1	SUPPLEMENTAL INFORMATION (SI)
2	Suppression of Deletion Mutation in the Gene Encoding Essential PBP2b Reveals
3	a New Lytic Transglycosylase Involved in Peripheral Peptidoglycan Synthesis in
4	Streptococcus pneumoniae D39
5	
6	Ho-Ching Tiffany Tsui ^{‡1} , Jiaqi J. Zheng ^{‡1} , Ariel N. Magallon ¹ , John D. Ryan ¹ , Rachel
7	Yunck ² , Britta E. Rued ¹ , Thomas G. Bernhardt ² and Malcolm E. Winkler ^{1*}
8	
9	¹ Department of Biology, Indiana University Bloomington, Bloomington, IN 47405 and
10	² Department of Microbiology and Immunology, Harvard Medical School, Boston, MA
11	02115, USA
12	
13	[‡] Contributed equally to this work
14	*Corresponding author
15	SUPPLEMENTAL EXPERIMENTAL PROCEDURES
16	SUPPLEMENTAL TABLE S1. Bacterial strains used in this study
17	SUPPLEMENTAL TABLE S2. Oligonucleotide primers used in this study
18 19 20	SUPPLEMENTAL TABLE S3. Structural similarity of extracellular domain of MltG _{Spn} to known protein structures
20 21 22 23 24	SUPPLEMENTAL TABLE S4. Genes encoding proteins with known or putative PG lytic domains and WalRK-regulated genes in <i>S. pneumoniae</i> serotype 2 strain D39, observed hydrolase activities in zymogram assays and phenotypes of deletion mutants in a $\Delta pbp1a \Delta mltG$ background.
25 26	SUPPLEMENTAL FIGURE LEGENDS: Fig. S1-S15
27	REFERENCES TO SUPPLEMENTAL INFORMATION

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

30 **Reconstruction of** Δ pbp2b strains with original mltG suppressor alleles (Fig. S4)

Genotypes of strains in these constructions are listed in Table S1 and primers used 31 in constructions are compiled in Table S2. Two approaches were used to reconstruct 32 $\Delta pbp2b$ strains with *mltG* suppressor alleles (see Fig. S4). The first approach used 33 intermediate strains with insertions of a P_c -[kan-rpsL⁺] cassette either upstream or 34 downstream *mltG* in a *pbp1a*⁺ genetic background. This approach was only successful 35 in reconstructing $\Delta pbp2b sup3$ (IU9783, $\Delta pbp2b mltG(Y488D)$). To obtain IU9783, an 36 intermediate strain IU8986 (D39 $\Delta cps rpsL1 mltG^+-P_c-[kan-rpsL^+]$) with an insertion of 37 P_c -[kan-rpsL⁺] cassette immediately after mltG was constructed. An mltG(Y488D) 38 amplicon was obtained using IU7567 as a template and primers P1348 and P1349 and 39 transformed into IU8986 to obtain IU9760, which was sequenced to confirm the Y488D 40 change, and no other mutation in *mltG* or *pbp1a*. IU9760 was transformed with 41 $\Delta pbp2b <> aad9$ from IU7397 to obtain IU9783 (D39 Δcps rpsL1 mltG(Y488D) 42 $\Delta pbp2b <> aad9$) (Fig. S4). 43

We attempted a similar strategy to reconstruct the other suppressor strains without success. The transformation of a *mltG*(Δ 5bp) amplicon into IU8986 (*mltG*⁺-P_c-[*kan-rpsL*⁺]) and the transformation of *mltG*(Δ 488bp) or *mltG*(Ω 45bp)² amplicons into IU8980 (P_c-[*kan-rpsL*⁺]-*mltG*⁺) yielded only strains with the wild-type *mltG* sequence. One isolate was found to contain the *mltG*(Δ 488bp) mutation, but it was found to also contain a frameshift mutation in *pbp1a*.

⁵⁰ The second approach (Fig. S4) was to transfer the *mltG* [Δ 5bp, Δ 488bp or (Ω 45bp)²] ⁵¹ mutations into a stabilizing Δ *pbp1a* genetic background as the first step (see *Results*).

Amplicons were synthesized from the original suppressor strains as templates using 52 primers P1348 and P1349 and transformed into strain IU7325 ($\Delta cps \ rpsL1 \ \Delta pbp1a$ 53 $\Delta m lt G:: P_c - [kan - rps L^+])$. The resulting stains were transformed with the $\Delta p b p 2b <> a a d 9$ 54 amplicon. The ∆pbp1a mutations in strains IU8565, IU8567 and IU8569 were repaired 55 by transformation first with a $\Delta pbp1a$::P_c-[kan-rpsL⁺] amplicon, followed by 56 transformation with a *pbp1a⁺* amplicon. Strains IU9777, IU9905 and IU9907 were 57 sequenced to confirm the correct *mltG* mutation and no initial mutation *in pbp1a*. 58

59

60 **Reconstruction of pbp1a alleles in a clean genetic background (Fig. 3)**

PCR amplicons containing *pbp1a* alleles from original $\Delta m ltG$ suppressor strains 61 IU7258 (Δ *mltG pbp1a* (G494E)), IU7260 (Δ *mltG pbp1a* (G deletion at Gly451)), IU7286 62 ($\Delta m ltG$ pbp1a (S89F)), IU7287 ($\Delta m ltG$ pbp1a (A deletion at Lys160)), IU7288 ($\Delta m ltG$ 63 pbp1a (T insertion at Phe33)) were prepared from strain lysates and primers P234 and 64 P235. Amplicons were transformed into intermediate strain IU6726 (D39 Δcps rpsL1 65 $\Delta pbp1a$:: P_c[kan-rpsL⁺]) as described above (see Fig. S4). The resulting strains were 66 designated IU7837 (pbp1a (G494E)), IU7839 (pbp1a (G deletion at Gly451)), IU7840 67 (pbp1a (S89F)), IU7843 (pbp1a (A deletion at Lys160)), and IU7845 (pbp1a (T insertion 68 at Phe33)). *pbp1a* alleles in reconstructed strains were confirmed by DNA sequencing. 69 A markerless $\Delta pbp1a$ allele in strain IU6741 was constructed by transforming a $\Delta pbp1a$ 70 fusion amplicon containing 60 bp (20 codons) from the N-terminus and 60 bp (20 71 codons) from the C- terminus of *pbp1a* into strain IU6726 (see top, Fig. S4). The short 72 regions at the beginning and end of *pbp1a* were included in the $\Delta pbp1a$ allele to 73 maintain possible translational coupling of closely spaced pneumococcal genes. 74

Construction of zinc-dependent MItG merodiploid strain IU9102 (Fig. 3 and 6)

The $\Delta bgaA::tet-P_{Zn}$ -RBS_{mltG}-mltG fusion amplicon was obtained by fusion PCR of a 76 5' PCR fragment containing bgaA'::tet-P_{Zn} (bgaA'::tet-P_{czcD} DNA template from pJWV25 77 (Eberhardt et al., 2009)), a middle fragment containing RBS_{mltG}-mltG (24bp upstream 78 and ORF sequences of *mltG*), and 3' fragment of flanking *bgaA*' sequence. The fusion 79 amplicon was transformed into IU1945 to obtain strain IU8872 (D39 $\Delta cps \Delta bgaA::tet$ -80 P_{Zn} -RBS_{mltG}-mltG). A Δ mltG::P_c-aad9 fusion amplicon was transformed into IU8872 to 81 zinc-dependent, merodiploid IU9102 obtain strain (D39 Δcps $\Delta m lt G:: P_c$ -82 $aad9//\Delta bgaA::tet-P_{Zn}-RBS_{mltG}-mltG$). IU9102 was maintained in media containing 0.2 83 mM ZnCl₂ and 0.02 mM MnSO₄ during all steps in the transformation procedure, single 84 colony isolation, and growth for storage. MnSO₄ was added at a concentration of 0.1X 85 of ZnCl₂ in all media to minimize Zn⁺² toxicity (Jacobsen *et al.*, 2011). Growth and cell 86 morphology of wild type strain IU1945 in BHI media containing 0.2 mM ZnCl₂ and 0.02 87 mM MnSO₄ is similar to growth in BHI media without additional ZnCl₂ and MnSO₄. 88

89

90 Construction of markerless ftsZ-L₂-mKate2, gfp-L₁-mltG, and double ftsZ-L₂-91 mKate2 gfp-L₁-mltG strains (Fig. 9)

mKate2 is a far-red monomeric fluorescent protein, whose codons have been optimized for expression in *S. pneumoniae* (Beilharz et al., 2015). Because of its relative stability, mKate2 is preferred over mCherry for localization studies. To construct a markerless carboxyl fusion of *ftsZ* to *mKate2*, intermediate strain IU7614 (*ftsZ*⁺-P_c-[*kan-rpsL*⁺]) was constructed by insertion of the P_c-[*kan-rpsL*⁺] cassette after the *ftsZ* stop codon. The P_c-[*kan-rpsL*⁺] cassette was followed by a duplicated 60 bp of the 3'- 98 end of *ftsZ* and the downstream gene *yImE*. An *ftsZ*-L₂-*mKate2* fusion amplicon with 99 *ftsZ* replaced by *ftsZ*-L₂-*mKate2*, followed by 17 bp of the 3'-end of *ftsZ* was constructed 100 and transformed into strain IU7614 to obtain IU9148 (*ftsZ*-L₂-*mKate2*). The L₂ linker 101 sequence KLDIEFLQ was used for the C-terminal fusion as described in (Fleurie *et al.*, 102 2014).

To construct a markerless N-terminal fusion of gfp to mltG, intermediate strain 103 IU8980 ($P_c[kan-rpsL^+]$ -mltG⁺) was constructed with the $P_c[kan-rpsL^+]$ cassette placed 104 80 bp upstream of *mltG*. A *gfp*-L₁-*mltG* fusion amplicon with *mltG* replaced by *gfp*-L₁-105 *mltG* was constructed and transformed into IU8980 to obtain IU10228 (*gfp*-L₁-*mltG*). 106 The original *mltG* start codon TTG is replaced with ATG of *qfp*. The L₁ linker sequence 107 LEGSG was used for the N-terminal fusion as described in (Fleurie et al., 2014). The 108 DNA template for gfp is pUC57-gfp(Sp) (Martin et al., 2010), which was codon 109 optimized for S. pneumoniae and has an aa substitution (A206K) that prevents GFP 110 dimerization. 111

To construct double $ftsZ-L_2$ - $mKate2 gfp-L_1$ -mltG strain IU10353, IU10228 ($gfp-L_1$ mltG) was transformed with the $ftsZ^+-P_c$ -[kan- $rpsL^+$] amplicon from IU7614 to obtain IU10318 ($gfp-L_1$ -mltG $ftsZ^+-P_c$ -[kan- $rpsL^+$]). IU10318 was tranformed with a $ftsZ-L_2$ mKate2 amplicon from IU9148 to obtain final strain IU10353.

116

117 **Construction of mltG(ΔDUF 1346) strains**

Initially we did not known whether the DUF_1346 domain was essential for MltG function. Since $\Delta mltG \Delta pbp1a$ strains are viable, whereas $\Delta mltG pbp1a^+$ strains are not, a $mltG(\Delta DUF_1346)$ mutation was first constructed in strain IU6741 (D39 $\Delta cps rpsL1$

 $\Delta pbp1a$). IU6741 was transformed with $\Delta m tG::P_c-[kan-rpsL^+]$ from strain K637, 121 producing strain IU7325 (D39 Δcps rpsL1 $\Delta pbp1a \Delta mltG::P_c-[kan-rpsL^+]$). A 122 mltG(Δ DUF 1346) fusion amplicon was then constructed by fusion PCR and 123 transformed into IU7325. The resulting strain was designated as IU8910 (D39 Δcps 124 *rpsL1* $\Delta pbp1a$ *mltG*(ΔDUF 1346)). To evaluate whether the *mltG*(ΔDUF 1346) allele is 125 functional in IU8910, we attempted to transform a $\Delta pbp2b$ amplicon (Table 2) into 126 IU8910. No colonies were recovered, indicating that $MltG(\Delta DUF_{1346})$ is functional in 127 IU8910. 128

¹²⁹ We synthesized an *mltG*(Δ DUF_1346) amplicon from strain IU8910 and transformed ¹³⁰ the amplicon into strain IU8980 (P_c[*kan-rpsL*⁺]-*mltG*⁺). Hundreds of well-formed ¹³¹ streptomycin resistant colonies appeared after 20 hours of incubation. Two isolates ¹³² (strain IU9025 and IU9026) were stored from independent transformations, and DNA ¹³³ sequencing confirmed that both strains contain the *mltG*(Δ DUF_1346) allele. DNA ¹³⁴ sequencing also confirmed that *pbp1a*⁺ of strain IU9025 had not accumulated any ¹³⁵ mutations.

136

137

Conditions comparing growth of mltG⁺ and mltG(Δ DUF_1346) strains (Fig. S9)

Growth of *mltG*⁺ parent strain IU1824 and *mltG*(ΔDUF_1346) mutant IU9025 was compared in media containing high salt, β-lactam antibiotic penicillin G, and at low pH. To test growth in high salt conditions, IU1824 and IU9025 were grown in BHI broth without additional NaCl (0.08 M NaCl in BHI formula), or in BHI broth with additional NaCl to a final concentration of 0.3 M. Strains were grown overnight in BHI broth, and diluted to $OD_{620} \approx 0.003$ in BHI broth with or without additional NaCl. To test the growth

of IU1824 and IU9025 in the presence penicillin G, strains were grown overnight in BHI 144 broth, and diluted to $OD_{620} \approx 0.003$ in BHI broth for culture growth. At $OD_{620} \approx 0.1$, 145 penicillin G sodium salt (Sigma PEN-NA) was added to the cultures to final 146 concentrations of 0, 0.004 (0.5x MIC, Kocaoglu et al., 2015), and 0.006 µg/ml. This 147 experiment was repeated once with addition of penicillin G concentrations of 0, 0.002, 148 0.004 and 0.008 µg/ml. To test the growth of IU1824 and IU9025 at low pH condition, 149 strains were grown overnight in BHI broth (pH 7.2), and diluted to OD₆₂₀ ≈0.003 in BHI 150 broth for culture growth. At OD₆₂₀ ≈0.1, 100 or 150 µL of 1 M HCl were added to the 5 151 mL cultures to decrease the pH to 5.8 or 5.0. This growth experiment was repeated 152 once. To test the effect of temperature on growth of $mltG^+$ and $mltG(\Delta DUF 1346)$ 153 strains, ice from frozen cultures of both strains was streaked onto two TSAII-BA plates. 154 One plate was incubated at 37°C in an atmosphere of 5% CO₂ overnight, and the other 155 was incubated at 42°C in an atmosphere of 5% CO₂ overnight. The size and 156 157 morphologies of the colonies of the two strains were compared.

158

159 Western blotting (Fig. S2)

Strains were grown exponentially in BHI broth to $OD_{620} \approx 0.15$. Lysates were prepared as described previously (Wayne *et al.*, 2012) and separated using 10 % or 4-15% mini-protean TGX pre-cast gels (Bio-Rad). FLAG-, HA-, and Myc-tagged proteins were detected by Western blotting as described previously (Tsui *et al.*, 2014). Chemiluminescent signal in protein bands was quantitated by using an IVIS imaging system as described in (Wayne *et al.*, 2010).

166

168

DNA library construction, Illumina MiSeq DNA sequencing, and bioinformatic analyses (Table 1)

One µg of genomic DNA of each sample was diluted to 130 µL with TE and sheared 169 using the following settings on the S220 focused-ultrasonicator (Covaris): 105W Peak 170 Incident Power; 5 % Duty Factor, 200 Cycles Per Burst; 40 seconds Treatment Time. 171 Sheared samples were purified using AmpureXP beads (Agencourt/Seradyn/Beckman 172 Coulter, A63881) to sample ratio of 0.5X and eluted with 54 µL of EB (Qiagen). Sheared 173 samples were visualized using a D1K High Sensitivity tape (Agilent, 5067-5363) on an 174 Agilent 2200 TapeStation and consisted mostly of ≈650 to 700 bp fragments. Library 175 construction was carried out on the Biomek FX^P (Beckman Coulter) using a modified 176 SWHT (SPRIworks High Throughput for Illumina, Beckman Coulter) method to 177 accommodate a 700 bp distribution. Bioo Scientific NextFlex DNASeq Library Kit for 178 Biomek FX^P (5140-42) was used in conjunction with Bioo Scientific NextFlex DNA 179 barcodes-96 adaptors (514105). Following library construction, 15 µL of the 25 µL pre-180 enrichment library was used as template in a 10-cycle PCR amplification. Library sizes 181 and concentrations were determined using TapeStation and Quant-iT Picogreen 182 183 (Molecular Probes, P7589), respectively. Dilutions were made to 20 nM and pooled in preparation for a MiSeq run. 30 µL of 20 nM library was diluted to 500 µL using Illumina 184 buffer HT1 and loaded onto a 500 cycle MiSeq (version 2) flowcell (Illumina, MS-102-185 2003). Paired-end run cycle parameters were 260 (Read1) + 8 (Index read) + 260 186 (Read2). DNA sequences were assembled based on the published encapsulated D39 187 genome sequence (Lanie et al., 2007). Bioinformatic analyses was performed using 188 cutadapt (https://code.google.com/p/cutadapt/) with a min length of 100 and quality 189

cutoff of 30, and assembled using newbler (Margulies *et al.*, 2005), mapped using
 bowtie (Langmead *et al.*, 2009) and called SNPs using mpileup (Li *et al.*, 2009). Full
 coverage was obtained for the genomes of each mutant with >175 reads of most base
 pairs. Gaps were only present at the expected *cps2A* to *cps2H* and *pbp2b* regions.

194

195

MItG sequence alignment and secondary structure information (Fig. 5 and S6)

The MltG_{Eco} sequence (gi accession 687676267) was aligned with the MltG_{Spn} (gi: 116076234) and YceG_{Lmo} (gi: 16803539) using Clustal Omega (Sievers *et al.*, 2011) with default parameters. Secondary structure information of MltG_{Eco} was obtained from the PDB database (PDB ID: 2R1F).

200

201 **RNA-Seq analysis (Table 4)**

cDNA libraries were prepared from total RNA by the Center for Genomics and 202 203 Bioinformatics at Indiana University in Bloomington, Indiana. The mRNA was enriched from 1 µg of total RNA using RiboZero[™] rRNA Removal Kit (Bacteria) (EpiCentre, Inc.). 204 rRNA-depleted mRNA samples were purified using RNeasy Minelute Cleanup Kit 205 206 (Qiagen). Double-stranded cDNA synthesis was performed following ScriptSeq[™] Complete Kit (Bacteria) Preparation guide (EpiCentre, Inc.) in accordance with the 207 208 manufacturer's standard protocol. Entire resultant mRNA sample was fragmented using divalent cations via incubation for 5 min at 85°C. The first strand of cDNA was 209 synthesized by reverse transcription using random-sequence primers containing a 210 tagging sequence at their 5' ends. Di-tagged cDNA was synthesized by random 211 annealing of a terminal-Tagging Oligo to the 3' end of the cDNA for extension of the 212

cDNA by DNA polymerase. Di-tagged cDNA was purified using Agencourt AMPure® XP 213 beads (Beckman Coulter) followed by PCR amplification for 15 cycles using Failsafe™ 214 PCR enzyme and ScriptSeg[™] Index PCR Primer set (EpiCentre, Inc.). This step 215 generated the second strand of cDNA and completed the addition of Illumina adapter 216 sequences incorporating a user-defined barcode. The amplified libraries were purified 217 218 using Agencourt AMPure® XP beads. Quality and quantity were assessed using D1000 TapeStation (Agilent Technologies) and Quant-iT[™] PicoGreen® dsDNA Assay Kit (Life 219 Technologies), respectively. Sequencing was performed at the Greehey Children's 220 Cancer Research Institute Genome Sequencing Facility at the University of Texas 221 Health Science Center at San Antonio, Texas. Cluster generation was performed using 222 TruSeq PE Cluster Kit v3-cBot-HS (Illumina). Single-end, 50 bp sequencing was 223 performed using TruSeq SBS Kit v3-HS (Illumina) on a HiSeq 2000 sequencer 224 (Illumina). Image analysis, base calling, sequencing reads de-multiplexing were 225 followed by default Illumina procedure. 226

The raw sequencing reads were quality and adapter trimmed using Trimmomatic 227 version 33 (Lohse et al., 2012) with a minimum final read length of 35. The trimmed 228 229 reads were mapped onto the S. pneumoniae D39 (RefSeq NC_008533) genome and D39 plasmid pDP1 sequence (RefSeq NC_005022) using bowtie2 version 2.1 230 (Langmead & Salzberg, 2012). Custom PERL scripts were used to generate read 231 counts for the genes and 100 bp non-overlapping intergenic regions of the genome. 232 Differential gene expression was identified using DESeq2 (version 1.8.1) (Love et al., 233 2014) using default parameters (Robinson et al., 2010). The false-discovery rate (FDR) 234 was calculated using Benjamini and Hochberg's algorithm (Benjamini & Hochberg, 235

1995) and a gene or region was defined as differentially expressed if it had an up- or down-fold change of 1.8 and their FDR was less than 0.05.

238

237

239

QRT-PCR analysis (Fig. S15)

RNA from each strain was prepared as described in *Experimental procedures* for 240 RNA-Seq analysis. Five µg of purified RNA were further treated with DNA-free DNA 241 Removal Kit (Ambion). 125 ng of treated RNA were used to synthesize cDNA by qScript 242 Felex cDNA synthesis kit (Quanta Biosciences). RT-PCR was performed using the 243 Brilliant III Ultra-Fast SYBR Green gPCR Master Mix (Agilent Technologies). Each 244 reaction contained 10 µl of 2×Brilliant III Ultra-Fast SYBR Green QPCR Master Mix 245 (Agilent), 2 µl of each 2 µM primers (Table S2), 0.3 µl of a 1:500 dilution of ROX 246 reference dye and 6 µl of diluted cDNA. Samples were run in an MX3000P thermocycler 247 (Stratagene) with Program MxPro v. 3.0. QRT-PCR reactions were performed 3 times 248 each for three independent biological samples. The transcript amounts were normalized 249 to gyrA RNA amount (Table S2). Data were analyzed with the SYBR Green (with 250 dissociation curve) program on the thermocycler. Four dilutions of cDNA from a wild-251 252 type S. pneumoniae strain were used to generate standard curves for each primer set. For statistical analysis, normalized transcript amounts of spd_1874, spd_0104, and 253 254 pcsB were tested with a one sample t test (GraphPad Prism) to determine if the mean was significantly different from a hypothetical value of 1. 255

- 256
- 258

Membrane preparation from S. pneumoniae cells for zymogram analysis (Fig. S8) 259 Membrane preparations from strains IU1945 (D39 $\triangle cps$ parent), K5 ($\triangle lytC$), K27 260 $(\Delta lytB)$ and K43 $(\Delta lytA)$ were made as previously described with minor modifications 261 (Wayne et al., 2010). Briefly, 20 mL cultures of each strain were grown in BHI broth to 262 $OD_{620} \approx 0.3$. Cells were collected by centrifuging at 16,500 xg for 5 min at 4°C. Pellets 263 were washed with 2 mL 1 x SMM buffer (0.5 M sucrose, 20 mM MgCl₂, 20 mM MES pH 264 6.5) at room temperature and resuspended in 2 mL 1 x SMM buffer. 100 µL of 10 265 mg/mL lysozyme (Sigma), 8 µL of 1mg/mL of mutanolysin (Sigma), and 20 µL of 266 protease inhibitor cocktail set III (Calbiochem) were added to each resuspended pellet, 267 and mixtures were incubated at 37°C for 1 hour to digest cell wall. Protoplasts were 268 collected as pellets following centrifugation at 8,000 xg for 10 min at room temperature. 269 Protoplast pellets were frozen on dry ice for 10 min and resuspended in 2 mL of cold 270 Buffer H (20 mM HEPES, pH 8.0, 200 mM NaCl, 1 mM DTT, and protease inhibitor 271 cocktail set III). 20 µL of 0.1 M MgCl₂, 20 µL of 0.1 M CaCl₂, 4 µL of 5 mg/mL DNase 272 (Sigma), and 4 µL of 10 mg/mL RNase (Sigma) were added to each resuspended pellet, 273 and the mixtures were incubated on ice for 1 h. Following centrifugation at 16,000 xg for 274 275 30 min at 4°C, the pellets were collected as membrane fractions, and were resuspended in 60 µL solubilization buffer (1% (wt/vol) SDS, 0.1% vol/vol Triton-X-100). 5 µL was 276 taken for protein concentration determination with the DCTm protein assay kit (Bio-Rad). 277 Equal volumes of 2X Laemmli sample buffer (Bio-Rad, 161-0737) without added β -278 mercaptoethanol, were added to the remaining membrane solutions. Mixtures were 279 incubated at 100°C for 10 min before loading into gel lanes for zymogram analysis. 280

281

282 Zymogram analysis (Fig. S8)

Zymogram analysis was performed with a protocol modified from Bartual et al., 283 (2014). Lysed cell preparation from strain IU1945 was used as the PG substrate. 300 284 mL of strain IU1945 was grown up to OD₆₂₀ ≈0.3 in BHI broth and collected by 285 centrifugation at 10,000 xg for 10 min at 4 °C. Pellets were washed once with 5 mL of 286 ice-cold buffer containing 100 mM NaCl, 20 mM Tris-HCl pH 7.4 buffer, and 287 resuspended in 1.5 mL of the same buffer. Resuspended cells were incubated at 100 °C 288 for 10 min, followed by centrifugation at 16,000 xg for 10 min. The pellet was 289 resuspended in 1.5 mL of 1.5 M Tris-HCl, pH 8.8 and stored at -20 °C. The 1.5 mL 290 suspension of lysed IU1945 cells was added to a 12% SDS-PAGE resolving gel solution 291 (total volume 7.5 mL) containing 0.33 mL of 1.5 M Tris-HCI (pH 8.8), 75 µL of 10% SDS, 292 2.25 mL of 40% acrylamide (19:1 acrylamide/bis-acrylamide, A9926 Sigma), 3.3 mL 293 water, 37.5 µL 10% ammonium persulfate (APS) and 3.75 µL TEMED (Bio-Rad, 294 295 1610800). 4% SDS-PAGE stacking gel solution was made with a mixture of 470 µL of 0.5M Tris-HCl, pH 6.8, 19 µL of 10 %SDS, 190 µL of 40 % acrylamide, 1.2 mL water, 11 296 µL 10 % APS, and 1.1 µL TEMED. 35 µg of membrane proteins from strains IU1945, 297 298 K7, K27 or K43, or 10 μL of PageRuler prestained protein ladder (Thermo Scientific) was loaded into each lane. Gel electrophoresis was performed in Tris-glycine SDS 299 300 buffer for 3h at 150V. The gel was washed with distilled water twice for 30 min each and incubated in ≈300 mL of refolding buffer (50 mM NaCl, 20 mM MgCl₂, 0.5% (vol/vol) 301 Triton X-100, and 20 mM Tris-HCl, pH 7.4) with gentle shaking at 37 °C for 12 to 14 h. 302 Gel images were obtained by photography against a black background. 303

S. pneumoniae strains			
Strain	Genotype (description) ^b	Antibiotic	Reference or
number		resistance ^c	source
IU1690	D39 cps ⁺	None	Lanie <i>et al.</i> , 2007
	,		,
IU1751	R6 ∆mreCD<>aad9	Spc ^R	Land and
		•	Winkler, 2011
IU1824	D39 rpsL1 \triangle cps2A'-cps2H' = D39 rpsL1	Str ^R	Lanie <i>et al.</i> , 2007
	Δcps		
IU1945	$D39 \Delta cps2A'-cps2H'= D39 \Delta cps$	None	Lanie <i>et al.</i> , 2007
IU2519	D39 ΔbgaA'::kant1t2-P _{fcsK} -pcsB ⁺	Kan ^R	Barendt et al.,
			2009
IU3286	D39 rpsL1 Δ cps2E::P _c -[kan-rpsL ⁺]	Kan ^R Str ^s	Ramos-
			Montanez et al.,
			2010
IU3877	D39 $\Delta cps \Delta lytB <> P_c - [kan-rpsL^+]$	Kan ^R	Barendt <i>et al.</i> ,
			2011
IU3878	D39 $\Delta cps \Delta spd_0873 <> P_c - [kan-rpsL^+]$	Kan ^ĸ	Barendt <i>et al</i> .,
			2011
IU3897	D39 $\Delta cps \Delta mreCD <> P_c-erm$	Erm ^R	Land & Winkler,
		P	2011
IU4970	D39 Δcps mreC-L-FLAG ³ -P _c -erm	Erm∽	Land & Winkler,
		P	2011
106647	D39 $\Delta cps \Delta pbp1a::P_c-erm$ (IU1945 X	Erm'`	This study
	$\Delta pbp1a:: P_c-erm from E177)$		
106649	D39 $\Delta cps \Delta pbp1b$::P _c -erm (IU1945 X	Erm'`	This study
	$\Delta pop10$: P _c -erm from E193)	Kanß	This study
106662	$D39 \Delta cps \Delta pbp1a::P_c-[kan-rpsL^+]$	Kan	i nis study
	$(101945 \times \Delta p p p 1a:: P_c-[kan-rpsL] from (101945 \times \Delta p p p 1a:: P_c-[kan-rpsL])$		
1116690	$\mathbb{D}_{20}^{(k)}$	Kon ^R	This study
100000	$D39 \Delta C p S \Delta p D p 2 a P_c - [kan-rpsL]$	Nan	This study
	$(101945 \land \Delta p p p 2 a F_c - [kair-rpsL] 110111 (101945 \land \Delta p p p 2 a F_c - [kair-rpsL] 110111$		
11.16726	D39 Λ cns rnsl 1 Λ nbn1a: P -[kan-rnsl ⁺]	Kan ^R Str ^S	This study
100720	$(III 1824 \times \Lambda pp 12P[kap-rns]^+]$ from		This study
1U6741	D39 Acps rpsl 1 Appp 1a (IU6726 X	Str ^R Kan ^S	This study
	fusion $\Delta pbp1a$)		
IU7258	D39 $\triangle cps \Delta m ltG::P_c-[kan-rpsL^+] sup1$	Kan ^R	This study
	$(pbp1a (G494E)(GGA \rightarrow GAA) (single)$,
	colony isolate of K637)		
IU7260	D39 $\Delta cps \Delta m ltG::P_c-erm sup1$	Erm ^R	This study
	(<i>pbp1a</i> (∆G at G451)(GGҬ _д G-T)(single		

TABLE S1. Bacterial strains used in this study^a

	colony isolate of E681)		
IU7286	D39 $\Delta cps \Delta mltG::P_c-[kan-rpsL^+] sup2$	Kan ^R	This study
	(<i>pbp1a</i> (S89F)(TCT→TTT) (IU1945 X		-
	$\Delta m lt G:: P_c - [kan - rpsL^+]$ from IU7258)		
IU7287	D39 $\triangle cps \Delta mltG::P_c-[kan-rpsL^+] sup3$	Kan ^R	This study
	(<i>pbp1a</i> (∆A at K160)(AAA→AA-))		
	(IU1945 X $\Delta m lt G:: P_c - [kan - rpsL^+]$ from		
	IU7258)		
IU7288	D39 $\triangle cps \Delta mltG::P_c-erm sup2$	Erm ^R	This study
	(<i>pbp1a</i> (ΩT at		
	F33)(TTC→TTTC))(IU1945 X		
	$\Delta m lt G:: P_c$ -erm from IU7260)		
IU7325	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c$ -	Kan ^R Str ^s	This study
	[<i>kan-rpsL</i> ⁺] (IU6741 X ∆ <i>mltG</i> ::P _c -[<i>kan-</i>		
	<i>rpsL</i> ⁺] from K637)		
IU7327	D39 $\triangle cps rpsL1 \triangle pbp1a \triangle mltG::P_c-erm$	Erm ^R Str ^R	This study
	(IU6741 X ∆ <i>mltG</i> ::P _c - <i>erm</i> from IU7260)		
IU7337	D39 $\Delta cps \Delta bgaA::kan-t1t2-P_{fcsK}-pbp2b$	Kan ^ĸ	Tsui <i>et al.</i> , 2014
IU7397	D39 Δcps ∆pbp2b<>aad9//ΔbgaA::kan-	Kan ^ĸ Spc ^ĸ	Tsui <i>et al</i> ., 2014
	t1t2-P _{fcsK} -pbp2b		
IU7399	D39 ∆ <i>cps mltG</i> -HA-P _c - <i>kan</i> (IU1945 X	Kan ^R	This study
	fusion <i>mltG</i> -HA-P _c - <i>kan</i>)		
IU7403	D39 ∆cps mltG-FLAG-P _c -erm (IU1945	Erm ^R	This study
	X fusion <i>mltG</i> -FLAG-P _c - <i>erm</i>)		
IU7405	D39 ∆ <i>cps mltG</i> -Myc-P _c - <i>kan</i> (IU1945 X	Kan ^ĸ	This study
	fusion <i>mltG</i> -Myc-P _c - <i>kan</i>)		
IU7476	D39 Δ <i>cps</i> ∆ <i>pbp</i> 2 <i>b</i> <> <i>aad</i> 9 <i>sup1</i> (IU1945	Spc ^ĸ	This study
	X <i>∆pbp2b</i> <> <i>aad9</i> from IU7397)		
IU7477	D39 Δcps ∆pbp2b<>aad9 sup2 (IU1945	Spc ^R	This study
	X ∆ <i>pbp2b<>aad9</i> from IU7397)		
IU7567	D39 Δcps ∆pbp2b<>aad9 sup3 (IU1945	Spc ^R	This study
	$X \Delta pbp2b <> aad9 from IU7397$		
IU7570	D39 $\Delta cps \wedge pbp2b <> aad9 sup4 (IU1945)$	Spc ^R	This study
	$X \wedge pbp2b <> aad9 from IU7397$	•	,
1U7580	D39 \land cps mreC-I -FI AG ³ -P ₂ -erm mltG-	Kan ^R Frm ^R	This study
101000	HA-P _c -kan (IU4970 X mltG-HA-P _c -kan		The etady
	from IU7399)		
IU7582	D39 $\triangle cps mreC-L-FLAG^3-P_c-erm mltG-$	Kan ^R Erm ^R	This study
	Mvc-P _c - <i>kan</i> (IU4970 X <i>mltG-</i> Mvc-P _c -		· · · ,
	kan from IU7405)		
IU7614	D39 $\triangle cps rpsL1 ftsZ^+-P_c-[kan-rpsL^+]$	Kan ^R Str ^s	This study
	$(IU1824 X \text{ fusion } ftsZ^+ - P_c^- [kan-rpsL^+])$,
IU7765	D39 $\Delta cps \Delta pbp2b <> aad9 sup5 (IU1945)$	Spc ^R	This study
	X ∆pbp2b<>aad9 from IU7397)		

IU7837	D39 Δcps rpsL1 pbp1a (G494E)	Str ^R Kan ^s	This study
1117920	$(100720 \times pp)$ a allele 11011107256)	Str ^R Kop ^S	This study
107839	$(IU6726 \times pbp1a \text{ allele from }IU7260)$	Sti Kan	This study
IU7840	D39 $\Delta cps rpsL1 pbp1a$ (S89F) (IU6726	Str ^R Kan ^s	This study
11.170.40	X pop ra allele from 107286)	OtrB Kars	This study
107843	$(IU6726 \times pbp1a \text{ allele from }IU7287)$	Str Kan	This study
IU7845	D39 $\Delta cps rpsL1 pbp1a$ (ΩT at F33)	Str ^R Kan ^S	This study
1117850	$D39 A cns A nbn1b:P -[kan-rns]^+]$	Kan ^R Str ^S	This study
107030	IU1824 X $\Delta pbp1b$::P _c -[kan-rpsL ⁺] from K180		This study
IU7852	D39 Δ <i>cps</i> Δ <i>pbp2a</i> ::P _c -[<i>kan-rpsL</i> ⁺] IU1824 X Δ <i>pbp2a</i> ::P _c -[<i>kan-rpsL</i> ⁺] from K166	Kan ^R Str ^s	This study
IU7931	D39 $\triangle cps rpsL1 \triangle pbp1a \triangle mltG::P_c-erm \triangle pbp2b <> aad9 (IU7327 X\triangle pbp2b <> aad9 from IU7397)$	Erm ^R Str ^R	This study
IU8549	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 5bp)$ (IU7325 X mltG($\Delta 5bp$) from IU7477)	Str ^R Kan ^S	This study
IU8551	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(Y488D)$ (IU7325 X mltG(Y488D) from IU7567)	Str ^R Kan ^s	This study
IU8553	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 488bp)$ (IU7325 X mltG($\Delta 488bp$) from IU7570)	Str ^R Kan ^s	This study
IU8555	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Omega 45bp)^2$ (IU7325 X mltG(\Omega45bp)^2 from IU7765)	Str ^R Kan ^S	This study
IU8565	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 5bp)$ $\Delta pbp2b <> aad9 (IU8549 X)\Delta pbp2b <> aad9 from IU7397)$	Str ^R Kan ^S Spc ^R	This study
IU8567	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 488bp)$ $\Delta pbp2b <> aad9 (IU8553 X \Delta pbp2b <> aad9 from IU7397)$	Str ^R Kan ^s Spc ^R	This study
IU8569	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Omega 45bp)^2$ $\Delta pbp2b <> aad9 (IU8555 X \Delta pbp2b <> aad9 from IU7397)$	Str ^R Kan ^s Spc ^R	This study
IU8872	D39 $\Delta cps \Delta bgaA::tet-P_{Zn}-RBS_{mltG}-mltG^+$ (IU1945 X fusion $\Delta bgaA::tet-P_{Zn}-RBS_{mltG}-mltG)$	Tet ^R	This study
IU8873	D39 $\triangle cps rpsL1 \triangle pbp1a mltG(E428Q)$ (IU7325 X fusion mltG(E428Q))	Str ^R Kan ^s	This study
IU8910	D39 $\Delta cps rpsL1 \Delta pbp1a$ mltG(ΔDUF_1346) (IU7325 X fusion mltG(ΔDUF_1346))	Str ^R Kan ^s	This study

IU8964	D39 $\triangle cps rpsL1 \triangle pbp1a mltG(E428Q)$	Str ^R Kan ^s	This study
	∆pbp2b<>aad9 (IU8873 X	Spc ^R	
	$\Delta pbp2b <> aad9$ from IU7397)	•	
IU8980	D39 $\Delta cps rpsL1 P_c$ -[kan-rpsL ⁺]-mltG ⁺	Kan ^R Str ^s	This study
	(IU1824 X fusion P_c -[kan-rpsL ⁺]-mltG ⁺)		· · · ,
IU8982	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(E428A)$	Str ^R Kan ^S	This study
	(IU7325 X fusion <i>mltG</i> (E428A))		
IU8986	D39 $\Delta cps rpsL1 mltG^+-P_c^-[kan-rpsL^+]$	Kan ^R Str ^s	This study
	(IU1824 X fusion <i>mltG</i> ⁺ -P _c -[<i>kan-rpsL</i> ⁺]		
IU9025	D39 $\Delta cps rpsL1 mltG(\Delta DUF_1346)$	Str ^R Kan ^S	This study
	<i>pbp1a</i> ⁺ (IU8980 X <i>mltG</i> (∆DUF_1346)		
	from IU8910)	вв	
IU9041	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(E428Q)$ -	Erm ^R Str ^R	This study
	FLAG-P _c -erm (IU7325 X fusion		
	mltG(E428Q)-FLAG-P _c -erm)		
IU9043	D39 Δcps rpsL1 ∆pbp1a mltG-FLAG-	Erm [~] Str [~]	This study
	P _c -erm (IU7325 X mltG-FLAG-P _c -erm		
	from 107403)		
IU9100	D39 $\Delta cps \Delta m ltG::P_c-erm//\Delta bgaA::tet-$	Tet'`Erm'`	This study
	P _{Zn} -RBS _{mltG} -mltG ⁺ (IU8872 X		
	$\Delta m lt G:: P_c - erm from 107260)$		
109102	D39 $\Delta cps \Delta m tG:: P_c-aad9 // \Delta bga A:: tet-$	Tet" Spc"	This study
	P _{Zn} -RBS _{<i>mltG</i>} - <i>mltG</i> ⁺ (IU8872 X fusion		
	$\Delta m t G:: P_c - a a d 9)$		
109148	D39 Δ cps rpsL1 ftsZ-L ₂ -mKate2	Strikan	This study
	$(IU/614 \text{ X fusion fts} \angle L_2 - mKate2)$	K B C S	
109231	D39 Δcps rpsL1 $\Delta walK::P_c$ -[kan-rpsL']	Kan' Str	This study
	$(IU1824 \ X \ \Delta walK::P_c-[kan-rpsL'] from$		
	K208)		T 1 's set 1
109233	D39 Δcps rpsL1 $\Delta pbp1a \Delta walK::P_c$ -	Kan' Str	This study
	$[Kan-rpsL^{+}]$ (106741 X $\Delta WalK::P_{c}$ - $[Kan-$		
11.10005	<i>rpsL</i> from K208)		
109235	D39 Δcps rpsL1 $\Delta ppp1a \Delta mitG::P_c-erm$	Kan [®] Erm [®]	i nis study
	$\Delta WalK: P_{c}[Kan-rpsL^{\dagger}] (IU7327 X)$	Str	
11.10070	$\Delta Walk: P_c-[kan-ipsl] 1000 k208)$		This study
109278	$D39 \Delta cps rpsL T \Delta prinp23P_c-[kan-$	Kan Str	i nis study
	I_{psc} [101024 $\land \Delta \rho III \rho 23P_{\text{c}}$ -[kall-		
11.10200	D20 A one real 1 A photo A mltCuD orm	Kon ^R Str ^S	
109290	Δpmp_{22}	ran Su	This study
	$\Delta p m p 22 m [kan rnol^{+}] \text{ from } (27)$		
11.10202	$\frac{\Delta \rho m \rho z_{3\rho_{c}}}{\Delta \rho n \rho r n \rho s L} \frac{1}{\Delta \rho h \rho s L} \frac{1}{2} \frac{1}{2$		
109292	D39 Δcps IpsL I Δpop Ia $\Delta IIIIG:: P_c-eIIII$	Kan Sir	This study
	$\Delta \text{Sp0}_1874P_c \text{-}[\text{karl-}1\text{psL}] (107327 \text{ A})$		
	$\Delta S \mu u_1074r_c - [kar-r \mu SL_1 10111 h S7)$		

	· · · · · · · · · · · · · · · · · · ·		
IU9294	D39 $\triangle cps rpsL1 \triangle pbp1a \triangle mltG::P_c-erm$	Kan ^R Str ^S	This study
	$\Delta lytC: P_{c} = [kan rpsL]^{+1}$ from K5)		
109296	D39 $\Delta cps rpsL1 \wedge pbp1a \wedge mltG::P_c-erm$	Kan ^R Str ^S	This study
	$\Delta spd 0873 <> P_c-[kan-rpsL^+] (IU7327 X)$		
	$\Delta spd_{0873} <> P_c - [kan - rpsL^+]$ from K29)		
IU9298	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^s	This study
	$\Delta lytB::P_{c}-[kan-rpsL^{+}]$ (IU7327 X		
	Δ <i>lytB</i> ::P _c -[<i>kan-rpsL</i> ⁺] from K27)		
IU9316	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^S	This study
	$\Delta spd_0104:: P_c-[kan-rpsL^+]$ (IU7327 X		
	$\Delta spd_0104::P_c-[kan-rpsL^+]$ from K15)	B _ 8	
IU9318	D39 $\triangle cps rpsL1 \triangle pbp1a \triangle mltG::P_c-erm$	Kan ^r Str ^s	This study
	$\Delta spd_0703::P_c-[kan-rpsL^+]$ (IU7327 X		
	$\Delta spd_0/03::P_c-[kan-rpsL^{-}]$ from K489)	K B O S	
109320	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan' Str	This study
	$\Delta pspA::P_c-[kan-rpsL^{+}]$ (IU7327 X		
11.10220	$\Delta pspA::P_c-[kan-rpsL] from K75)$		
109330	$\Delta b a a A' + k a r t 1 t 2 D = p a a P^+ (11) (\Delta 4880 P)$	Kan Su	This study
	$\Delta bgaA''' kant1t2-P_{fcsk}-pcsB'' (100555 A)$		
11.19382	D39 Acps rost 1 \wedge pbp1a \wedge mltG P ₂ -erm	Kan ^R Str ^S	This study
100002	$\Delta lvtA::P_{c}$ -[kan-rpsL ⁺] (IU7327 X		This study
	Δ /vtA::P _c -[kan-rpsL ⁺] from K43)		
IU9384	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^s	This study
	$\Delta cbpD::P_c-[kan-rpsL^+]$ (IU7327 X		
	$\Delta cbpD::P_{c}-[kan-rpsL^{+}]$ from K148)		
IU9386	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^s	This study
	Δ dacA::P _c -[kan-rpsL ⁺] (IU7327 X		
	$\Delta dacA::P_{c}-[kan-rpsL^{+}]$ from K35)		
IU9388	D39 $\triangle cps rpsL1 \triangle pbp1a \triangle mltG::P_c-erm$	Kan ^R Str ^S	This study
	$\Delta dacB::P_{c}-[kan-rpsL^{+}]$ (IU7327 X		
	$\Delta dacB::P_c-[kan-rpsL^+]$ from K25)	R R R R	
109390	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan'` Str ³	This study
	$\Delta \text{spd}_0173::P_c-[kan-rpsL^*]$ (IU7327 X		
11.10.4.45	$\Delta spd_0173::P_c-[kan-rpsL^{-}]$ from K372)		
109445	$D39 \Delta cps rpsL1 \Delta ppp 1a mitG(E428A)$ -	Erm' Str	i nis study
	$FLAG-P_c-eIIII (107325 \times 105101)$ mltG(E428A)-ELAG-D_orm)		
11 10750	$\frac{111110}{12420A} = \frac{1}{2} $	Kan ^R Str ^S	This study
109139	$mltG(\Lambda 5hn) \Lambda nhn2h > 2200 (II) R565 Y$		This study
	$\Lambda php1a:P_{-}[kan-rnsl^+]$ from K16A	Cpc	
109760	$D39 \Delta cps rpsL1 mltG(Y488D) (IU8986)$	Str ^R Kan ^S	This study
100100			

	X mltG(Y488D) from IU7567)		
IU9765	D39 Δcps ΔbgaA::tet-P _{Zn} -RBS _{ftsA} -	Tet ^R	This study
	rodZ(spd_2050) ⁺ (IU1945 X fusion		,
	$\Delta bgaA::tet-P_{Zn}-RBS_{ttsA}-rodZ$		
IU9771	D39 cps ⁺ ΔmltG::P _c -erm (IU1690 X	Erm ^R	This study
	Δ <i>mltG</i> :: P _c - <i>erm</i> from E681), <i>pbp1a</i>		-
	sequenced to contain no mutation		
IU9772	D39 $cps^+ \Delta m ltG::P_c-erm$ (IU1690 X	Erm ^R	This study
	Δ <i>mltG</i> :: P _c - <i>erm</i> from E681), second		
	isolate, <i>pbp1a</i> sequenced to contain no		
	mutation		
IU9777	D39 $\Delta cps rpsL1 pbp1a^+ mltG(\Delta 5bp)$	Str ^R Kan ^s	This study
	$\Delta pbp2b <> aad9$ (IU9759 X $pbp1a^+$ from	Spc ^R	
	IÚ1690)		
IU9783	D39 Δcps rpsL1 mltG(Y488D)	Str ^R Kan ^s	This study
	∆pbp2b<>aad9 (IU9760 X	Spc ^R	,
	$\wedge pbp2b <> aad9$ from IU7397)	•	
IU9877	D39 $\Delta cps rpsL1 \Delta pbp1a::P_{c}-[kan-rpsL^{+}]$	Kan ^R Str ^S	This study
	$mltG(\Lambda 488bp) \Lambda pbp2b<>aad9(III8567)$	Spc ^R	
	$X \wedge pbp1a::P_{a}-Ikan-rpsI^{+1}$ from K164)		
11,9879	D39 $\Lambda cps rps[1 \Lambda pbp1a::P[kan-rps]^+]$	Kan ^R Str ^S	This study
100010	$m tG(045 bn)^2 \wedge n bn2b > aad9 (III 8569)$	Spc ^R	The etady
	$X \wedge php1a: P_{-}[kan-rps]^{+}]$ from K164)	Cpo	
11 19895	$D39 A cns mltG(Y488D)-P_{-}erm (III1945)$	Erm ^R	This study
100000	X fusion $mltG(Y488D)$ -P _c -erm	LIIII	This study
11 19897	$D39 cps^+ \Lambda mltG^{}P_{}erm$	Erm ^R	This study
100007	$\Delta n h n^2 h \sim a a d Q (11) Q 7 11 X$	Snc ^R	This Study
	$\Delta p b p 2 b <> a a d 0 from [1] [7207]$	Opc	
11 10 8 0 0	$\Delta p b p 2 b < 2 a a d 9 fill fill (07.597)$ D20 cps ⁺ A mltG:: P crm A cps2E:: P		This study
109099	$D_{39} CP_{S} \Delta IIIIIGF_{c}-eIIII \Delta CP_{S2}EF_{c}-$		This study
	$[Kall-lpsL] pop la(\Delta I @F33) (IO9771 A A cno2E: P [kan rnsl^+] from [II2226)$		
	$\Delta cpsz L. P_c - [nan-ipsL] mon 105200),$		
	spontaneous AT@E33 mutation		
11 10005	D39 A cns rnsl 1 nhn1a ⁺ $mltG(\Lambda 488hn)$	Str ^R Kan ^S	This study
109903	$\Delta p b 2 b c p 3 r p 3 L r p b p 7 a r r r r c (\Delta 400 b p)$	Sti Kan Sno ^R	This study
	$\Delta \mu \nu \rho 2 \nu < > a a u g (10 g 0 T / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Opc	
1110007	$\frac{101030}{1030}$	Str ^R Kon ^S	This study
109901	$\frac{1}{2} \frac{1}{2} \frac{1}$	Su Kan Soa ^R	This study
		Spc	
11.100.24	D20 A apa	Tot ^R Spa ^R	
103321	AradZ(and 2050) as and 0//A has A what	Tet Spc	This study
	$\Delta I U U Z (S P U Z U U U) < > 2 0 0 U \Delta P U Z (S P U Z U U) < > 2 0 0 U \Delta P U Z U U U Z S Z U U U U Z S Z U U U U Z S Z U U U U$		
	r_{Zn} -rdo $_{ftsA}$ -1002 (103/00 A 105101)		
11110001	$D20 \text{ and}^{\dagger} A m H C: D \text{ arm A nhn fair D}$	Erm ^R	
1010021	$1039 CPS \Delta m (G:P_c-erm \Delta pop Ta:P_c-$		i nis study

	[<i>kan-rpsL</i> ⁺](IU9711 X ∆ <i>pbp1a</i> ::P _c -[<i>kan-</i> <i>rpsL</i> ⁺] from K164))	Kan ^R	
IU10048	D39 cps ⁺ $\Delta m lt G:: P_c$ -erm $\Delta cps 2E:: P_c$ -	Erm ^R Kan ^R	This study
	[kan-rpsL ⁺] pbp1a(G559stop) (IU9771 X		,
	$\Delta cps2E$:: P_c -[kan-rpsL ⁺] from IU3286),		
	pbp1a sequenced to acquire a		
	G559stop (GGA→TGA) mutation		
IU10228	D39 Δcps rpsL1 gfp-L ₁ -mltG (IU8980 X	Str ^R Kan ^s	This study
	fusion gfp-L ₁ -mltG)		
IU10292	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^s	This study
	Δ spd_1874::P _c -[kan-rpsL ⁺]	Cm ^ĸ	
	Δ <i>spd_0104</i> ::P _c - <i>cat</i> (IU9292 X fusion		
	$\Delta spd_0104::P_c-cat$		
IU10294	D39 $\Delta cps rpsL1 \Delta pbp1a \Delta mltG::P_c-erm$	Kan ^R Str ^S	This study
	$\Delta spd_0104::P_c-[kan-rpsL^+]$	Cm ^ĸ	
	Δspd_1874 ::P _c -cat (IU9316 X fusion		
	$\Delta spd_1874::P_c-cat)$	В., е	
IU10318	D39 $\Delta cps rpsL1 gfp-L_1-mltG ftsZ^{+}-P_{c}-$	Kan [∽] Str ^s	This study
	[kan-rpsL ⁺] (IU10228 X ftsZ ⁺ -P _c -[kan-		
	rpsL ⁺] from IU7614)	_ P _ P	
IU10320	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 5bp)$ -	Erm' Str'	This study
	$FLAG-P_c$ -erm (IU/325 X fusion		
	$mltG(\Delta 45bp)^2$ -FLAG-P _c -erm)		-
1010323	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(Y488D)$ -	Erm' Str'	This study
	$FLAG-P_c$ -erm (IU/325 X fusion		
11.14.000.4	$\frac{mltG(Y488D)-FLAG-P_c-erm)}{D22}$		T 1 :
1010324	D39 $\Delta cps rpsL1 \Delta ppp1a mitG(\Delta 4880p)$ -	Erm" Str	I his study
	$FLAG-P_c$ -erm (IU/325 X fusion		
1140007	$mitG(\Delta 4880p)$ -FLAG-P _c -em)		This study
1010327	$D39 \Delta cps rpsL r \Delta pop ra rnitG(02450p) - ELAC D arm (III7225 X fusion$	Erm Str	This study
	$rLAG-P_c-enn(107323 \land 1051011)$ $m/tC(0.45bn)^2 ELAG P_corm)$		
11 11 02 12	$D_{20} A cos roc 1 m HC(E4280) (118086)$	Str ^R Kon ^S	This study
1010342	X mltG(E4280) from [1]8873 This		This study
	strain was sequenced to be <i>nbn1a⁺</i> but		
	arew poorly and was denetically		
	unstable		
1010353	D39 Acps rps/ 1 afp-1 4-mltG ftsZ-1 2-	Str ^R Kan ^S	This study
1010000	mKate2 (IU10318 X ftsZ-I 2-mKate2		The ordery
	from IU9148)		
IU10369	D39 Δcps pbp1a ⁺ mltG(Y488D)-FLAG-	Erm ^R	This study
	P _c -erm (IU1945 X <i>mltG</i> (Y488D)-FLAG-		
	P_c -erm from IU10323), pbp1a was		
	sequence-confirmed to be $pbp1a^+$		
IU10628	D39 $\Delta cps \Delta pbp1a$	Str ^R Kan ^s	This study

	∆ <i>rodZ(spd_2050)</i> <> <i>aad9</i> (IU6741 X	Spc ^R	
	$\Delta rod Z <> a a d 9 from 109931)$	- P., 8	
IU10651	D39 Δcps pbp1a ⁺ mltG(Y488D)	Str [~] Kan [°]	This study
	∆ <i>mreCD</i> <>aad9 (IU9760 X	Spc∽	
	$\Delta mreCD <> aad9 from IU1751), pbp1a_$		
	was sequence-confirmed to be <i>pbp1a</i> ⁺		
IU10656	D39 $\Delta cps \ pbp1a^+ \ mltG(Y488D)$	Str [⊮] Kan ^s	This study
	∆ <i>rodZ(spd_2050)<>aad</i> 9 (IU9760 X	Spc ^ĸ	
	Δ <i>rodZ</i> <> <i>aad9</i> from IU9931), <i>pbp1a</i> was		
	sequence-confirmed to be <i>pbp1a</i> ⁺		
IU10731	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 488bp)$	Str ^R Kan ^s	This study
	∆ <i>mreCD</i> <>P _c - <i>erm</i> (IU8553 X	Erm ^R	
	∆ <i>mreCD</i> <>P _c - <i>erm</i> from IU3897)		
IU10743	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 488bp)$	Str ^R Kan ^s	This study
	$\Delta pbp2b <> aad9 \Delta mreCD <> P_c-erm$	Spc ^R Erm ^R	
	(IU8567 X $\Delta mreCD <> P_c$ -erm from		
	ÎU3897)		
IU10783	D39 Δcps rpsL1 mltG(Y488D)	Str ^R Spc ^R	This study
	$\wedge pbp2b <> aad9 \wedge rodZ(spd 2050):: P_c$ -	Kan ^Ŕ	,
	$[kan-rosL^+]$ (IU9783 X $\land rodZ$:: P _c - $[kan-$		
	$rpsL^+$ 1 from K654)		
IU10785	D39 $\Delta cps rpsL1 \Delta pbp1a mltG(\Delta 488bp)$	Str ^R Erm ^R	This study
	$\Delta mreCD <> P_c - erm$	Kan ^R	· · · ,
	$\Delta rodZ(spd 2050)::P_{c}-[kan-rpsL^{+}]$		
	$(U10731 \times \Delta rodZ::P_c-[kan-rpsL^+]$ from		
	K654)		
IU10829	D39 Δcps rpsL1 mltG(Y488D)	Kan ^R Str ^s	This study
	$\Delta walK::P_{c}-[kan-rpsL^{+}]$ (IU9760 X		,
	$\Delta walK::P_{c}^{-}[kan-rpsL^{+}]$ from K208)		
IU10919	D39 $\Delta cps rpsL1 mltG_{Spn-Eco}$ -P _c -erm	Erm ^R	This study
	(IU1824 X fusion <i>mltG_{Spn-Eco}-P_c-erm</i>)		
IU10921	D39 $\Delta cps \Delta bgaA::tet-P_{Zn}-RBS_{rodA}-rodA^+$	Tet ^R	This study
	(IU1945 X fusion $\Delta bgaA::tet-P_{7n}$ -		,
	RBS _{rodA} -rodA)		
IU10943	$D39 \Delta cps rpsL1 mltG(Y488D)$	Erm ^R	This study
	$\Delta rodA::P_c-erm$ (IU9760 X fusion		,
	$\Delta rodA::P_{c}-erm$)		
IU10945	D39 Δcps rpsL1 mltG(Y488D)	Kan ^R	This study
	Δ rodA::P _c -[kan-rpsL ⁺] (IU9760 X fusion		· · · /
	$\Delta rodA::P_c-[kan-rpsL^+])$		
IU10965	D39 $\Delta cps rpsL1 \Delta pbp1a mltG_{Sop-Ecc}-P_{c}$ -	Str ^R Kan ^S	This study
	erm (IU6741 X mltGspr-Eco-Pc-erm from	Erm ^R	
	IU10919)		
IU11007	D39 Δcps rpsL1 mltG _{Ecc} -P _c -erm	Erm ^R	This study

	(IU1824 X fusion <i>mltG_{Eco}-P_c-erm</i>)		
IU11009	D39 $\Delta cps rpsL1 \Delta pbp1a mltG_{Eco}$ -P _c -erm	Erm ^R	This study
	(IU6741 X fusion <i>mltG_{Eco}-P_c-erm</i>)		
E177	D39 $\Delta cps \Delta pbp1a::P_c-erm$	Erm ^R	Land <i>et al.</i> , 2013
E193	D39 $\Delta cps \Delta pbp1b$::P _c -erm	Erm ^R	Land & Winkler.
			2011
E655	D39 $\Delta cps \Delta rodZ(spd 2050)::P_c-erm.$	Erm ^R	This study
	(likely has suppressor) (IU1945 X		,
	fusion $\Delta rod Z$:: P_c -erm)		
E681	D39 $\Delta cps \Delta m lt G:: P_c - erm$ (IU1945 X	Erm ^R	This study
	fusion $\Delta m t G$:: P _c -erm)		,
K5	D39 $\Delta cps \Delta lytC$:: P _c -[kan-rpsL ⁺] (IU1945	Kan ^R	This study
	X fusion $\Delta lytC::P_c-[kan-rpsL^+]$,
K15	D39 $\Delta cps \Delta spd_0104::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion <i>∆spd_0104</i> ::P _c -[<i>kan</i> -		
	$rpsL^{+}])$		
K25	D39 $\Delta cps \Delta dacB::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion $\Delta dacB::P_{c}-[kan-rpsL^{+}]$)		
K27	D39 $\Delta cps \Delta lytB <> P_c - [kan - rpsL^+]$	Kan ^R	This study
	(Regrowth of IU3877)		
K29	D39 $\Delta cps \Delta spd_0873::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(Regrowth of IU3878)		
K35	D39 $\Delta cps \Delta dacA::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion $\Delta dacA::P_{c}-[kan-rpsL^{+}]$)		
K37	D39 $\Delta cps \Delta pmp23::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion <i>∆pmp</i> 23::P _c -[<i>kan</i> -		
	rpsL ⁺])		
K43	D39 Δ <i>cps</i> ∆ <i>lyt</i> A::P _c -[<i>kan-rpsL</i> ⁺] (IU1945	Kan ^R	This study
	X fusion <i>∆lytA</i> ::P _c -[<i>kan-rpsL</i> ⁺])		
K57	D39 $\Delta cps \Delta spd_1874::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion <i>∆spd_1874</i> ::P _c -[<i>kan</i> -		
	rpsL ⁺])		
K75	D39 $\Delta cps \Delta pspA::P_c-[kan-rpsL^+]$	Kan ^ĸ	This study
	(IU1945 X fusion $\Delta pspA::P_c-[kan-rpsL^+]$)		
K148	D39 $\Delta cps \Delta cbpD::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion <i>∆cbpD</i> ::P _c -[<i>kan</i> -		
	rpsL ⁺])		
K164	D39 $\Delta cps \Delta pbp1a::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 transformed with fusion		
	$\Delta pbp1a::P_{c}-[kan-rpsL^{+}])$		
K166	D39 $\Delta cps \Delta pbp2a::P_c-[kan-rpsL^+]$	Kan ^R	This study
	(IU1945 X fusion ∆ <i>pbp2a</i> ::P _c -[<i>kan</i> -		
	rpsL ⁺])		
K180	D39 $\Delta cps \Delta pbp1b::P_c-[kan-rpsL^+]$	Kan ^ĸ	Tsui <i>et al.</i> , 2014

K208	D39 $\Delta cps \Delta walK$::P _c -[kan-rpsL ⁺](IU1945 X fusion $\Delta walK$::P _c -[kan-rpsL ⁺])	Kan ^R	This study
K372	D39 $\Delta cps \Delta spd_0173::P_c-[kan-rpsL^+](IU1945 X fusion \Delta spd_0173::P_c-[kan-rpsL^+])$	Kan ^R	This study
K489	D39 $\Delta cps \Delta spd_0703::P_c-[kan-rpsL^+]$ (IU1945 X fusion $\Delta spd_0703::P_c-[kan-rpsL^+]$)	Kan ^R	This study
K637	D39 $\Delta cps \Delta mltG::P_c-[kan-rpsL^+]$ (IU1945 X fusion $\Delta mltG::P_c-[kan-rpsL^+]$)	Kan ^R	This study
K654	D39 $\Delta cps \Delta rodZ(spd_2050)::P_c-[kan-rpsL^+]$ (likely has suppressor) (IU1945 X fusion $\Delta rodZ::P_c-[kan-rpsL^+]$)	Kan ^R	This study

305

^aStrains were constructed as described in *Experimental procedures and above*.

^bPrimers used to synthesize fusion amplicons are listed in Table S2. FLAG-tagged 306 (FLAG), c-Myc-tagged (Myc), and HA-tagged (HA) fusions were made to the carboxyl-307 end of MltG. The amino acid sequences of the FLAG, Myc, and HA epitope tags are 308 DYKDDDDK (Hopp et al., 1988, Wayne et al., 2010), EQKLISEEDL (Evan et al., 1985), 309 and YPYDVPDYA (Wilson et al., 1984), respectively. FLAG³ indicates three tandem 310 sequences of the FLAG epitope, and L in mreC-L-FLAG³ refers to a 10-amino-acid 311 spacer linker (GSAGSAAGSG) (Waldo et al., 1999; Wayne et al., 2010)). L1 linker 312 sequence in *gfp*-L₁-*mltG* is LEGSG (Fleurie *et al.*, 2014). The DNA template for *gfp* is 313 pUC57-gfp(Sp) (Martin et al., 2010), which was codon optimized for S pneumoniae and 314 contains as substitution (A206K) to prevent GFP dimerization. L₂-linker sequence in 315 ftsZ-L2-mKate2 is KLDIEFLQ (Fleurie et al., 2014). mKate2 is a far red monomeric 316 fluorescent protein with codon optimized for S. pneumoniae (Beilharz et al., 2015). 317

³¹⁸ ^cAntibiotic resistance markers: Erm^R, erythromycin; Kan^R, kanamycin; Spc^R, ³¹⁹ spectinomycin; Str^R, streptomycin; Cm^R, chloramphenicol; Tet^R, tetracycline.

TABLE S2. Oligonucleotide primers used in this study (order follows Table S1)

Primer Sequence (5' to 3') Template^a Amplicon Product For construction of IU6741 (∆pbp1a) P234 CCCTTGTGTTCATAGCGAGGATAAGCA D39 5' upstream fragment with 60 SV022 TCAGGGGTTGTATTTGATTGTTGCAAGCTTAAGAAGCTA bp of 5' pbp1a ATGCTCAGATACTTG SV023 CTGAGCATTAGCTTCTTAAGCTTGCAACAATCAAATACA D39 60 bp of 3' *pbp1a* ACCCCTGATCAA and 3' P235 AGGCAAGCCTGCAACCATGGTCTTGAAA downstream fragment For construction of IU7399 (*mltG*-HA-P_c-kan) TCAGCAGGTGGTTACTTTGGTTACCAGTACG 5' mltG⁺ flanking TT507 D39 fragment TT519 GGTTAAGCATAATCTGGAACATCATATGGATAGTTTAAT TTGCTGTTGACATGTTCAGCG IU6929^b TT520 CGCTGAACATGTCAACAGCAAATTAAACTATCCATATGA HA-P_c-kan **TGTTCCAGATTATGCTTAACC** TT517 ACATAATTTTAGTTTGTTTACTAAAACAATTCATCCAGTA ΑΑΑΤΑΤΑΑΤΑΤΤΤΤΤΑΤΤΤΤΟ TT518 TTACTGGATGAATTGTTTTAGTAAACAAACTAAAATTATG D39 Intergenic TGATACTTCACATAATTTTC between *mltG* TT508 GAGCAAACTAGGAAACTAGCCGCAGGTTG and greA, and greA For construction of IU7403 (*mltG*-FLAG-P_c-*erm*) TT507 TCAGCAGGTGGTTACTTTGGTTACCAGTACG D39 5' *mltG*⁺ flanking fragment TT509 CGGTTATTTATCATCATCATCTTTATAATCGTTTAATTTG CTGTTGACATGTTCAGCG TT510 IU6565° FLAG-P_c-erm TGAACATGTCAACAGCAAATTAAACGATTATAAAGATGA TGATGATAAATAACCGGG TT511 AGTATCACATAATTTTAGTTTGTTTATTTCCTCCCGTTAA ΑΤΑΑΤΑGΑΤΑΑCΤΑΤΤΑΑΑΑ ATTATTTAACGGGAGGAAATAAACAAACTAAAATTATGT TT512 D39 Intergenic between *mltG* GATACTTCACATAATTTTCTT and greA, and TT508 GAGCAAACTAGGAAACTAGCCGCAGGTTG greA For construction of IU7405 (*mltG*-Myc-P_c-*kan*) TT507 TCAGCAGGTGGTTACTTTGGTTACCAGTACG D39 5' *mltG*⁺ flanking fragment TT515 GATCTTCTTCAGAAATAAGTTTTTGTTCGTTTAATTTGCT GTTGACATGTTCAGCG TT516 TGAACATGTCAACAGCAAATTAAACGAACAAAAACTTAT IU6962^d Myc-P_c-kan TTCTGAAGAAGATCTTTAACC TT517 ACATAATTTTAGTTTGTTTACTAAAACAATTCATCCAGTA ΑΑΑΤΑΤΑΑΤΑΤΤΤΤΤΑΤΤΤΤΟ TT518 TTACTGGATGAATTGTTTTAGTAAACAAACTAAAATTATG D39 Intergenic TGATACTTCACATAATTTTC between *mltG* TT508 GAGCAAACTAGGAAACTAGCCGCAGGTTG and greA, and greA

	For construction of IU7614 (<i>ftsZ</i> ⁺ -P _c -[<i>kan-rpsL</i> ⁺])			
TT165	AGTGGTGCCGATATGGTCTTCATCACTGCT	D39	ftsZ ⁺	
TT583	CATTATCCATTAAAAATCAAACGGATCCTATTAACGATTT TTGAAAAATGGAGGTGTATC			
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> rpsL ⁺]	P_{c} -[kan-rpsL ⁺]	
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e		
TT584	CAAAAGCATAAGGAAAGGGGCCCGCCCCAATTTCACAA GATGAAGATG	D39	60 bp of 3' ftsZ- ylmE⁺	
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		-	
	For construction of IU8872 (∆bgaA::tet-P _{czcD} -F	RBS _{mltG} -mlt	G)	
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	pJWV25 [†]	5' bgaA'::tet-P _{czcD}	
TT681	AGTTTTTCCTCCTTGTTGATAATTTGTTATAATAGATTTA TGAACACCTTGTTCATTATC		-	
TT682	ACAAGGTGTTCATAAATCTATTATAACAAATTATCAACAA GGAGGAAAAACTTTTGAGTG	D39	RBS(_{mltG})-mltG	
TT679	CAACTGGTTTATGAGAAAGTAAGTTCTTTTAGTTTAATTT GCTGTTGACATGTTCAGC			
TT680	GAACATGTCAACAGCAAATTAAACTAAAAGAACTTACTT TCTCATAAACCAGTTGCTG	D39	3' bgaA' flanking	
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC			
	For construction of IU8873 (<i>mltG</i> (E42	28Q))		
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd_1347-5' mltG	
TT706	TCTGTCTTGGCACCTTGTTTTTCGACCAAGGAAGCAATG G		fragment with <i>mltG</i> (E428Q)(GA A to CAA)	
TT707	CTTGGTCGAAAAACAAGGTGCCAAGACAGAAGATCGTA AG	D39	3' <i>mltG</i> fragment with	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		<i>mltG</i> (E428Q)(GA A to CAA)- <i>greA</i>	
	For construction of IU8910 (<i>mltG</i> (Δ DUF	_1346))		
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	5' upstream	
TT708	CGTGATGTATCTCTGATGATATCCACTACTTTTTCTAAAT CTCTCAGAATCTGCTCTTT		bp of 5' <i>mltG</i>	
TT709	GCAGATTCTGAGAGATTTAGAAAAAGTAGTGGATATCAT CAGAGATACATCACGTCG	D39	1213 bp of 3' <i>mltG</i> and 3'	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		downstream fragment	
For construction of IU8980 (P _c -[<i>kan-rpsL</i> ⁺]- <i>mltG</i> ⁺)				
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd_1347 ⁺	
TT730	CATTATCCATTAAAAATCAAACGGATCCTATTATTTTTC ATTTCCCAGACCATATCATA			
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> rpsL⁺1	P_{c} -[kan-rpsL ⁺]	
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e		
reverse				

TT731 TT412	CAAAAGCATAAGGAAAGGGGCCCGTTAGGAAAAGTATC ATAGATTGCTTTTTTGGACTT CGACCAAGGAAGCAATGGTCAACAACTCAT	D39	80 bp upstream of <i>mltG</i> and 5' of <i>mltG</i> ⁺
	For construction of IU8982 (<i>mltG</i> (E42	8A))	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd 1347 ⁺ -5'
TT728	TCTGTCTTGGCACCTGCTTTTTCGACCAAGGAAGCAAT GG		<i>mltG</i> fragment with <i>mltG</i> (E428A)(GA A to GCA)
TT729	CTTGGTCGAAAAAGCAGGTGCCAAGACAGAAGATCGTA AG	D39	3' <i>mltG</i> fragment with
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		<i>mltG</i> (E428A)(GA A to GCA)- <i>greA</i>
	For construction of IU8986 (<i>mltG</i> ⁺ -P _c -[<i>kai</i>	n-rpsL*])	
TT415	AAGCAGAACAAGCAGGTCCAGAAACACCTACG	D39	3' mltG
TT726	CATTATCCATTAAAAATCAAACGGATCCTATTAGTTTAAT TTGCTGTTGACATGTTCAGC		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
TT727	CAAAAGCATAAGGAAAGGGGCCCACAAACTAAAATTAT GTGATACTTCACATAATTTTCT	D39	Intergenic between <i>mltG</i>
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		and greA, and greA
	For construction of IU9041 (<i>mltG</i> (E428Q)-FL	AG-P _c - <i>erm</i>)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd_1347-5' mltG fragment with
TT706	TCTGTCTTGGCACCTTGTTTTTCGACCAAGGAAGCAATG G		<i>mltG</i> (E428Q)(GA A to CAA)
TT707	CTTGGTCGAAAAACAAGGTGCCAAGACAGAAGATCGTA AG	IU7403 ⁹	3' <i>mltG</i> fragment with
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		mltG(E428Q)- FLAG-P _c -erm- greA
	For construction of IU9102 (∆ <i>mltG</i> ::P _c -	aad9)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	E681 ⁹	5' upstream fragment with 90
TT688	GTATTCAAATATATCCTCCTCATTTATTATTTCCTTCCTC TTTTCTACAGTATTTAAAGA		bp of 5' <i>mltG and</i> P _c
TT689	ACTGTAGAAAAGAGGAAGGAAATAATAAATGAGGAGGA TATATTTGAATACATACGAACA	IU7397 ^g	aad9
TT690	TTTAGTACCGTATTATAATTTTTTTAATCTGTTATTTAAAT AGTTTATAGTTAAATTTAC		
TT691	CTATTTAAATAACAGATTAAAAAAATTATAATACGGTACT AAACGTCCAAAAGCATAAGG	E681 ^g	90 bp of 3' <i>mltG</i> and 3'
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		downstream fragment

	For construction of IU9148 (ftsZ-L ₂ -ml	Kate2)	
TT165	AGTGGTGCCGATATGGTCTTCATCACTGCT	IU8845 ^h	3' ftsZ-L ₂
TT746	TGTGCATATTTTCCTTGATAAGTTCTGACATCTGCAGGA ACTCGATGTCTAGTTTACG		
TT747	AAACTAGACATCGAGTTCCTGCAGATGTCAGAACTTATC AAGGAAAATATGCACA	pKB01_mK ate2 ⁱ	mkate2
TT748	TTAACGGTGTCCCAATTTACTAGGCAAATCAC		
TT749	TTGCCTAGTAAATTGGGACACCGTTAACATTTTTCAAAA ATCGTTAAGTAAATGAATGTA	D39	17 bp of 3' <i>ftsZ-</i> <i>ylmE</i> ⁺
TT166	TCATTGGGAGAGCCGGTTCCTGTGAAGAAT		
	For construction of IU9445 (<i>mltG</i> (E428A)-FL	AG-P _c -erm	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd_1347-5' mltG
TT728	TCTGTCTTGGCACCTGCTTTTTCGACCAAGGAAGCAAT GG		mltG(E428A)
TT729	CTTGGTCGAAAAAGCAGGTGCCAAGACAGAAGATCGTA AG	IU7403 ⁹	3' <i>mltG</i> fragment with
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		mltG(E428A)- FLAG-P _c - <i>erm-</i> greA
F	for construction of IU9765 (∆ <i>bgaA::tet-</i> P _{zn} -RBS _{ftsA}	-rodZ(spd_	2050) ⁺)
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU8906 ¹	5' <i>bgaA</i> ':: <i>tet</i> -P _{czcD} -RBS _{ftsA}
TT769	CCTCTCCAATTGTTTTTTTCTCATTACATCGCTTCCTCT CTATCTTCCTTGT		
TT770	GGAAGATAGAGAGGAAGCGATGTAATGAGAAAAAAAAAA	D39	rodZ
TT771	ACTGGTTTATGAGAAAGTAAGTTCTTTTAATTTTTAGTAA AGGTTACAGTGATTTGTCCA		
TT772	AAATCACTGTAACCTTTACTAAAAATTAAAAGAACTTACT TTCTCATAAACCAGTTGCTG	D39	3' bgaA' flanking
CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
	For construction of IU9895 (<i>mltG</i> (Y488D)	-P _c - <i>erm</i>)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	IU7567 ⁹	upstream of <i>mltG</i>
TT726	CATTATCCATTAAAAATCAAACGGATCCTATTAGTTTAAT TTGCTGTTGACATGTTCAGC		and <i>mill</i> G(1466D)
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -erm cassette ^e	P _c -erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
TT727	CAAAAGCATAAGGAAAGGGGCCCACAAACTAAAATTAT GTGATACTTCACATAATTTTCT	D39	Intergenic between <i>mltG</i>
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		and <i>greA</i> , and <i>areA</i>
	For construction of IU9931 (∆rodZ(spd_20	50)<>aad9)	
P1384	GAGGTAAGCGAGAAGTTTCTGAAGCGGATTGC	D39	5' upstream
TT311	GTATGTATTCAAATATATCCTCCTCACACTTGTCATCCC TTCTTTCTAGTGTCTATTATG	-	fragment

TT312	GACACTAGAAAGAAGGGATGACAAGTGTGAGGAGGATA TATTTGAATACATACGAACA	IU7397 ⁹	aad9
TT313	CTTTTTCATTCGTTTTTCCTTATAATTTTTTTAATCTGTT ATTTAAATAGTTTATAGTT		
TT314	CTATTTAAATAACAGATTAAAAAAATTATAAGGAAAAACG AATGAAAAAAGAACAAATTC	D39	3' downstream fragment
P1385	ACAACACCTGCAATGGCCACACGTTGCTTT		
	For construction of IU10228 (gfp-L ₁ -n	nltG)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	spd_1347
TT854	TAAACAATTCTTCACCTTTAGAAATCATAAGTTTTTCCTC CTTGTTGATAATCC		
TT855	ATCAACAAGGAGGAAAAACTTATGATTTCTAAAGGTGAA GAATTGTTTACAGGTGT	1U9020 ¹	<i>gfp</i> -L ₁ with ATG start codon
TT757	TCCGGATCCCTCGAGTTTATACAATTCATCC		
TT853	GAATTGTATAAACTCGAGGGATCCGGAAGTGAAAAGTC AAGAGAAGAAGAGAAATTAAGC	D39	5' <i>mltG</i> starting from second
TT412	CGACCAAGGAAGCAATGGTCAACAACTCAT		codon of <i>mltG</i>
	For construction of IU10292 (Δ <i>spd_0104</i>	::P _c - <i>cat</i>)	
P108	ACGAGTGACATTCATCTGGGCGAT	K15 ^g	5' upstream
MB12	AAATCAATTTTATTAAAGTTCATTTATTATTTCCTTCCTCT TTTCTACAGTATTTAAAGA		bp of 5' spd_0104-P _c
MB11	TGTAGAAAAGAGGAAGGAAATAATAAATGAACTTTAATA AAATTGATTTAGACAATTGGA	IU3373 ^k	cat ORF
TT869	GCCCCTTTCCTTATGCTTTTGTTATAAAAGCCAGTCATT AGGCCTATCTGA		
TT870	AGGCCTAATGACTGGCTTTTATAACAAAAGCATAAGGAA AGGGGCCC	K15 ⁹	60 bp of 3' <i>spd_0104</i> and 3'
P111	ACCACCTCATCACCACTGTCTGTT		downstream fragment
	For construction of IU10294 (Δ <i>spd_</i> 1874	::P _c - <i>cat</i>)	
P174	ATGTGGTGTATCCGCATTGGGACAGGAT	K57 ^g	5' upstream
MB12	AAATCAATTTTATTAAAGTTCATTTATTATTTCCTTCCTCT TTTCTACAGTATTTAAAGA		bp of 5'
MB11	TGTAGAAAAGAGGAAGGAAATAATAAATGAACTTTAATA AAATTGATTTAGACAATTGGA	IU3373 ^k	cat ORF
TT869	GCCCCTTTCCTTATGCTTTTGTTATAAAAGCCAGTCATT AGGCCTATCTGA		
TT870	AGGCCTAATGACTGGCTTTTATAACAAAAGCATAAGGAA AGGGGCCC	K57 ⁹	60 bp of 3' spd_1874 and 3'
P175	AGCCGTAAGTCGCAGCACCAATCACAAA		downstream fragment
	For construction of IU10320 (<i>mltG</i> (∆5bp)-FL	AG-P _c - <i>erm</i>)
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	IU7477 ⁹	spd_1347,
TT509	CGGTTATTTATCATCATCATCTTTATAATCGTTTAATTTG CTGTTGACATGTTCAGCG		<i>mitG</i> (∆5bp)

TT510	TGAACATGTCAACAGCAAATTAAACGATTATAAAGATGA	IU7403 ⁹	FLAG-P _c - <i>erm</i> ,	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		and grea	
	For construction of IU10323 (mltG(Y488D)-FI	_AG-P _c - <i>erm</i>)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	IU7567 ⁹	spd_1347,	
TT509	CGGTTATTTATCATCATCATCTTTATAATCGTTTAATTTG CTGTTGACATGTTCAGCG		mltG(Y488D)	
TT510	TGAACATGTCAACAGCAAATTAAACGATTATAAAGATGA TGATGATAAATAACCGGG	IU7403 ⁹	FLAG-P _c - <i>erm</i> , and <i>greA</i>	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG			
	For construction of IU10324 (<i>mItG</i> (∆488bp)-F	LAG-P _c -ern	n)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	IU7570 ⁹	spd_1347,	
TT509	CGGTTATTTATCATCATCATCTTTATAATCGTTTAATTTG CTGTTGACATGTTCAGCG		<i>mit</i> G(Δ4880p)	
TT510	TGAACATGTCAACAGCAAATTAAACGATTATAAAGATGA TGATGATAAATAACCGGG	IU7403 ⁹	FLAG-P _c - <i>erm</i> , and <i>greA</i>	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG			
	For construction of IU10327 (<i>mltG</i> (Ω45bp) ² -F	LAG-P _c -ern	n)	
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	IU7765 ⁹	spd_1347,	
TT509	CGGTTATTTATCATCATCATCTTTATAATCGTTTAATTTG CTGTTGACATGTTCAGCG		<i>mit</i> G(<u>1</u> 245bp)	
TT510	TGAACATGTCAACAGCAAATTAAACGATTATAAAGATGA TGATGATAAATAACCGGG	IU7403 ⁹	FLAG-P _c - <i>erm</i> , and <i>greA</i>	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		_	
	For construction of IU10919 (<i>mltG_{Spn-Eco}</i>	-P _c - <i>erm</i>)		
TT413	GAGCCTGGTGGTTATATCTCTGTGACCTGT	D39	Upstream of S.pn	
TT890	GGCAAGATGGCGAACCTTCTGGTAACCAAAGTAACCAC CTGCTG		aa(1-209)	
TT891		E. coli K12	aa(25-341)-(C) _{Eco}	
TT892	CATTATCCATTAAAAATCAAACGGATCCTATTACTGCGC	DNA		
Kan rpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	IU9895 ⁹	P _c -erm-	
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		downstream <i>mltG</i>	
For construction of IU10921 (∆bgaA::tet-P _{czcD} -RBS _{rodA} -rodA)				
TT657	CGCCCCAAGTTCATCACCAATGACATCAAC	IU8872 ⁹	5' bgaA'::tet-P _{czcD}	
TT895	TGTACTAACCTTATACTTTCATATTGTTATAATAGATTTA TGAACACCTTGTTCATTATC		-	
TT896	TGTTCATAAATCTATTATAACAATATGAAAGTATAAGGTT	D39	RBS(_{rodA})-rodA	
TT897	ACTGGTTTATGAGAACGTTCTC			
TT898	AAAAGGTTGTATTAAAACAAATTAAATAAAAGAACTTACT	D39	3' bgaA' flanking	

CS121	GCTTTCTTGAGGCAATTCACTTGGTGC		
	For construction of IU10943 (∆rodA::P	_c erm)	
P1543	CAGGCCGTACTCTTCTGTCCTCTTTACTTCC	D39	5' upstream
P1545	CATTATCCATTAAAAATCAAACGGATCCTAAGCCACCAC ACCGATGACCA		bp of 5' rodA
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c - <i>erm</i> ^e	P _c -erm
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1546	CAAAAGCATAAGGAAAGGGGCCCTCGATGAGTTACCAG ACTAATCTAGCTGAA	D39	87 bp of 3' <i>rodA</i> and 3'
P1544	CGGGTGTTCAAGCTCTCTGGCTTCATTTTC		downstream fragment
	For construction of IU10945 (∆ <i>rodA</i> :: P _c -[<i>k</i>	an-rpsL ⁺])	
P1543	CAGGCCGTACTCTTCTGTCCTCTTTACTTCC	D39	5' upstream
P1545	CATTATCCATTAAAAATCAAACGGATCCTAAGCCACCAC ACCGATGACCA		bp of 5' rodA
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
P1546	CAAAAGCATAAGGAAAGGGGCCCTCGATGAGTTACCAG ACTAATCTAGCTGAA	D39	87 bp of 3' <i>rodA</i> and 3'
P1544	CGGGTGTTCAAGCTCTCTGGCTTCATTTTC		downstream fragment
	For construction of IU11007 and IU11009 (ml	tG _{Eco} -P _c -err	n)
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	Upstream of S.pn mltG
TT903	TAACAAGATTATCAATAACACTTTTTTCATAAGTTTTTCC TCCTTGTTGATAATCCATAA		
TT904	GGATTATCAACAAGGAGGAAAAACTTATGAAAAAAGTGT TATTGATAATCTTGTTATTGC	<i>E. coli</i> K12 genomic	<i>E. coli mltG</i> ORF
TT892	CATTATCCATTAAAAATCAAACGGATCCTATTACTGCGC ATTTTTTCCTTAAGCA	DNA	
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	IU9895 ⁹	P _c - <i>erm-</i> downstream <i>mltG</i>
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		
	For construction of E655 (∆ <i>rodZ</i> (<i>spd</i> _2050)::Pc- <i>erm</i>)	
TT329	CAACTGATATAGTTGGAAGTGAGGAGTCCATTTCCC	D39	5' upstream
P1386	CATTATCCATTAAAAATCAAACGGATCCTAACTCAATCC CTGATTGATTCTAGCTAATCG		bp of 5' rodZ
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c - <i>erm</i> ^e	P _c - <i>erm</i>
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1387	CAAAAGCATAAGGAAAGGGGCCCGATTTATCGAAATTA ACAGCTCAGACTGG	D39	60 bp of 3' <i>rodZ</i> and 3'

P1385	ACAACACCTGCAATGGCCACACGTTGCTTT		downstream fragment
	For construction of E681 (∆ <i>mltG</i> ::P _c	erm)	Inaginient
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	5' upstream
P1350			fragment with 90 bp of 5' <i>mltG</i>
Kan rpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c - <i>erm</i> ^e	P _c -erm
forward		, , , , , , , , , , , , , , , , , , ,	Ŭ
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG		
P1351	CAAAAGCATAAGGAAAGGGGCCCGATGTCACAGAAGG CAAGGTCTACTATG	D39	90 bp of 3' <i>mltG</i> and 3'
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		downstream fragment
	For construction of K5 (∆ <i>lytC</i> ::P _c -[<i>kan</i> -	rpsL ⁺])	
P13	TTTGAGAAACTGGCGCCATGAAGG	D39	5' upstream
P17	CATTATCCATTAAAAATCAAACGGATCCTAGACATGACT AGTTGCCAAGCCTAGTAAAC		bp of 5' <i>lytC</i>
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
P18	CAAAAGCATAAGGAAAGGGGCCCACCTCTTCTGAATAC	D39	60 bp of 3' <i>lytC</i>
	ATGAAAGGAATCCA		and 3'
P14	AAACCAGGTGCTTGTCCAAGTTCG		downstream fragment
	For construction of K15 (∆ <i>spd_0104</i> ::P _c -[<i>k</i>	an-rpsL ⁺])	
P108	ACGAGTGACATTCATCTGGGCGAT	D39	5' upstream
D120	CATTATCCATTAAAAATCAAACGGATCCTATGCAAACAA		bp of 5'
Kan rosl		P ₂ -[kan-	$P_{\circ}[kan-rpsL^{\dagger}]$
forward		rpsL ⁺]	
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
P121		D39	60 bp of 3'
			downstream
P111	For construction of K25 (AdacB::PIkan	- <i>rns(</i> +1)	fragment
			5' upstream
P136	ACTGCCCATGTAGATACGCTTGGTGCTA	039	fragment with 60
P140	CATTATCCATTAAAAATCAAACGGATCCTATGAACAAGC TGCTAGACTCAAGGCTAG		bp of 5' dacB
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺1	P _c -[<i>kan-rpsL</i> ⁺]
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
	CAAAAGCATAAGGAAAGGGGCCCGAGAGTGGTCTCAG	D39	60 bp of 3' dacB
P141	I TTTGGAAGAATACTATG		and 3'

P137	ACCGTTTGGCAATACCATTGCTCCACGG		downstream fragment		
For construction of K35 ($\Delta dacA::P_c-[kan-rpsL^+]$)					
P150	AGCCTGCAATATGCAAGCGATCCCTCTT	D39	5' upstream		
1.100	CATTATCCATTAAAAATCAAACGGATCCTAAGCAGTAGA		fragment with 60		
P152	AACACCCCCTAAAAGAGAGAC				
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> røsL⁺1	P _c -[<i>kan-rpsL</i> ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P153	CAAAAGCATAAGGAAAGGGGCCCTTCTTCTTAAAAGTTT GGTGGAATCAGTTTG	D39	60 bp of 3' <i>dacA</i> and 3'		
P151	TATCGTTGATGAGGGAGCAAGCGTCCACTA		downstream fragment		
	For construction of K37 (∆pmp23::P _c -[ka	n-rpsL*])			
P154		D39	5' upstream		
	AGTTCAGTCCGGATGATACCGAGCTGTT		fragment with 60		
P156	CATTATCCATTAAAAATCAAACGGATCCTATTTATAGCC AGCAAAAAGGAAGACTGCTAG		bp of 5' <i>pmp23</i>		
Kan rpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan</i> -	P _c -[<i>kan-rpsL</i> ⁺]		
forward		rpsL']			
reverse	GGGCCCCTTAGCTTTG	Casselle			
P157	CAAAAGCATAAGGAAAGGGGCCCGTACGACTTAACCTT	D39	60 bp of 3'		
D155			pmp23 and 3'		
P155	ACTGTCGCCAGCTTGTGATACGATGCTT		fragment		
	For construction of K43 (∆ <i>lytA</i> ::P _c -[<i>kan</i> -	rpsL⁺])			
P166	CCTTTGCCCTTCTTCCTATGACCGCTAT	D39	5' upstream		
P168	CATTATCCATTAAAAATCAAACGGATCCTAATATGGTTG CACGCCGACTTGAGGC		fragment with 60 bp of 5' <i>lytA</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan</i> -	P _c -[<i>kan-rpsL</i> ⁺]		
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
1676136	CAAAAGCATAAGGAAAGGGGCCCCTGGCAGACAGGCC	D39	60 bp of 3' <i>lytA</i>		
P169	AGAATTCACAGTAGAG		and 3'		
P167	CCTCAACCATCCTATACAGTGAAGATGGGA		downstream fragment		
	For construction of K57 (∆ <i>spd_1874</i> ::P _c -[<i>k</i>	an-rpsL ⁺])			
P174	ATGTGGTGTATCCGCATTGGGACAGGAT	D39	5' upstream		
P176	CATTATCCATTAAAAATCAAACGGATCCTATGCCAATAC TGGGGCAAATGACAAGGC		bp of 5'		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> rps/ ⁺ 1	P_{c} -[kan-rpsL ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P177	CAAAAGCATAAGGAAAGGGGCCCCGTGGTAGTGTGAC AGAAAATCACTATGATCACG	D39	60 bp of 3' spd 1874 and 3'		

P175	AGCCGTAAGTCGCAGCACCAATCACAAA		downstream fragment		
For construction of K75 ($\Delta pspA::P_c$ -[kan-rpsL ⁺])					
P70	ACCGTTCGGCAATTCATGGTGACATGGACA CATTATCCATTAAAAATCAAACGGATCCTAACCAGCCCC TAAGATAGCGACGCTGGC	D39	5' upstream fragment with 60 bp of 5' <i>pspA</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette			
P73	CAAAAGCATAAGGAAAGGGGCCCCTTGCAGTCAACACA ACTGTAGATGGCTAT	D39	60 bp of 3' <i>pspA</i> and 3' downstream		
P71	TCCTTGTTGCACATAACGTCCGGATTTGGC		fragment		
	For construction of K148 (∆ <i>cbpD</i> ::P _c -[<i>kai</i>	n-rpsL ⁺])			
P202 P204	TATCTTAGCAGCTCGTCCAGCAGTTGGT CATTATCCATTAAAAATCAAACGGATCCTATTTAACTGA CATCTTCAAGTAATAACTTGT	D39	5' upstream fragment with 60 bp of 5' <i>cbpD</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[kan- rpsL ⁺]	P_{c} -[kan-rpsL ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette			
P205	CAAAAGCATAAGGAAAGGGGCCCTTAGCTATTAATACG ACGGTGGATGGCTACAG	D39	60 bp of 3' <i>cbpD</i> and 3' downstream		
P203	AGCTATGGCAATGGTCGGAATGGTCTGA		fragment		
	For construction of K164 (∆ <i>pbp1a</i> ::P _c -[<i>ka</i>	n-rpsL*])			
P234	CCCTTGTGTTCATAGCGAGGATAAGCA	D39	5' upstream fragment with 60		
P236	GAAGCTAATGCTCAGATACTGAACGGATCCTACAAGCTTAA		bp of 5' <i>pbp1a</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[kan- rpsL ⁺]	P _c -[<i>kan-rpsL</i> ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette			
P237	CAAAAGCATAAGGAAAGGGGCCCCAACAATCAAATACA ACCCCTGATCAACAAAATC	D39	60 bp of 3' <i>pbp1a</i> and 3'		
P235	AGGCAAGCCTGCAACCATGGTCTTGAAA		downstream fragment		
	For construction of K166 (∆ <i>pbp2a</i> ::P _c -[<i>ka</i>	n-rpsL ⁺])			
P226	GGTACGACAACGAAATGTCATACACTGCAC	D39	5' upstream		
P228	CATTATCCATTAAAAATCAAACGGATCCTATTCACTTGTT TCTTTTTAAAAAGAGAAAG		bp of 5' <i>pbp2a</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P _c -[<i>kan-rpsL</i> ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P229	CAAAAGCATAAGGAAAGGGGCCCGCGAAGATTAAGGA AAAGGCTCAAACAATATG	D39	60 bp of 3' <i>pbp2a</i> and 3'		

P227	TCTGTTCCCGTGTGATCCGACAAATCCT		downstream fragment		
For construction of K208 (∆ <i>walK</i> ::P _c -[<i>kan-rpsL</i> ⁺])					
TT163	AGCAGTTTGACCTCTTTCATCAGGTTGCGG	D39	5' upstream		
P508	CATTATCCATTAAAAATCAAACGGATCCTACAAAATCAG GATAAAGATAAAATCTCTGGT		bp of 5' walK		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺	P _c -[<i>kan-rpsL</i> ⁺		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P509	CAAAAGCATAAGGAAAGGGGCCCGTACTCCCTTATGAT AAGGATGCAGTGAAA	D39	60 bp of 3' <i>walK</i> and 3'		
TT164	TGTCAATGGTGTTGCGGTATCTGGTGAGGT		downstream fragment		
	For construction of K372 (∆ <i>spd_0173</i> ::P _c -[<i>I</i>	kan-rpsL ⁺])			
P830	TATACGGCGCACCAACTCATTGGGCTCATA	D39	5' upstream		
P832	CATTATCCATTAAAAATCAAACGGATCCTAGACAAAATC CTCTCCGATAATGCCA		bp of 5' spd 0173		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺	P_{c} -[kan-rpsL ⁺		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P833	CAAAAGCATAAGGAAAGGGGCCCCATGCTCATGTAGAT GCACAGGAACA	D39	60 bp of 3' <i>spd_0173</i> and 3'		
TT831	AACGCCCAAGCCTTTCTACAGTTACAGGCA		downstream fragment		
	For construction of K489 (∆ <i>spd_0703</i> ::P _c -[<i>I</i>	kan-rpsL⁺])			
P1063	TTTCCAGCGAGTAAAGCCATGCTCCACCAA	D39	5' upstream		
P1065	CATTATCCATTAAAAATCAAACGGATCCTACTGCTGGTT TAATTCTTCTTGATAGTCTAC		bp of 5' spd 0703		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺]	P_{c} -[kan-rpsL ⁺]		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P1066	CAAAAGCATAAGGAAAGGGGCCCGTTCAACGGTCTATT ATCAAACGAAAACGT	D39	39 bp of 3' spd_0703 and 3'		
P1064	CCCTGCTTGAGAGTATGCAGAAGCAACAGT		fragment		
	For construction of K637 (∆ <i>mltG</i> ::P _c -[<i>kar</i>	n-rpsL ⁺])			
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	D39	5' upstream		
P1350	CATTATCCATTAAAAATCAAACGGATCCTAAACTTCATC ATAGCCTTTTACTTTTCTAA		bp of 5' <i>mltG</i>		
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺	P _c -[<i>kan-rpsL</i> ⁺		
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e			
P1351	CAAAAGCATAAGGAAAGGGGCCCGATGTCACAGAAGG CAAGGTCTACTATG	D39	90 bp of <u>3</u> ' <i>mltG</i> and 3'		

P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		downstream fragment
	For construction of K654 (∆rodZ(spd_2050)::P	_c -[<i>kan-rpsL</i>	-*])
TT329	CAACTGATATAGTTGGAAGTGAGGAGTCCATTTCCC	D39	5' upstream
P1386			bp of 5' rodZ
Kan rpsL forward	TAGGATCCGTTTGATTTTTAATGGATAATG	P _c -[<i>kan-</i> <i>rpsL</i> ⁺	P _c -[<i>kan-rpsL</i> ⁺
Kan rpsL reverse	GGGCCCCTTTCCTTATGCTTTTG	cassette ^e	
P1387	CAAAAGCATAAGGAAAGGGGCCCGATTTATCGAAATTA ACAGCTCAGACTGG	D39	60 bp of 3' <i>rodZ</i> and 3'
P1385	ACAACACCTGCAATGGCCACACGTTGCTTT		downstream fragment

	For transformation assays		
P1348	TCTTCTTGCAGCCTTGAAAGAGGTGGCAGT	K637	$\Delta m lt G:: P_c-erm$
P1349	AGAGCAAACTAGGAAACTAGCCGCAGGTTG		
TT452	GGAGGGTTGGCTGTGGGTGGCTACAAGAAC	IU7397	∆pbp2b<>aad9
TT352	TGAAGGACTGGAAAGACCACTGCACCTTCT		
P1543	CAGGCCGTACTCTTCTGTCCTCTTTACTTCC	IU10943	$\Delta rodA::P_{c}-erm$
P1544	CGGGTGTTCAAGCTCTCTGGCTTCATTTTC		
P1543	CAGGCCGTACTCTTCTGTCCTCTTTACTTCC	IU10945	$\Delta rodA::P_{c}-[kan-$
P1544	CGGGTGTTCAAGCTCTCTGGCTTCATTTTC		rpsL]
AL35	GGGGGGCAAACCAAGTGATGTC	IU3897	∆mreCD<>P _c -
AL17	TGCTCCAACTTGAGGTGTTGAACC		em
AL35	GGGGGGCAAACCAAGTGATGTC	IU1751	∆mreCD<>aad9
AL17	TGCTCCAACTTGAGGTGTTGAACC		
TT329	CAACTGATATAGTTGGAAGTGAGGAGTCCATTTCCC	IU9931	∆rodZ<>aad9
P1385	ACAACACCTGCAATGGCCACACGTTGCTTT		
TT329	CAACTGATATAGTTGGAAGTGAGGAGTCCATTTCCC	E655	$\Delta rodZ::P_{c}-erm$
P1385	ACAACACCTGCAATGGCCACACGTTGCTTT		
TT329	CAACTGATATAGTTGGAAGTGAGGAGTCCATTTCCC	K654	$\Delta rod Z:: P_c - [kan-$
P1385	ACAACACCTGCAATGGCCACACGTTGCTTT	1	
P222	CGTTCGTGTGGCGCTGCTTCAAATTGTT	E193	$\Delta pbp1b::P_{c}-erm$
P522	AACGGCAACCACCAAAGGAGAAACCAAGGA	<u> </u>	

	Primers used for QRT-PCR			
			gene	
	AL031	CTGCGACAGCAGATTTGACCACTA	spd_1874	
	AL032	TTCCTGAGGAGCTTCTTCTGCAAC		
	AL023	GGAGTAGCTGCCTTGTTTGCAGTA	spd_0104	
	AL024	CAGGGCCATCGATAACCAACTCTT		
	AL018	GTAGTGCTCAAACAAATGGAGCCG	pcsB	
	AL019	GTCAATGCTTGAGCATCATCAGCC		
	KK489	AAAGGTCGTGGTGGTAAGGGAATG	gyrA	
	KK490	GCATCTTGATCCAGGCGCATTACT		
325 326	^a Genoi	mic DNA of the indicated S. pneumoniae strains wa	s used as templates for	
327	PCR react	tions, except for P_c - <i>erm</i> and P_c -[<i>kan-rpsL</i> ⁺] cassettes.		
328	^b Genot	type of IU6929 is D39 ⊿ <i>cps pbp2x-</i> HA-P₀- <i>kan</i> (Land <i>e</i>	t al., 2013).	
329	°Genot	type of IU6565 is D39 <i>∆cps ftsZ</i> -FLAG-P _c - <i>erm</i> (Land e	et al., 2013).	
330	dGenot	type of IU6962 is D39 <i>∆cps ftsZ-</i> Myc-P _c - <i>kan</i> (Land <i>et a</i>	al., 2013).	
331	^e P _c - <i>erm</i> and P _c - <i>kan-rpsL</i> ⁺ cassettes are described in (Tsui <i>et al.</i> , 2011).			
332	^f pJWV25 (Eberhardt <i>et al.</i> , 2009).			
333	^g Strain genotypes are listed in Supplemental Table S1.			
334	^h Genotype of IU8845 is D39 Δcps rpsL1 ftsZ-L ₂ -gfp (Winkler lab collection,			
335	unpublished), L ₂ -linker sequence is KLDIEFLQ (Fleurie <i>et al.</i> , 2014).			
336	ⁱ pKB01	_mKate2 (Beilharz <i>et al</i> ., 2015).		
337	^j Genot	ype of IU9020 is D39 Δcps rpsL1 gfp-L ₁ -pbp2x	(Winkler lab collection,	
338	unpublishe	ed). L ₁ linker sequence is LEGSG The DNA template	for gfp is pUC57-gfp(Sp)	
339	(Martin <i>et al.</i> , 2010).			
340	^k Genot	type of IU3373 is D39 <i>rpsL</i> ⁺ - <i>rpsG</i> ⁺ - <i>cat</i> (Tsui <i>et al.</i> , 201	0).	
341	^I IU890	6 is an unpublised strain containing $\Delta bgaA::tet$ -F	P_{Zn} followed by 24 bp	
342	upstream	of <i>ftsA</i> (RBS _{<i>ftsA</i>}). $\Delta bgaA::tet-P_{Zn}$ was obtained from p.	JWV25 (Eberhardt <i>et al.</i> ,	
343	2009).			

344	Table S3.	Structural	similarity	of	the	extracellular	domain	of	MItG _{Spn} :	to	known	protein

345 structures

Aligned	3D	Match	RMSD	Z-	2D domain ^f	Confirmed
crystalized	alignment	confidence ^c	(Å) ^d	score ^e		function
structure	coverage	(%)				
(organism,	(MItG _{Spn}					
PDB ID) ^a	residues) ^{a,b}					
Lmo14992 (<i>L.</i>	222-541	100	0.9	38.4	YceG-like	no
monocytogenes,					(aa 87-248,	
411W)					cd08010)	
MltG (<i>E. coli,</i>	266-547	100	3.7	31.4	YceG-like	Lytic
2RIF)					(aa 82-327,	transglycosylase
					cd08010)	(Yunck <i>et al</i> .
						2015)
SleB (B.	411-533	97.1	1.5	7.6	Hydrolase_2	Lytic
anthracis, 4FET)					(aa 153-253,	transglycosylase
					pfam07486)	(Heffron <i>et al.</i> ,
						2011)
SleB (B. cereus,	412-460	94.7	3.6	8.1	Hydrolase_2	no
4F55)					(aa 159-259,	
					pfam07486)	

346

^aResults were obtained from Phyre2 (Kelley & Sternberg, 2009) analysis by inputting amino acid sequence of the entire $MltG_{Spn}$ and ran on intensive mode. Structures listed are >90% in match confidence.

^bAmino acid residues of MltG_{*Spn*} aligned by Phyre2 analysis to protein structures in column 1. For Lmo14992, MltG_{*Eco*}, and SleB_{*Ban*}, the alignments cover the entire sequence of the crystalized peptide chains, which are aa 42-349, aa 81-340, and aa 131-253, respectively, of these proteins. In contrast, only 49 residues of MltG_{*Spn*} align with aa 133-181 of the crystalized 123-residue SleB_{*Bce*} peptide.

³⁵⁵ ^cConfidence scores were obtained from Phyre2 analysis.

^dRMSD values were determined via PyMOL alignment of the PDB modelling file generated from Phyre2 input of MltG sequence aligning with each homolog of *L*.

- monocytogenes, E.coli, and B. anthracis using only the residues sequences shown in column 2. Alignment of the B. cereus homolog was obtained with as 411-533 of MltG_{Spn} and as 131-253 of the SleB_{Bce} peptide.
- ⁹⁶Z-score was determined via input of the MItG PDB modeling file generated from Phyre2 into the DALI server. Amino acid sequences used for the alignment and generation of scores are the same as for RMSD.
- ¹Conserved domains identified by NCBI search
- 365 (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) by inputting the complete amino
- acid sequence of each protein listed in column 1. Domain names (YceG-like or
- ³⁶⁷ hydrolase_2) are followed in parenthesis by the residue numbers of each protein and
- accession numbers of the domains. Residues 267 to 542 of MltG_{Spn} are identified as
- 369 YceG-like and cd08010).

TABLE S4. Genes encoding proteins with known or putative PG lytic domains and WalRK-regulated genes in *S.* pneumoniae serotype 2 strain D39^a, observed hydrolase activities in zymogram assays, and phenotypes of deletion mutants in a $\Delta pbp1a \Delta mltG$ background.

Gene or tag	Hydrolase class ^b	MW (kDa)	Missing band in zymogram ^c	Constructed deletion strain in IU7327 $(\Delta pbp1a$ $\Delta mltG)$ background ^e	Doubling time of triple deletion strain (min) ^f
		54 7		107327	50.5 ± 5.5 (5)
walk	None, histidine kinase	51.7	ND°	109235	125.5 ± 0.5(2)
WalRK _{Spn} regulon	Τ		Lund		1
	Putative <i>N</i> -acetylmuramoyl-l-alanine	41.8	ND	Essential in	
pcsB	amidase/endopeptidase				
h 4D		01.0		background	50.2 + 45.5 (2)
IYIB	N-Acetyigiucosaminidase	81.9		109298	$58.3 \pm 15.5 (2)$
spd_1874	domain)	40.6	ND	109292	55.3 (1)
spd_0703	None (putative SEDS protein)	11.0	ND ^d	IU9318	44 (1)
spd_0104	None (LysM domain)	17.8	ND ^d	IU9316	40.2 (1)
spd_0126 (pspA)	spd_0126 (pspA) None		ND ^d	IU9320	51.1 ± 5.7 (2)
Cell division		•			•
pmp23	Putative lytic transglycosylase	23.0	ND ^d	IU9290	62.9 ± 10.5 (3)
dacA	acA d,d-Carboxypeptidase		ND ^d	IU9386	ND ^h
dacB (spd_0549) I,d-Carboxypeptidase		26.0	ND ^d	IU9388	ND ^h
Fratricide and autoly	sis during growth	•		•	
lytA	N-Acetylmuramoyl-I-alanine amidase	36.6	~36 kDa	IU9382	ND ^h
cbpD	Putative <i>N</i> -acetylmuramoyl-I-alanine amidase/endopeptidase	50.4	ND ^d	IU9384	40.4 (1)
lytC	N-Acetylmuramidase	57.4	~57 kDa	IU9294	53.1 ± 7.8 (2)

	Other putative h	Other putative hydrolases that do not affect cell division						
	spd_0873	Putative N-acetylmuramidase	30.1	ND ^d	IU9296	62.3 ± 12.6 (3)		
	spd_0173	Putative I,d-carboxypeptidase	38.8	ND ^d	IU9390	ND ⁿ		
373								
374	^a Grouping of	of genes based on (Barendt <i>et al</i> ., 2011)						
375	^b Based on	(Layec <i>et al.</i> , 2008).						
376	^c Zymogram	assays were performed as described	d in <i>Suppleme</i>	ental experime	ental procedure	es. Bands of indicated		
377	molecular weig	hts were absent in the single $\Delta lytA$, $\Delta lytA$	<i>ytB</i> or <i>∆lytC</i> m	utants when c	ompared to the	e wild-type parent (See		
378	Fig. S8).							
379	^d ND, not de	termined						
380	^e Constructe	ed mutants with deleted gene in colum	n 1 in IU7327	($\Delta pbp1a \ \Delta mlt$	G) background	I. Strains IU10292 and		
381	IU10294 (∆ <i>pb</i> µ	o1a Δ mltG Δ spd_0104 and spd_1874) o	deleted for bot	h LysM-domair	n proteins (Spd	I_0104 and Spd_1874)		
382	were also con	structed. Only IU9235 ($\Delta pbp1a \ \Delta mltG$	∆ <i>walK</i>) among	g all the triple	mutants showe	ed significantly smaller		
383	colony size cor	npared to the parent strain IU7327 after	24h incubatior	۱.				
384	^f Growth cu	rves and doubling time determination	ns in BHI bro	th were perfo	rmed as desc	ribed in <i>Experimenta</i>		
385	procedures. M	ost doubling times are the average and	d SEM of 2 to	5 independen	t growth experi	iments, indicated by n.		
386	Among the cor	nstructed triple mutants tested, only the	triple $\Delta pbp1a$	∆ <i>mltG ∆walK</i> r	nutant grew wit	th a significantly longer		
387	doubling time t	han the $\Delta pbp1a \Delta mltG walK^{+}$ parent.						

388	^g Since <i>pcsB</i> is essential for pneumococcal growth, it was not feasible to construct a $\Delta pbp1a \Delta mltG \Delta pcsB$ strain. We
389	investigated whether controlling expression of the essential <i>pcsB</i> ⁺ gene from a promoter not regulated by the WaIRK TCS
390	would improve the poor growth of the $\Delta pbp1a \Delta mltG \Delta walK$ mutant. We utilized the construct $\Delta bgaA'::kant1t2-P_{fcsK}-pcsB^+$,
391	which expresses pcsB from a fucose-controlled promoter (Barendt et al., 2009) to a level similar to the expression from
392	the native walK-dependent promoter. We transformed a Δ walK amplicon into IU9330 (Δ pbp1a mltG(Δ 488bp) P _{fcsK} -pcsB ⁺)
393	in the presence or absence of 1 % fucose. We reasoned that if the poor growth of the $\Delta pbp1a \ mltG(\Delta 488bp) \ \Delta walK$ strain
394	was due solely to the under-expression of <i>pcsB</i> , the ectopic expression of <i>pcsB</i> from P _{fcsK} -pcsB ⁺ in the presence of fucose
395	would be able to overcome the growth defect. To the contrary, we observed that the transformants grew very poorly under
396	both inducing and non-inducing conditions. This result indicates that under-expression of pcsB alone does not account for
397	the poor growth of the $\Delta pbp1a \Delta m ltG \Delta walK$ mutant.
398	^h Growth curves and of doubling time determinations in BHI broth were not determined; but colony sizes of the triple

mutants on TSAII-BA plates were similar to the control strain ($\Delta pbp1a \Delta mltG \Delta bgaA$).

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. Model of PG biosynthesis in ovococcus bacteria, such as S. pneumoniae, 401 and topology of proteins involved in peripheral PG synthesis. (A) Top. Ovococci divide 402 perpendicularly to their long axis (Zapun et al., 2008). Unencapsulated derivatives of 403 serotype 2 strain D39 S. pneumoniae form mostly diplococci and chains of two cells, 404 whereas capsulated D39 strains form short chains of 8–10 cells (Barendt et al., 2009). 405 Bottom. Formation of prolate-ellipsoid-shaped bacteria requires two modes of PG 406 synthesis, peripheral (sidewall-like) and septal PG synthesis, that occur in the midcell 407 region of dividing S. pneumoniae cells (Tsui et al., 2014, Massidda et al., 2013, Pinho et 408 al., 2013, Sham et al., 2012, Zapun et al., 2008). At the start of a division cycle, 409 components of both peripheral PG synthesis complexes (orange ovals) and septal 410 synthesis complexes (green rectangles) locate to the equators of cells (bottom). 411 Peripheral PG synthesis (light blue; top) occurs between the future equator and septum 412 of dividing cells and may commence before septal synthesis (Massidda et al., 2013, 413 Wheeler et al., 2011, Zapun et al., 2008). At some point, septal PG synthesis (medium 414 blue) commences to divide the cell in two. The complexes that carry out peripheral and 415 416 septal PG synthesis locate to a large constricting ring throughout the division cycle, with the exception of PBP2x, which moves to the centers of septa in mid-to-late divisional 417 418 cells (Tsui et al., 2014). The grey Pac-Man symbol corresponds to PG hydrolases that remodel the PG and allow septal separation. Reproduced from (Tsui et al., 2014). (B) 419 Topology of proteins (not drawn to scale) known or speculated to be involved in 420 peripheral PG synthesis in ovococci (Philippe et al., 2014, Massidda et al., 2013). 421 Involvement of MreC, MreD, PBP2b, and PBP1a in peripheral PG synthesis in 422

Streptococcus pneumoniae was shown experimentally in previous studies (Philippe et al., 2014, Tsui et al., 2014, Berg et al., 2013, Massidda et al., 2014, Land & Winkler,
2011). This study shows that the MltG endo-LT is in the peripheral PG synthesis
machine, that MreCD and/or RodZ regulate PBP1a (arrows) and/or MltG activity and/or
localization, and that RodA controls activity of PBP2b (arrow), likely by direct interaction
(*Results* and *Discussion*). Figure is based on Philippe et al., 2014 and Massidda et al.,
2013 and work reported in this study.

Fig. S2. Phenotypes and Western blots of cells expressing epitope-tagged MltG 430 derivatives. Full genotypes of strains are listed in Table S1. Growth curves and Western 431 blotting were performed as described in Experimental procedures and Supplemental 432 experimental procedures. (A) and (B) Quantitative Western-blot analyses of strains 433 expressing MltG-FLAG (expected molecular mass = 62 kDa). Equal amounts (12 µg for 434 A, 26.5 µg for B) of total proteins from each strain with genotype indicated in the tables 435 436 were loaded onto each lane. Chemiluminescent signal intensity of each band was normalized to the integrated intensity value obtained for IU9043 ($\Delta pbp1a \ mltG$ -FLAG) in 437 right panel of A, or B, or IU7403 (*mltG*-FLAG, left panel of A). Relative signal intensities 438 439 (average ± SEM) were obtained from two independent experiments. (C) Representative growth curves of IU1945 parent, IU7399 (*mltG*-HA) and IU7405 (*mltG*-Myc). (D and E) 440 Western-blot analysis of untagged parent strain IU1945 (lane 1), and mltG-HA (D, 441 IU7399, expected molecular mass = 62 kDa), and *mltG*-Myc (E, IU7405, expected 442 molecular mass = 62 kDa). 443

444 **Fig. S3.** Domain architecture of YceG-domain proteins in bacteria of various cell 445 shapes. YceG-domain proteins of ovococci, including streptococci (*S. pneumoniae, S*

mitis, S. pyogenes, S. mutans, and S. agalactiae) and Lactococcus lactis, have a similar 446 domain architecture consisting of an intracellular domain of 150 to 200 aa, a 447 transmembrane (TM) domain of ≈24 aa, and the extracellular YceG-like domain. The 448 intracellular domain of MltG_{Son} (DUF_1346) has weak as similarity to an intracellular 449 Mid-1 related chloride channel (MCLC) domain and to other DUFs (see Results). The 450 intracellular domain of S. agalactiae MltG has an DUF different from DUF_1346. The 451 intracellular domains of the MItG homologues of other ovoid species are predicted to be 452 disordered by Phyre2 analysis. Gram-positive rod-shaped bacteria, such as Bacillus 453 subtilis and Listeria monocytogenes, and Gram-negative rod-shaped bacterium E. coli 454 contain a short (<20 aa) intracellular domain. YceG domain proteins are absent in the 455 spherical bacterium Staphylococcus aureus. M designates membrane region. L 456 indicates a conserved LysM-like structure with a $\beta_1 \alpha_1 \alpha_2 \beta_2 \alpha_3$ fold that is a putative PG 457 binding domain. Strains and protein IDs used to generate this figure are: S. pneumoniae 458 D39 (ABJ53954.1), S. mitis B6 (YP 003446601), S. pyogenes A20 (YP 006932381.1), 459 S. mutans NN2025 (YP_003484312.1), S. agalactiae A909 (YP_330231), Lactococcus 460 lactis II1403 (NP_266791), Bacillus subtilis 168 (NP_390615), and E. coli K-12 461 (NP_415615.1). 462

Fig. S4. Scheme of experimental reconstruction of $\Delta pbp2b$ suppressor strains in D39 $\Delta cps rpsL1 pbp1a^{+}$ background. See Supplemental *experimental procedures* for details.

Fig. S5. Summary of stabilities and viabilities of strains containing frame-shift *mltG* suppressor alleles. Strains containing frameshift *mltG* alleles (*sup2*, *sup4* and *sup5*) are viable, but not stable in *pbp1a*⁺ or *pbp1a*⁺ $\Delta pbp2b$ genetic backgrounds. The following

 $\Delta cps \ pbp1a^+$ strains showed non-uniform-sized colonies when streaked from ice stocks 469 onto TSAII BA plates: IU10342 (*pbp1a⁺ mltG*(E428Q)), the original suppressor strains 470 IU7477, IU7570, and IU7765, and reconstructed suppressor strains IU9777 (pbp1a⁺ 471 $mltG(\Delta 5bp) \Delta pbp2b$, IU9905 ($pbp1a^{\dagger} mltG(\Delta 488bp) \Delta pbp2b$) and IU9907 ($pbp1a^{\dagger}$ 472 $mltG(\Omega 45bp)^2 \Delta pbp2b$). In contrast, strains containing $\Delta mltG$ or frameshift mltG alleles 473 are viable and stable in △pbp1a mutants (IU7325, IU7327, IU8549, IU8553 and 474 IU8555), or *Apbp1a Apbp2b* (IU7931, IU8565, IU8567, and IU8569) mutants (see Table 475 S1 for constructions and *Results* for additional details). 476

Fig. S6. Clustal Omega alignment of the transmembrane and extracellular domains 477 of MItG_{Eco}, MItG_{Spn} and YceG_{Lmo} (the MItG homologue in L. monocytogenes). Letter 478 colors indicate the following aa properties: red: small, hydrophobic or aromatic; blue: 479 acidic; magenta: basic; green: hydroxyl, sulfhydrl, or amine. The MltG_{Eco} sequence (gi 480 accession 687676267) was aligned with MItG_{Spn} (gi: 116076234) and YceG_{Lmo} (gi: 481 16803539) using Clustal Omega (Sievers et al., 2011) with default parameters. Symbols 482 indicate the following: asterisks (*) single fully conserved aa; colons (:), conservation 483 between groups with strongly similar properties; periods (.), conservation between 484 485 groups with weakly similar properties. The catalytic glutamate (E218 of MltG_{Eco} and E428 of MltG_{Spn}) is indicated as E218/E428. Y488 of MltG_{Spn}, the aa changed in the 486 487 $\Delta pbp2b sup3$ strain, aligns with Y274 of MltG_{Eco} and is indicated as Y274/Y488. Secondary structure information diagramed below the alignment was obtained from the 488 DSSP annotation in the sequence display feature of the PDB file (PDB ID: 4IIW). Start 489 and end sites mark the protein sequences used in the crystal structure determination of 490 491 YceG_{Lmo} (aa 26 to 349). See *Results, Discussion,* and Table S3 for additional details.

Fig. S7. (A) Superposition of crystalized region of $YceG_{Lmo}$ (red, as 42 to 349) and 492 MltG_{Spn} (blue, aa 266 to 547) backbones. Two distinct subdomains are in the YceG 493 domain: the N-terminal/membrane-proximal subdomain contains a LysM-like domain 494 with a $\beta_1 \alpha_1 \alpha_2 \beta_2 \alpha_3$ fold (inset) that is a putative PG binding site; and the C-terminal 495 catalytic subdomain with endo-LT activity. (B). Degree of conservation of each residue 496 in the LysM-like $\beta_1 \alpha_1 \alpha_2 \beta_2 \alpha_3$ subdomain (top line) and in the endo-LT catalytic subdomain 497 (bottom line), where asterisks mark the catalytic E aa and the Y aa changed in the sup3 498 allele. Color coded box at each residue was determined using the Consurf server 499 (Ashkenazy et al., 2010) using amino acid sequences from MltG_{1 mo}. The residues within 500 $\beta_1 \alpha_1 \alpha_2 \beta_2 \alpha_3$ folds are mostly conserved. The catalytic E and Y residues are highly 501 conserved. See *Results, Discussion,* and Table S3 for additional details. 502

Fig. S8. Zymogram of membrane extracts from strain IU1945 (wild-type 503 unencapsulated parent) and isogenic PG hydrolase mutants K43 ($\Delta lytA$), K27 ($\Delta lytB$), 504 and K5 ($\Delta lytC$). Electrophoresis of membrane extracts was performed in an SDS-12% 505 polyacrylamide gel containing a lysed-cell preparation of IU1945 (D39 Δcps) as PG 506 substrate. Membrane extracts from the strains and lysed-cell PG substrate were 507 508 prepared and subjected to zymography as described in Supplemental experimental procedures. Equal amounts of proteins (35 µg) were loaded into each lane. Lane 509 510 molecular weight (MW) markers (PageRuler prestained protein ladder, Thermo Scientific) calibrated by the vendor are shown at left. Arrows to the right of the gel 511 indicate the migration positions of LytA, LytB, and LytC as inferred by absence of bands 512 in the corresponding deletion mutants. MItG endo-LT activity is expected to overlap the 513 514 upper intact LytC band and would be visible in the $\Delta lytC$ lane.

Fig. S9. Growth phenotypes and cell morphologies of $mltG(\Delta DUF 1346)$ mutant 515 strain IU9025 compared to that of its *mltG*⁺ parent strain IU1824. Experiments were 516 carried out as described in Supplemental experimental procedures. (A) Slight growth 517 defect of IU9025 (*mltG*(Δ DUF 1346)) compared to IU1824 (*mltG*⁺ parent) under high 518 salt conditions. (B) Marginal difference in sensitivity of IU9025 (*mltG*(ΔDUF 1346)) to 519 penicillin G compared to IU1824 (*mltG*⁺ parent). (C) No difference in growth of IU1824 520 (*mltG*⁺) and IU9025 (*mltG*(Δ DUF_1346)) in BHI broth at neutral or low pH conditions. 521 (D) IU9025 (*mltG*(Δ DUF_1346)) and IU1824 (*mltG*⁺) cells have the same length and 522 width within experimental error. 523

Fig. S10. Growth curves of *mltG*⁺ parent strain IU1945 (D39 $\triangle cps$) and merodiploid 524 strain IU9102 ($\Delta m lt G / \Delta b g a A :: P_{Zn} - m lt G$) in the absence or presence of different 525 concentrations of the inducer Zn²⁺. IU1945 and IU9102 were grown overnight in BHI 526 broth contianing 0.2 mM ZnCl₂ and 0.02 mM MnSO₄, centrifuged to remove Zn²⁺ and 527 Mn^{2+} , and resuspended to $OD_{620} \approx 0.005$ in BHI broth containing 0.2 mM ZnCl₂ and 0.02 528 mM MnSO₄, 0.1 mM ZnCl₂ and 0.01 mM MnSO₄, or 0.05 mM ZnCl₂ and 0.005 mM 529 MnSO₄, or no Zn²⁺ and Mn²⁺(0 mM Zn) as described in *Experimental procedures*. Tenth 530 531 the concentration of MnSO₄ was added to prevent effects of zinc toxicity (Jacobsen et *al.*, 2011). 532

Fig. S11. Representative growth curves and morphological changes of $\Delta pbp1a$, $\Delta pbp1a \Delta mltG$ and $\Delta pbp1a \Delta mltG \Delta pbp2b$ strains. Strains IU1824 (1, D39 Δcps parent), IU6741 (2, $\Delta pbp1a$), IU7327 (3, $\Delta pbp1a \Delta mltG$) and IU7931 (4, $\Delta pbp1a \Delta mltG \Delta pbp2b$) were grown overnight in BHI and diluted to $OD_{620} \approx 0.003$ in BHI to start growth cultures as described in *Experimental procedures*. (A) Representative growth curves. Doubling

times (mean ± SEM) for IU1824, IU6741, IU7327 and IU7931 were 38 ± 1 (n=4), 48 ± 3 538 (n=3), 46 ± 4 (n=2), and 48 ± 3 (n=2) respectively, and were not statistically different 539 from each other by one-way ANOVA analysis (GraphPad Prism, nonparametric Kruskal-540 Wallis test)). (B) Phase-contrast images of strains growing in exponential phase (OD_{620}) 541 ≈ 0.15). Micrographs are at the same magnification (scale bars = 1 µm). (C) Box-and-542 whisker plots (whiskers, 5 and 95 percentile) of cell lengths, widths, aspect ratios 543 (length to width ratio) and relative volumes. Fifty or more cells from two independent 544 experiments were measured as described in *Experimental procedures* for each strain. P 545 values were obtained by one-way ANOVA analysis (GraphPad Prism, nonparametric 546 Kruskal-Wallis test). *** denotes p<0.001. 547

Fig. S12. (A) Appearance of colonies on TSAII-BA plates of strains IU1690 (D39 548 cps^+), IU9771 ($cps^+ \Delta m ltG$), IU9897 ($cps^+ \Delta m ltG \Delta p b p 2b$), and IU10021 ($cps^+ \Delta m ltG$) 549 $\Delta pbp1a$). Frozen stocks of strains were streaked onto TSAII-BA plates and 550 photographed after 17 h of incubation at $37^{\circ}C$. (B) Transformation of a $\Delta cps2E$ 551 amplicon into IU9771 (D39 $cps^+ \Delta m ltG$) to obtain an unencapsulated strain results in 552 accumulations of spontaneous mutations in *pbp1a*. Two isolates (IU9899 and IU10048) 553 554 obtained from two independent transformations were sequenced for the *pbp1a* region. IU9899 contained $pbp1a(\Delta T@F33)$ and IU10048 contained *pbp1a*(G559stop 555 $(GGA \rightarrow TGA))$ mutations. 556

Fig. S13. Larger width of MItG-HA rings compared to FL-V rings detected by 2D and 3D-SIM IFM. Strain IU7399 (*mItG*-HA) was grown in BHI broth and processed for FL-V staining, IFM, and DAPI labeling as described in *Experimental procedures*. (A) Representative images of a field of cells stained with FL-V and subjected to 2D IFM to

detect MItG-HA localization. (B) Representative 3D-SIM IFM and FL-V images of cells at division stages 1-4, (C) averaged 2D IFM images and fluorescence intensity traces, and (D) scatter plots of FL-V labeling width versus MItG width at midcell equators and septa at division stages 1-4 in (C) were obtained and processed as described for Fig. 10, except FL-V images are colored green. In D, *** denotes p<0.001. Representative images in (A) and (B), and data in (C) and (D) were obtained from two independent biological replicates.

Fig. S14. Representative growth curves and doubling times of mutants containing $\Delta walK$ or single deletion mutations in known and putative PG hydrolase genes in (A) wild-type *pbp1a*⁺ strain IU1824, and in (B) $\Delta pbp1a \Delta mltG$ mutant strain IU7327 (see Table S1). Doubling times are the averages ± SEM from 2 to 5 independent growths for most strains or from one growth (n=1) in some cases.

Fig. S15. Induction of WalRK regulon members in strains containing *mltG*(Δ 488bp) 573 or *mltG*(Y488D) mutations. RNA preparation and QRT-PCR procedures to determine 574 relative transcript amounts of spd_1874, spd_0104, and pcsB were performed as 575 described in Supplemental experimental procedures for isogenic strains IU1824 (D39 576 577 $\Delta cps rpsL1$, wild-type (WT) parent), IU6741 ($\Delta pbp1a$), IU8553 ($\Delta pbp1a mltG(\Delta 488bp)$), $(\Delta pbp1a mltG(\Delta 488bp) \Delta pbp2b), IU9760 (mltG(Y488D)), and IU9783$ IU8567 578 (*mltG*(Y488D) $\triangle pbp2b$). Numbers at top of each bar indicate the average fold changes 579 of transcript amounts relative to the WT parent based on three independent QRT-PCR 580 experiments from three independent biological replicates. *, **, *** indicate p values 581 <0.05, <0.01 and <0.001, respectively using a one-sample t test to determine if the 582

- mean was significantly different from a hypothetical value of 1. See Results and
- 584 *Discussion* for additional details.

598

599

600

586 **REFERENCES TO SUPPLEMENTAL INFORMATION**

- Ashkenazy, H., E. Erez, E. Martz, T. Pupko & N. Ben-Tal, (2010) ConSurf 2010:
 calculating evolutionary conservation in sequence and structure of proteins and
 nucleic acids. *Nuc Acids Res* 38: W529-533.
- Barendt, S.M., A.D. Land, L.T. Sham, W.L. Ng, H.C. Tsui, R.J. Arnold & M.E. Winkler,
 (2009) Influences of capsule on cell shape and chain formation of wild-type and
 pcsB mutants of serotype 2 *Streptococcus pneumoniae*. *J Bacteriol* 191: 3024 3040.
- Barendt, S.M., L.T. Sham & M.E. Winkler, (2011) Characterization of mutants deficient
 in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in
 peptidoglycan maturation of *Streptococcus pneumoniae* serotype 2 strain D39. *J Bacteriol* 193: 2290-2300.
 - Bartual, S.G., D. Straume, G.A. Stamsas, I.G. Munoz, C. Alfonso, M. Martinez-Ripoll, L.S. Havarstein & J.A. Hermoso, (2014) Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nature Comm 5: 3842.
- Beilharz, K., R. van Raaphorst, M. Kjos & J.W. Veening, (2015) Red fluorescent
 proteins for gene expression and protein localization studies in *Streptococcus pneumoniae* and efficient transformation with Gibson assembled DNA. *App Environl Microbiol.*
- Benjamini, Y. & Y. Hochberg, (1995) Controlling the False Discovery Rate a Practical and Powerful Approach to Multiple Testing. *J Roy Stat Soc B Met* **57**: 289-300.
- Berg, K.H., G.A. Stamsas, D. Straume & L.S. Havarstein, (2013) Effects of low PBP2b
 levels on cell morphology and peptidoglycan composition in *Streptococcus pneumoniae* R6. *J Bacteriol* **195**: 4342-4354.
- Eberhardt, A., L.J. Wu, J. Errington, W. Vollmer & J.W. Veening, (2009) Cellular
 localization of choline-utilization proteins in *Streptococcus pneumoniae* using
 novel fluorescent reporter systems. *Molec Microbiol* **74**: 395-408.
- Evan, G.I., G.K. Lewis, G. Ramsay & J.M. Bishop, (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. *Mol Cell Biol* **5**: 3610-3616.
- Fleurie, A., S. Manuse, C. Zhao, N. Campo, C. Cluzel, J.P. Lavergne, C. Freton, C.
 Combet, S. Guiral, B. Soufi, B. Macek, E. Kuru, M.S. VanNieuwenhze, Y.V. Brun,
 A.M. Di Guilmi, J.P. Claverys, A. Galinier & C. Grangeasse, (2014) Interplay of
 the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in
 pneumococcal cell elongation and division. *PLoS Genet* 10: e1004275.
- Heffron, J.D., N. Sherry & D.L. Popham, (2011) In vitro studies of peptidoglycan binding
 and hydrolysis by the *Bacillus anthracis* germination-specific lytic enzyme SleB. J
 Bacteriol 193: 125-131.

- Hopp, T.P., K.S. Prickett, V.L. Price, R.T. Libby, C.J. March, D.P. Cerretti, D.L. Urdal &
 P.J. Conlon, (1988) A short polypeptide marker sequence useful for recombinant
 protein identification and purification. *BioTechnol* 6: 1204-1210.
- Jacobsen, F.E., K.M. Kazmierczak, J.P. Lisher, M.E. Winkler & D.P. Giedroc, (2011) Interplay between manganese and zinc homeostasis in the human pathogen *Streptococcus pneumoniae*. *Metallomics* **3**: 38-41.
- Kelley, L.A. & M.J. Sternberg, (2009) Protein structure prediction on the Web: a case study using the Phyre server. *Nature Prots* **4**: 363-371.
- Kocaoglu, O., H.C. Tsui, M.E. Winkler & E.E. Carlson, (2015) Profiling of beta-Lactam
 Selectivity for Penicillin-Binding Proteins in Streptococcus pneumoniae D39.
 Antimicrob Agents Chemother 59: 3548-3555.
- Land, A.D., H.C. Tsui, O. Kocaoglu, S.A. Vella, S.L. Shaw, S.K. Keen, L.T. Sham, E.E.
 Carlson & M.E. Winkler, (2013) Requirement of essential Pbp2x and GpsB for
 septal ring closure in *Streptococcus pneumoniae* D39. *Molec Microbiol* **90**: 939 955.
- Land, A.D. & M.E. Winkler, (2011) The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. *J Bacteriol* **193**: 4166-4179.
- Langmead, B. & S.L. Salzberg, (2012) Fast gapped-read alignment with Bowtie 2. *Nature Methods* **9**: 357-359.
- Langmead, B., C. Trapnell, M. Pop & S.L. Salzberg, (2009) Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. *Genome Biol* **10**: R25.
- Lanie, J.A., W.L. Ng, K.M. Kazmierczak, T.M. Andrzejewski, T.M. Davidsen, K.J. Wayne, H. Tettelin, J.I. Glass & M.E. Winkler, (2007) Genome sequence of Avery's virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. *J Bacteriol* **189**: 38-51.

653

654

655

656

657

658

659

- Layec, S., B. Decaris & N. Leblond-Bourget, (2008) Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. *Res Microbiol* **159**: 507-515.
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin & S. Genome Project Data Processing, (2009) The sequence alignment/map format and SAMtools. *Bioinform* **25**: 2078-2079.
- Lohse, M., A.M. Bolger, A. Nagel, A.R. Fernie, J.E. Lunn, M. Stitt & B. Usadel, (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. *Nuc Acids Res* **40**: W622-627.
- Love, M.I., W. Huber & S. Anders, (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* **15**.
- Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka,
 M.S. Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V.
 Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L.
 Alenquer, T.P. Jarvie, K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H.
 Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani, K.E.
 McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P.

- Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M.
 Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y.
 Wang, M.P. Weiner, P. Yu, R.F. Begley & J.M. Rothberg, (2005) Genome
 sequencing in microfabricated high-density picolitre reactors. *Nature* 437: 376380.
- Martin, B., C. Granadel, N. Campo, V. Henard, M. Prudhomme & J.P. Claverys, (2010)
 Expression and maintenance of ComD-ComE, the two-component signal transduction system that controls competence of *Streptococcus pneumoniae*.
 Molecr Microbiol **75**: 1513-1528.
- Massidda, O., L. Novakova & W. Vollmer, (2013) From models to pathogens: how much
 have we learned about *Streptococcus pneumoniae* cell division? *Environ Microbiol.*
- Philippe, J., T. Vernet & A. Zapun, (2014) The elongation of ovococci. *Microb Drug Resist* **20**: 215-221.
- Pinho, M.G., M. Kjos & J.W. Veening, (2013) How to get (a)round: mechanisms
 controlling growth and division of coccoid bacteria. *Nat Rev Microbiol* 11: 601 614.
- Ramos-Montanez, S., K.M. Kazmierczak, K.L. Hentchel & M.E. Winkler, (2010)
 Instability of ackA (acetate kinase) mutations and their effects on acetyl
 phosphate and ATP amounts in *Streptococcus pneumoniae* D39. *J Bacteriol* 192:
 6390-6400.
- Robinson, M.D., D.J. McCarthy & G.K. Smyth, (2010) edgeR: a Bioconductor package
 for differential expression analysis of digital gene expression data. *Bioinform* 26:
 139-140.
- Sham, L.T., H.C. Tsui, A.D. Land, S.M. Barendt & M.E. Winkler, (2012) Recent
 advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and
 antimicrobial targets. *Curr Opinion Microbiol* **15**: 194-203.
- Sievers, F., A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam,
 M. Remmert, J. Soding, J.D. Thompson & D.G. Higgins, (2011) Fast, scalable
 generation of high-quality protein multiple sequence alignments using Clustal
 Omega. *Molec Sys Biol* **7**: 539.

701

- Thibessard, A., A. Fernandez, B. Gintz, N. Leblond-Bourget & B. Decaris, (2002) Effects of *rodA* and *pbp2b* disruption on cell morphology and oxidative stress response of *Streptococcus thermophilus* CNRZ368. *J Bacteriol* **184**: 2821-2826.
- Tsui, H.C., D. Mukherjee, V.A. Ray, L.T. Sham, A.L. Feig & M.E. Winkler, (2010)
 Identification and characterization of noncoding small RNAs in *Streptococcus pneumoniae* serotype 2 strain D39. *J Bacteriol* **192**: 264-279.
- Tsui, H.C., S.K. Keen, L.T. Sham, K.J. Wayne & M.E. Winkler, (2011) Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during *Streptococcus pneumoniae* D39 cell division. *mBio* 2: e00202-11.
- Tsui, H.C., M.J. Boersma, S.A. Vella, O. Kocaoglu, E. Kuru, J.K. Peceny, E.E. Carlson,
 M.S. VanNieuwenhze, Y.V. Brun, S.L. Shaw & M.E. Winkler, (2014) Pbp2x
 localizes separately from Pbp2b and other peptidoglycan synthesis proteins

during later stages of cell division of *Streptococcus pneumoniae* D39. *Molec Microbiol* 94: 21-40.

- Wayne, K.J., L.T. Sham, H.C. Tsui, A.D. Gutu, S.M. Barendt, S.K. Keen & M.E. Winkler,
 (2010) Localization and cellular amounts of the WalRKJ (VicRKX) two component regulatory system proteins in serotype 2 *Streptococcus pneumoniae*.
 J Bacteriol 192: 4388-4394.
- Wheeler, R., S. Mesnage, I.G. Boneca, J.K. Hobbs & S.J. Foster, (2011) Super resolution microscopy reveals cell wall dynamics and peptidoglycan architecture
 in ovococcal bacteria. *Molec Microbiol* 82: 1096-1109.
- Wilson, I.A., H.L. Niman, R.A. Houghten, A.R. Cherenson, M.L. Connolly & R.A. Lerner, (1984) The structure of an antigenic determinant in a protein. *Cell* **37**: 767-778.
- Yunck, R., H. Cho & T.G. Bernhardt, (2015) Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. *Molec Microbio* doi: 10.1111/mmi.13258.
- Zapun, A., T. Vernet & M.G. Pinho, (2008) The different shapes of cocci. *FEMS Microb Rev* **32**: 345-360.

Fig. S1

Lane	Strain #	Genotype
1	IU1945	WT = D39 ∆ <i>cps</i>
2	IU7403	<i>mltG</i> -FLAG
3	IU10369	mltG(Y488D)-FLAG
4	IU9043	<i>∆pbp1a mltG</i> -FLAG
5	IU10320	<i>∆pbp1a mltG</i> (∆5bp)-FLAG
6	IU10323	∆pbp1a mltG(Y488D)-FLAG
7	IU10324	<i>∆pbp1a mltG</i> (∆488bp)-FLAG
8	IU10327	Δ <i>pbp1a mltG</i> (Ω45bp)-FLAG
9	IU6741	∆pbp1a

Lane	Strain #	Genotype
1	IU1945	WT = D39 ∆ <i>cp</i> s
2	IU7403	mltG-FLAG
3	IU6741	∆pbp1a
4	IU9043	∆ <i>pbp1a mlt</i> G-FLAG
5	IU9041	∆pbp1a mltG(E428Q)-FLAG
6	IU9445	∆pbp1a mltG(E428A)-FLAG

Fig. S4

Viable, but not stable (picks up suppressors): $mltG(E428Q) pbp1a^+$ $[mltG(\Delta 5bp), mltG(\Delta 488bp), or mltG(\Omega 45bp)^2] \Delta pbp2b$

Viable and stable:

 $\Delta mltG \Delta pbp1a$ [mltG($\Delta 5bp$), mltG($\Delta 488bp$), or mltG($\Omega 45bp$)²] $\Delta pbp1a$

> $\Delta mltG \Delta pbp1a \Delta pbp2b$ $mltG(\Delta 5bp) \Delta pbp1a \Delta pbp2b$ $mltG(\Delta 488bp) \Delta pbp1a \Delta pbp2b$ $mltG(\Omega 45bp)^2 \Delta pbp1a \Delta pbp2b$

 $sup2 = mltG(\Delta 5bp)$ $sup4 = mltG(\Delta 488bp)$ $sup5 = mltG(\Omega 45bp)^2$

Variable Average Conserved

Fig. S7

Β

D

Fig. S9

(pbp1a spontaneous mutations)

Fig. S13

Fig. S14

