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Supplementary figure legends
Supplementary Figure S1 | Determination of a stoichiometry of RNA modification

(A) Extracted ion chromatogram of a single RNA fragment derived from natural source
containing '2c (black peak) or transcribed in vitro containing *c (blue peak). Note that the
black peak is an unmodified, and the blue peak is a sum of unmodified and modified forms
of the same RNA fragment. The stoichiometry of modification is thus determined as a ratio
of the difference in signal intensities between the blue and black peaks (4h) and the signal
intensity of the blue peak (hsuy), i.e. Ah/hyy, as indicated in the figure. Other details are given
in the text. (B) Mass spectrum at the peak top in (A). Each spectrum ensures the purity of

chromatographic peak in (A) and confirms the stoichiometry of modification determined.

Supplementary Figure S2 | The complete chemical structure of Sc rRNAs and the
fragments used for the structural analysis. Black solid and black shaded bars denote the
fragments produced by the RNase T1 and RNase A digestions of rRNAs, respectively. Blue
arrows are RNase H—digested fragments of the rRNAs (fragment numbers correspond to
the mapping data shown in Supplementary Table S1-2). Blue solid and blue shaded bars
denote RNase T1-digested and RNase A-digested fragments of the RNase H fragments,
respectively. All fragments were identified by Ariadne (see Methods) except for several
heavily modified RNA fragments, which were identified by manual inspection of their tandem
mass spectra. Modified RNAs are shown in blue letters, and their abbreviations are
summarised as follows: P, pseudouridine; A, 2'-O-methyladenosine; B, 2'-O-methylcytidine;
#, 2'-O-methylguanosine; J, 2'-O-methyluridine; Z, 2'-O-methylpseudouridine; 1,
1-methyladenosine; ¢, N6, N6-dimethyladenosine; %, 5-methylcytidine; 7,
7-methylguanosine; 6, 3-methyluridine; M, N4-acetylcytidine; a,

1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine.

Supplementary Figure S3 | The tandem mass spectra of Sc 25S rRNA fragments



containing U, Um, or 2345 produced by RNase T1 digestion. (A)

234YCmCCYAUCUACUAWCWAZ*'Gp, (B) ®*UCMCCWAUCUACUMAWCWA?*'Gp, and
(C)?*UCMCCWYAUCUACWAWCYA?*'Gp. The blue arrows identify the major a, ¢, w, and
y ions. The cleavage positions of the assigned ions are mapped on each RNA sequence in

the inset. Errors determined by Ariadne of MS? signals are plotted under each spectrum.

Supplementary Figure S4 | SILNAS-based quantification showing that U954, U2919,
G1140, and G2 in Sc 25S rRNA are not modified. Previous reports found the modified nt,
m°U954, m°U2919, Gm1140, and Gm2393 (Kiss-Laszlo, Z. et al., Cell 85, 1077-1088
(1996); Bakin, A. et al., Biochemistry 33, 13475-13483 (1994); Birkedal, U. et al. Angew
Chem Int Ed Engl 54, 451-455 (2014)). (A) Extracted ion monitoring of the 25S rRNA
fragments containing U954 produced by RNase T1 digestion. Purified unlabelled 25S rRNA
was mixed with an equal amount of the corresponding guanosine-">Co-labelled fragment
(*G). The mixture was digested with RNase T1 and subjected to LC-MS. The MS signals of
[®2UUUCCCUCA®™*Gp]* and [*2UUUCCCUCA*®'Gp]* and [**UUUCCCWCA*®'Gp]* are
indicated by arrows (upper and middle panels, respectively). The charges, m/z values, and
sequences of the ion fragments are indicated. A mass window of 5 ppm was used for the
extractions. The most intense signal in the top panel was set to 100%, and the peak in the
middle and bottom panel scaled accordingly. A peak for the fragment containing m°U954 not
detected (lower panel).

(B) Extracted ion monitoring of the 25S rRNA fragments containing U2919 produced by
RNase T1 digestion LC-MS of the 25S rRNA fragment was performed as in (A). The MS
signals for [°"*UUCACCCACUAAUAZ?®*Gp]* and
[**"°’AUUMGMWYUCACCCACUAAUA?®Gp]*” are indicated by arrows (upper and middle
panels, respectively). A peak corresponding to

Z"°AUUMGMWYmM UCACCCACUAAUA®®Gp]*” was not found (lower panel).

(C) Extracted ion monitoring of the 25S rRNA fragments containing G1140 produced by



RNase A digestion. Purified 25S rRNA was mixed with an equal amount of 3Cq-uracil- (*U)
and "®Cg-cytosine-labelled 25S rRNA. After RNase H digestion of the mixture, fragment H12
(Supplementary Fig. S2) was purified by reversed-phase LC through a PLRP-S 4000
column, digested with RNase A, and subjected to LC-MS. The arrows identify the MS
signals of [GA*Up]?" and [GAUp]3" in the upper and middle panels, respectively. AG*Up and
AGUp are the sequence isomers located at positions 1110-1112 and 1384-1386 of
Fragment H12, respectively. Note that Fragment H12 produced three GAUp fragments
located at positions 1140-1142, 1347-1349, and 1352-1354, but no signals were detected
for methylated GAUp (lower panel).

(D) Extracted ion monitoring of RNase A—generated fragments of 25S rRNA containing
G2393. The analysis was performed as in (C). The arrows indicate the MS signals of

" GGGGAAAGAAGA?®*Cpl* and [***'GGGGAAAGAAGA*®Cp]* (upper and middle
panels, respectively). #, the fifth isotope of [**'GGGGAAAGAAGA****Cp]*. No signal was

detected for [*?'"GGGMGAAAGAAGA?*®Cp]*~ (lower panel).

Supplementary Figure S5 | 3D modification maps of Sc rRNAs including and
excluding RPs. The modified nt found in this study are assigned to the 3D structure of the
Sc rRNAs (3U5B.pdb and 3U5D.pdb). The RPs are depicted according to the 3D source
files of the Sc rRNAs (3U5C.pdb and 3U5E.pdb). (A) SSU and (B) LSU. The rRNA
structures with and without RPs are shown in the right and left panels, respectively. The
positions of the modified nt within the (A) SSU and (B) LSU are indicated by coloured balls:

yellow, W; red, 2'-O-methylated nt; blue, base modified nt.

Supplementary Figure S6 | Superimposed modification map of Sc and Sp rRNAs. The
modified nt found in SSUs and LLUs of the Sc and Sp rRNAs (Taoka et al. Nucleic Acids
Res, 2015, 43, e115) were assigned to the 3D structure of the Sc rRNAs (3U5B.pdb and

3U5D.pdb). The positions of the modified nt within the (A) SSU and (B) LSU are indicated by



coloured balls: yellow, pseudouridine; red, 2'-O-methylated nt; blue, base modified nt; purple,

modified nt unique to Sc rRNA; and white, modified nt unique to Sp rRNA.

Supplementary Figure S7 | Sc rRNA map of partially modified nt. The partially modified
nt found in this study are mapped onto the 3D structures of the Sc rRNAs (3U5B.pdb and
3U5D.pdb). The positions of the modified nt within the rRNAs are indicated by coloured
balls: green, partially modified nt common to Sc and Sp rRNA; and pink, partially modified nt

unique to Sc rRNA. (A) SSU and LSU complex, (B) SSU and (C) LSU.

Supplementary Figure S8 | Potential base-pairing interactions between snR9 and
snR33 with the 25S rRNA fragments containing W2345 or W2338, respectively. The
snR9/snR33 sequences are shown as the upper strands, with their hairpin domains
depicted as solid lines. The rRNA sequences around W2345 and U/W2338 are shown in the

lower strands, with an arrow pointing to the respective Ws.

Supplementary Figure S9 | The 25S rRNA in AsnR9 does not contain ¥2338 and
W2345. The RNase T1 digest of U/C-5D-labelled and reverse-phase LC—purified 25S rRNA
(100 fmol) was subjected to LC-MS and MS?. (A) Extracted ion chromatogram of the
fragments from the RNaseT1 digest containing U2338 and U2345. The extracted ion has an
m/z of 1422.192 within a mass window of £10 ppm. (B) Mass spectrum of the RNA peak in
(A). The most abundant isotopomer is marked by an asterisk *. The m/z value of the most
abundant signal coincide with that of the theoretical value within 5 ppm. (C) Tandem mass
spectrum of 2**UCmCCUAUCUACUMAWCWA?*'Gp. The blue arrows identify the major a,
¢, w, and y ions. The cleavage positions of the assigned ions are mapped on the RNA

sequence in the inset.
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