Figure S1. Sequence of dcas9 (cas9 D10A and H840A) codon-optimized for M. tuberculosis.*

ATGGACAAGAAGTACAGCATCGGCCTG**GCG**ATCGGCACGAACTCGGTGGGCTGGGCGGTCATCACGGACGAGTACAA CGCATCTGCTACCTGCAGGAAATCTTCTCGAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACCGGCTGGAGGA GTCCTTCCTGGTGGAGGAGGAGAAGAAGCACGAGCGCCACCCGATCTTCGGCAACATCGTGGACGAGGTGGCCTACC ACGAGAAGTACCCCACGATCTACCACCTGCGCAAGAAGCTGGTGGACAGCACCGACAAGGCGGACCTGCGGCTGATC TACCTGGCCCTGGCGCACATGATCAAGTTCCGCGGCCACTTCCTGATCGAGGGCGACCTGAACCCGGACAACTCGGA CGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAGAACCCCATCAACGCCTCCGGCG TGGACGCCAAGGCGATCCTGTCGGCGCGCCTGTCCAAGTCGCGGCGCCTGGAGAACCTGATCGCCCAGCTGCCGGGC GAGAAGAAGAACGGCCTGTTCGGCAACCTGATCGCGCTGAGCCTGGGCCTGACGCCCAACTTCAAGTCCAACTTCGA CCTGGCCGAGGACGCGAAGCTGCAGCTGTCGAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCG GCGACCAGTACGCGGACCTGTTCCTGGCCGCCAAGAACCTGAGCGACGCCATCCTGCTGTCCGACATCCTGCGGGTC AACACCGAGATCACGAAGGCCCCGCTGAGCGCGTCCATGATCAAGCGGTACGACGAGCACCACCAGGACCTGACCCT GCTGAAGGCGCTGGTGCGCCAGCAGCTGCCCGAGAAGTACAAGGAAATCTTCTTCGACCAGTCGAAGAACGGCTACG CCGGCTACATCGACGGCGGCGCGGGGCCAGGAGGAGTTCTACAAGTTCATCAAGCCGATCCTGGAGAAGATGGACGGC ACGGAGGAGCTGCTGGTCAAGCTGAACCGCGAGGACCTGCTGCGCAAGCAGCGGACCTTCGACAACGGCTCGATCCC GCACCAGATCCACCTGGGCGAGCTGCACGCCATCCTGCGGCGCCAGGAGGACTTCTACCCCTTCCTGAAGGACAACC GCGAGAAGATCGAGAAGATCCTGACCTTCCGCATCCCGTACTACGTGGGCCCCCTGGCCCGCGGCAACTCGCGGTTC GCGTGGATGACCCGGAAGAGCGAGGAGACCATCACGCCGTGGAACTTCGAGGAGGTCGTGGACAAGGGCGCCTCGGC GCAGAGCTTCATCGAGCGCATGACCAACTTCGACAAGAACCTGCCGAACGAGAAGGTCCTGCCCAAGCACAGCCTGC TGTACGAGTACTTCACCGTGTACAACGAGCTGACGAAGGTCAAGTACGTGACCGAGGGCATGCGGAAGCCGGCCTTC CTGTCGGGCGAGCAGAAGAAGGCGATCGTGGACCTGCTGTTCAAGACCAACCGCAAGGTCACGGTGAAGCAGCTGAA GGAGGACTACTTCAAGAAGATCGAGTGTTTCGACTCGGTCGAGATCAGCGGCGTGGAGGACCGCTTCAACGCCAGCC TGGGCACCTACCACGACCTGCTGAAGATCATCAAGGACAAGGACTTCCTGGACAACGAGGAGAACGAGGACATCCTG GAGGACATCGTCCTGACCCTGACGCTGTTCGAGGACCGCGAGATGATCGAGGAGCGGCTGAAGACGTACGCCCACCT GTTCGACGACAAGGTGATGAAGCAGCTGAAGCGGCGCCGATACACCGGCTGGGGCCGCCTGTCGCGGAAGCTGATCA ACGGCATCCGGGACAAGCAGTCCGGCAAGACCATCCTGGACTTCCTGAAGTCGGACGGCTTCGCGAACCGCAACTTC ATGCAGCTGATCCACGACGACGACCTGACCTTCAAGGAGGACATCCAGAAGGCCCAAGTGAGCGGCCAGGGCGACTC CCTGCACGAGCACATCGCCAACCTGGCGGGCTCGCCGGCGATCAAGAAGGGCATCCTGCAGACCGTCAAGGTCGTGG ACGAGCTGGTCAAGGTGATGGGCCGCCACAAGCCCGAGAACATCGTGATCGAGATGGCCCGGGAGAACCAGACCACG CAGAAGGGCCAGAAGAACAGCCGCGAGCGGATGAAGCGCATCGAGGAGGGCATCAAGGAGCTGGGCTCGCAGATCCT GAAGGAGCACCCGGTCGAGAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACCTGCAGAACGGCCGCGACA TGTACGTGGACCAGGAGCTGGACATCAACCGGCTGAGCGACTACGACGTGGACGCCATCGTGCCGCAGTCGTTCCTG AAGGACGACAGCATCGACAACAAGGTCCTGACCCGCTCGGACAAGAACCGGGGCAAGTCGGACAACGTGCCCAGCGA GGAGGTCGTGAAGAAGATGAAGAACTACTGGCGCCAGCTGCTGAACGCCAAGCTGATCACGCAGCGCAAGTTCGACA ACCTGACCAAGGCCGAGCGGGCGGCCTGAGCGAGCTGGACAAGGCGGGCTTCATCAAGCGCCAGCTGGTCGAGACC CGGCAGATCACGAAGCACGTGGCGCAGATCCTGGACTCGCGGATGAACACGAAGTACGACGAGAACGACAAGCTGAT CCGCGAGGTCAAGGTGATCACCCTGAAGTCCAAGCTGGTCTCGGACTTCCGCAAGGACTTCCAGTTCTACAAGGTCC GGGAGATCAACAACTACCACCACCGCCCACGACGCGTACCTGAACGCCGTCGTGGGCACCGCCGCTGATCAAGAAGTAC GGAGATCGGCAAGGCCACCGCGAAGTACTTCTTCTACTCCAACATCATGAACTTCTTCAAGACCGAGATCACGCTGG CCAACGGCGAGATCCGCAAGCGCCCGCTGATCGAGACCAACGGCGAGACGGGCGAGATCGTCTGGGACAAGGGCCGC GACTTCGCGACCGTCCGGAAGGTGCTGAGCATGCCGCAGGTCAACATCGTGAAGAAGACCGAGGTGCAGACGGGCGG CTTCTCCAAGGAGTCGATCCTGCCCAAGCGCAACTCGGACAAGCTGATCGCCCGGAAGAAGGACTGGGACCCGAAGA AGTACGGCGGCTTCGACTCCCCCACCGTCGCCTACTCGGTGCTGGTCGTGGCGAAGGTCCGAGAAGGGCAAGTCCAAG AAGCTGAAGTCGGTGAAGGAGCTGCTGGGCATCACCATCATGGAGCGCTCGTCGTCGAGAAGAACCCCGATCGACTT ${\tt CCTGGAGGCGAAGGGCTACAAGGAGGTCAAGAAGGACCTGATCAAGCTGCCCAAGTACAGCCTGTTCGAGCTGG$ AGAACGGCCGCAAGCGGATGCTGGCCTCCGCGGGCGAGCTGCAGAAGGGCCAACGAGCTGGCCCTGCCGTCGAAGTAC GTCAACTTCCTGTACCTGGCGTCGCACTACGAGAAGCTGAAGGGCAGCCCCGAGGACAACGAGCAGAAGCAGCTGTT CGTGGAGCAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGCGGGTCATCCTGGCCG ACGCGAACCTGGACAAGGTGCTGTCGGCCTACAACAAGCACCGCGACAAGCCGATCCGGGAGCAGGCGGGGAGAACATC ATCCACCTGTTCACCCTGACGAACCTGGGCGCCCCCGCCGCGTTCAAGTACTTCGACACCACGATCGACCGCAAGCG GTACACCTCCACGAAGGAGGTGCTGGACGCGACCCTGATCCACCAGTCGATCACCGGCCTGTACGAGACGCGCATCG ACCTGAGCCAGCTGGGCGGCGACTCCCGGGCGGACCCGAAGAAGAAGCGGAAGGTGTGA *Mutated codons 10 and 840 are shown in red and underlined.

Figure S2. a) Integrating vector for expression *dcas9*; **b) Replicating vector for sgRNA and** *tetR* **expression.** The integrating vector pRH2502 for induced expression of *dcas9* is derived from pTC-0X-1L (1), obtained from Addgene. The PacI site near the T4g32 sites was removed. PacI sites were introduced 15 bp after the Ndel site encompassing the start codon of *lacZI*, and 5' of the SV40 PA terminator. *lacZ* was removed and *dcas9* was inserted under the control of uv15tetO promoter at Ndel and PacI cloning sites. The replicative vector for sgRNA and TetR expression pRH2521 was derived from pTE-10M-0X (1) obtained from Addgene. The sequence P*myc1*tetO (2) followed by 2 BbsI sites and the sgRNA sequences were synthesized and cloned in pTE-10M-0X at a Clal site ro produce pRH2521.

Figure S3. Cloning strategy for construction of vectors to express sgRNAS to target genes of

interest. The example below incorporates sequences to target *M. smegmatis sigH*. The identical strategy is used to target genes in *M. tuberculosis* or *M. smegmatis*.

6 Transform pRH2521-Msm_sigH+11 into M. smegmatis that already contains pRH2502-dCas9

Figure S4. a. Transcription start sites identified by 5' RACE. b. Locations targeted by sgRNAs in 4 essential genes of *M. tuberculosis*. The locations in each gene targeted by CRISPRi are indicated by the vertical purple line. Numbering is the position of the first nt of the targeted sequence relative to the initiation codon.

Figure S5. Determination of minimum inhibitory concentration of (a) isoniazid (INH) and (b) methotrexate (MTX) in *M. tuberculosis* strains expressing *dcas9* and either gene-specific sgRNAs or the sgRNA vector control. The Microplate Alamar Blue Assay (MABA) was performed as described in the materials and methods section.

Figure S6. Effect of CRISPRi on off target genes that differ from the specific target sequence including the PAM by 2, 4 or 5nt. Expression of all genes containing a sequence that diverged by 2 or 4 nt, regardless of the presence of an intact PAM, was measured. Of the genes containing a sequence that differed by 5 nt, expression was measured only for those that had an intact PAM sequence. **Panel a**, alignment of target gene sequences and the sequences for the off-target genes for which expression following *dcas9* and sgRNA induction was measured. Nucleotides that differ are shown in red. The PAM sequence is underlined. **Panels b-j**, expression of the off-target genes following induction of dcas9 and the sgRNA indicated above each panel. No significant differences were observed at 24 or 48h for any of the 9 genes tested. **Table 1** below shows the number of mismatches for each off-target site compared the site targeted by the sgRNA indicated.

а

sigH-222	5'- <u>CCC</u> GCTGGCGAACAC <mark>G</mark> GT T GA TT- 3'
Rv3618-ATG-812nt	- <u>CCC</u> G T TGGCGAACAC C GT G GA AG- 341nt-TGA
inhA+48	5'- <u>CCG</u> ACTCGTCGATCGCGTTTCAC-3'
Rv0402c - GTG-1396	nt- <mark>ACC</mark> ACTCGTCGATC <mark>C</mark> CGTTTCA <mark>G</mark> -1451nt-TAG
inhA+120	5'-CCGGCTGCGGCTGATTCAGCGCA-3'
Rv0352	- <mark>ACG</mark> GCTGCGGC C GAT <mark>G</mark> CGGCGCA-594nt - ATG
dfrA-25	5'- <i>CCG</i> GAATC A A G GAGTG A CGCGTG-3'
Rv1778c -ATG-340r	t- <u>CAG</u> GAATC T ACGAGTG <mark>G</mark> CGCGTG-81nt-TAG
dfrA-25	5'- <i>CCG<mark>GA</mark>ATCAAGG<mark>A</mark>GTG<mark>A</mark>CGCGTG-3'</i>
Rv2885c-ATG-145nt	- <u>CCG</u> ACATCAAGGCGTGGCGCGCG-1206nt-TGA
Wag31+144	5'- <u>ccg</u> atc t gcgtcaga g ga tca ac-3'
Rv2880c-ATG-157nt	<u>CCG</u> ATC C GCGTCAGA T GA C C G AC-642nt-TGA
ftsZ+25	5'- <u>CCG</u> TCAT <mark>C</mark> AAGGTC <mark>G</mark> TGGGT A TC-3'
Rv2277c-ATG-781nt	- <u>CCG</u> GCATGAAGGTCATGGGTTTC-96nt-TAA
ftsZ+134	5′- <u>CCA</u> GGCGTTGTTGATGAGCGATG-3′
Rv3307-GTG-389nt	- <u>CCA</u> GCCG <mark>G</mark> TGCTGATCAGCGATC-389nt-TAA
ftsZ+134	5'- <u>CCA</u> GGC <mark>G</mark> TTGTTGATGAGCGATG-3'
Rv0186- ATG-134nt	- <i>CCC</i> GGCCTTGTTGATGAGCGATG-1913nt-TGA

Figure S7. Polar effects on *pknB* (Rv0014c) of CRISPRi targeting *pknA* (Rv0015c) **a.** Position of target sequences, shown by purple vertical lines. Numbering refers to the first nucleotide in the target sequence relative to annotated start of coding sequence. Circled sgRNAs are those for which expression data are shown. **b,c.** Expression of *dcas9* with and without induction of *dcas9* and the sgRNA indicated. **d,e.** Expression of *pknB* without induction of *dcas9* and the *pknA*-targeting sgRNA indicated. **f, g.** Expression of *pknB* without induction of *dcas9* and the *pknA*-targeting sgRNA indicated. **h,i.** Growth curves of culture with and without induction of *dcas9* and the sgRNA indicated.

S.N.	Gene	Position of sgRNA relative to	Number of mismatches/gene with mismatch				
		translation start codon of	1	2	3	4	5
		target gene					
1	sigH	-222	0	0	0	0	Rv2226, <mark>Rv3618</mark>
2		-11	0	0	0	0	0
3		+9	0	0	0	0	0
4	pknB	+8	0	0	0	0	Rv0691c
5		+51	0	0	0	0	Rv1904
6		+143	0	0	0	0	Rv2115c
7	pknA	+223	0	0	0	0	0
8		+632	0	0	0	0	Rv0753c
9	inhA	+48	0	0	0	Rv0402c	Rv0680c
10		+120	0	0	0	Rv0352	Rv0050,0130c,0676c
11	dfrA	-62	0	0	0	0	Rv3031
12		-25	0	0	0	Rv1778c	Rv2885c
13	wag31	+26	0	0	0	0	0
14		+144	0	0	0	Rv2880c	0
15	ftsZ	+25	0	0	0	Rv2277c	0
16		+134	0	Rv0186	0	0	Rv1050,Rv0934,Rv3307

Supplementary Table 1: Potential off-target sequences for sgRNAs.

Expression of off-target genes highlighted in red was measured in strains with and without induction of *dcas9* and the sgRNA that contains a similar sequence.

oligonucleotides used for sgRNA							
sgRNA	Forward Primer	Reverse Primer					
Msm_sigH+11	GGGACCGGTCGACGTCAGTCATCG	AAACCGATGACTGACGTCGACCGG					
Msm_pknB+8	GGGAGTCGGAAAGGTGCTGAGGCG	AAACCGCCTCAGCACCTTTCCGAC					
Mtb_pknB+8	GGGAGTCGGACAGGTGGGAAGGGG	AAACCCCCTTCCCACCTGTCCGAC					
Mtb_pknB+51	GGGACGGACATGCCCCCAAATCCA	AAACTGGATTTGGGGGGCATGTCCG					
Mtb_pknB+143	GGGAAAGGTAAAAACTGGGATCGC	AAACGCGATCCCAGTTTTTACCTT					
Mtb_inhA+48	GGGAGTGAAACGCGATCGACGAGT	AAACACTCGTCGATCGCGTTTCAC					
Mtb_inhA+120	GGGATGCGCTGAATCAGCCGCAGC	AAACGCTGCGGCTGATTCAGCGCA					
Mtb_dfrA-62	GGGAGGCGCGCCTCATACCGCGAC	AAACGTCGCGGTATGAGGCGCGCC					
Mtb_dfrA-25	GGGACACGCGTCACTCCTTGATTC	AAACGAATCAAGGAGTGACGCGTG					
Mtb_gyrA-110	GGGAGCGTCGACGTCCTCGCCCAT	AAACGATGGGCGAGGACGTCGACG					
Mtb_gyrA-25	GGGACCTCGTTTGCAATCGAACGC	AAACGCGTTCGATTGCAAACGAGG					
Mtb_wag31+26	GGGACTTACTGAACGCCACATTGG	AAACCAATGTGGCGTTCAGTAAGC					
Mtb_wag31+144	GGGAGTTGATCCTCTGACGCAGAT	AAACATCTGCGTCAGAGGATCAAC					
Mtb_ftsZ+25	GGGAGATACCCACGACCTTGATGA	AAACTCATCAAGGTCGTGGGTATC					
Mtb_ftsZ+134	GGGACATCGCTCATCAACAACGCC	AAACGGCGTTGTTGATGAGCGATG					
Mtb_pknA+223	GGGATTCGCCGTAGTCGTGCACGC	AAACGCGTGCACGACTACGGCGAA					
Mtb_pknA+632	GGGATCCCAGTGAATAGACGTCGC	AAACGCGACGTCTATTCACTGGGA					
Gene	Primer	s used for qRT PCR					
dcas9	AAGAAGTACAGCATCGGCCTGG	TTCTTGCGCCGCGTGTATCG					
Msm_sigH	GAGACAGATGCCGAGCTCAC	AGGCCTTCACCATCGTTTCC					
Msm_pknB	CATGGAGTACGTCGACGGTGTGAC	CTTGACATCGCGGTGGATGATG					
Msm_sigA	TGCCGATCTGCTTGAGGTAGG	TTCGTGTGGGACGAGGAAGAG					
Msm _5'sigA	GACCTTGAGGTGACCGACG	CTTCTTCCTCGTCCTCGACTG					
Msm _3'sigA	TCGACGAGATCGGCCAGG	TAGTCCAGGTAGTCGCGCAG					
Mtb_pknB	ACATTGTCCACACCGAAGGG	GCTGATCATGATGTTCGCCG					
Mtb_inhA	ATCCACATCTCGGCGTATTC	ACGAACCTGTTGACCGACTC					
Mtb_dfrA	AGATCACCATGGGGCACAC	GCCATAAAGTCAGCTTGGCG					
Mtb_gyrA	TGACATCGAGCAGGAGATGC	AAGCCGGAATCGAACATTGC					
Mtb_wag31	TAAGCCGCCTATCGGCAAAC	AGCTCGTTGATCCTCTGACG					
Mtb_ftsZ	CAAGGACGAGATCGAAGAGC	GGAATCACGATGAGGGTGTC					
Mtb_pknA	AAAGCCAGATGAACGGGGAG	TCGAGCATGTCCAGTGCG					
Mtb_5'sigA	GAGGACCTCGACCTTGACG	GGCCGCCTCAGCTTCG					
Mtb_3'sigA	ACCCACCGAAAAGGACAAGG	CTGTTTGAGGTAGGCGCGAA					
Rv0402c	GTCCTCATCTGGCAGCACAT	GGCCCCGATTTCTTCTTGGA					
Rv0352	AGACCGAGTTGGATTTCGTG	TGCAAGTGGGACACACCTTT					
Rv1778c	ATCCTCTTTGAAGCCGCCG	GCCACTCGTAGATTCCTGGT					
Rv0186	GGATCCTGCGGTCGATGTTT	TTTTGCAGCAGCACGATTCC					
Rv2880c	AATCGGTGCTGATGCGCTA	CCGTCGATAGGTTGCGAGTC					
Rv2277c	GTGAATGCCGAGTTGTGGGA	ACCGCATCGAGTCCGATTTT					
Rv3307	GAGATCCGGATGTTGCAGA	GGATACGCCCAGTACCTCAG					
Rv3618	AGTCGTCTCGGGAATTCGT	CAGTAGCAACGTTCCGAAGC					
Rv2885c	CAAAGACCAGGTGTGTGTCA	CAGCTCTGCCAGTTCCAATA					
Primers used for 5' RACE							
Adapter	GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA						
Outer forward	GCTGATGGCGATGAATGAACACTG						
Inner forward	CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG						
Rv No.	GSP1 (Outer PCR Reverse)	GSP2 (Inner PCR Reverse)					
Rv1484	GATGATTCCGCTAACCAGAATCCG	GCCGCCGTCGACCGGGATGA					
Rv2763c	ATGTGCGCCGGCCCATCACGA	TGTCGCTTGAGCCCAGATCAG					
Rv2145c	CCGATAGGCGGCTTACTGAACGCC	ATAAGGACCAATTTCAAACTCTAAG					

Supplementary Table 2: List of oligonucleotides and primers used in this study.

References

- 1. Klotzsche, M., Ehrt, S. and Schnappinger, D. (2009) Improved tetracycline repressors for gene silencing in mycobacteria. *Nucleic Acids Res*, **37**, 1778-1788.
- Ehrt, S., Guo, X.V., Hickey, C.M., Ryou, M., Monteleone, M., Riley, L.W. and Schnappinger, D. (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. *Nucleic Acids Res*, **33**, e21.
- Kiran, M., Chauhan, A., Dziedzic, R., Maloney, E., Mukherji, S.K., Madiraju, M. and Rajagopalan, M. (2009) *Mycobacterium tuberculosis ftsH* expression in response to stress and viability. *Tuberculosis*, **89**, S70-S73.