivalency formation at the representative CGI promoters and the gene expression of corresponding genes. (A) H3K4me3 ChIP-qPCR analysis. (B) H3K27me3 ChIP-qPCR analysis. (C) RT-qPCR analysis. (D) Sequential ChIP-qPCR analysis of 5-Aza-CdR-treated 293T cells. Upper panel is the result of the 1st ChIP using IgG and anti-H3K4me3 Ab. Lower panel is the result of the 2nd ChIP using IgG and anti-H3K27me3 Ab. The % IP in the 2nd ChIP was plotted relative to input in the eluate from the first round ChIP. *ID1* gene was used as a control for all data. All data are presented as mean \pm SD (n=3). *P<0.05.

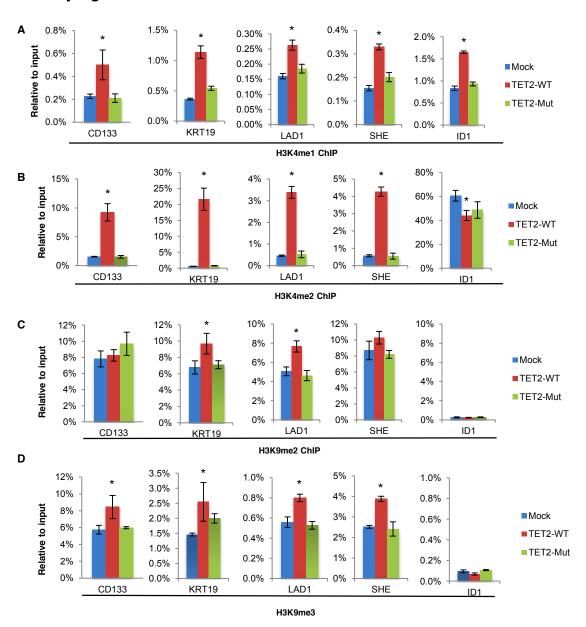
Supplementary Figure S9. Venn diagram shows the overlapping of H3K4me3 peaks (A), H3K27me3 peaks (B) and bivalent domains (C) between Mock and TET2-WT 293T cells.

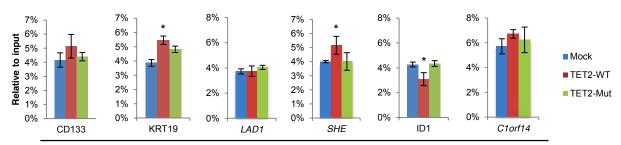
Supplementary Figure S10. UCSC browser snapshots of H3K4me3 and H3K27me3 enrichment on two representative hypermethylated CGI genes (*LAD1* and *SHE*).

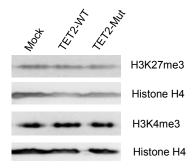

Supplementary Figure S11. Venn diagram shows the overlapping of H3K4me3 peaks (A), H3K27me3 peaks (B) and bivalent domains (C) at CGIs between Mock and TET2-Mut 293T cells.

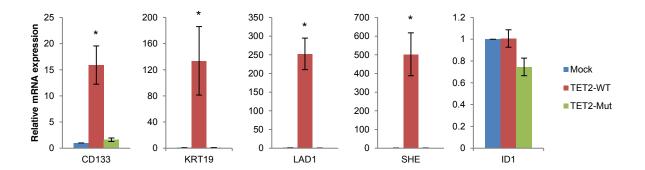

Supplementary Figure S12. (A) Gene ontology (GO) analysis of the "gain-of-bivalency" genes in TET2-WT 293T cells compared with Mock 293T cells. (B) Venn diagram shows the overlapping between the "gain-of-bivalency" genes in

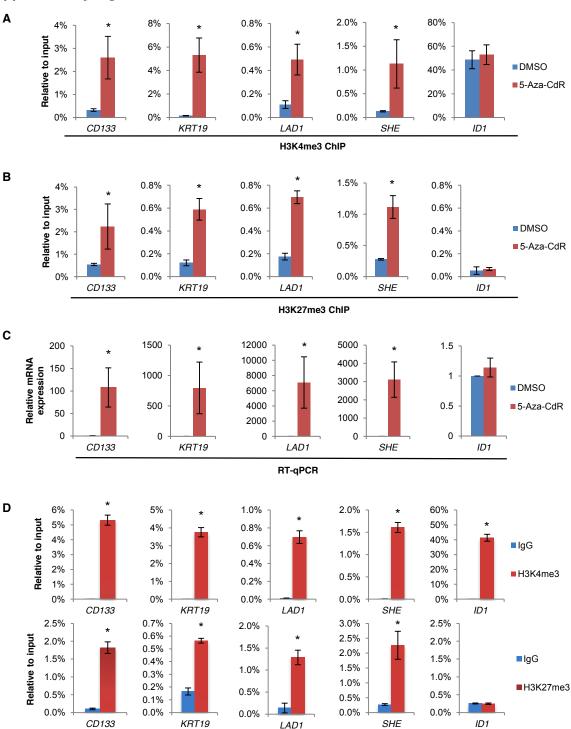

TET2-WT 293T cells and the bivalent genes in human ES cells.

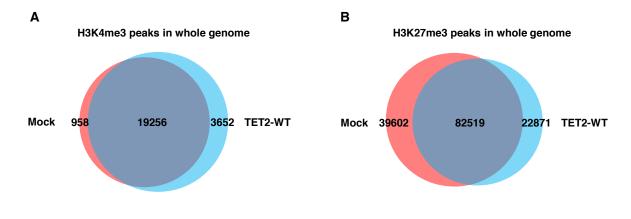

Supplementary Figure S13. Average distribution patterns of 5mC (A), 5hmC (B), H3K4me3 (C) and H3K27me3 (D) across 4010 reported bivalent domains in wild type (Black) and *Tet1/2*-DKO (Blue) mouse ES cells.


Supplementary Figure S14. MeDIP-qPCR, hMeDIP-qPCR, and ChIP-qPCR analysis of 5mC (A), 5hmC (B), H3K4me3 (C), and H3K27me3 (D) enrichment at several selected CGIs in wild type and Tet1/2-DKO mouse ES cells. Data are presented as mean \pm SD (n=3). *P<0.05.

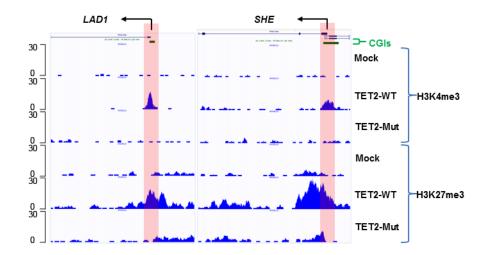


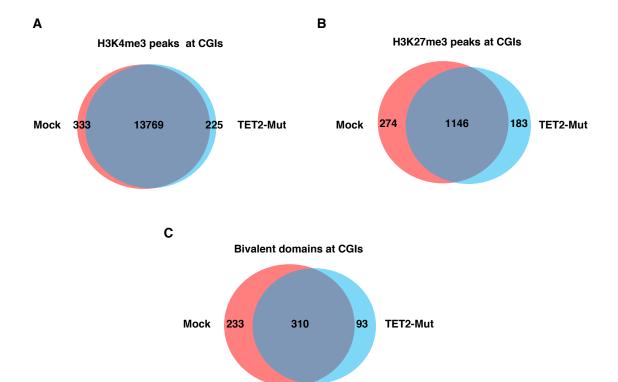




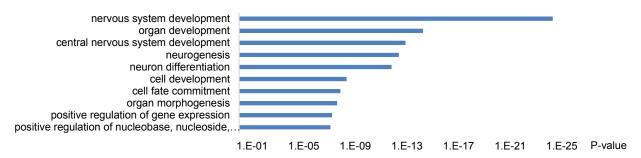

Histone H3 ChIP

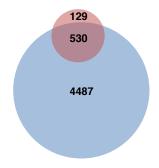




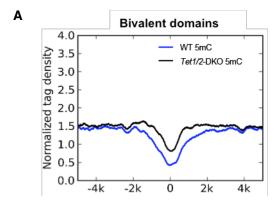


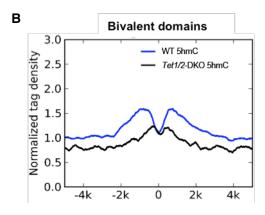
Sequential ChIP for 5-Aza-CdR-treated 293T cells

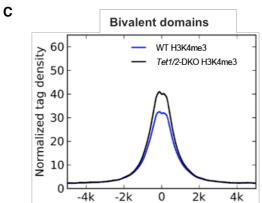


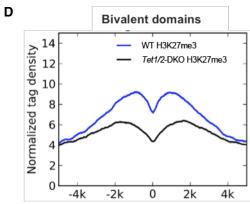

Α

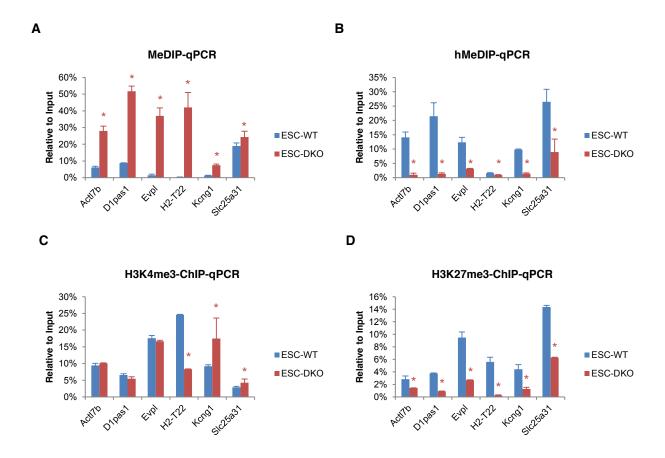
GO analysis of genes gaining bivalent domains at CGIs




В


"Gain-of-bivalency" genes at CGIs




Bivalent genes in hES cells

