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Fig. S3 Comparison of total parenchyma fractions in wood based on our own measurements and 

literature. 
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which both sampling locations and GBIF locations were available. 
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Table S1 The Global Wood Parenchyma Database (see separate file). 

Table S2 Summary of statistics for the general additive models (GAM) based on the exact 

locations dataset. 

Table S3 Summary of statistics for the general additive models (GAM) based on the GBIF 

locations dataset. 

Notes S1 Published references from which data were extracted for analyses.  

 



 

 

Fig. S1 Distribution map of 612 GBIF locations and 68 exact sampling locations for angiosperm 

and conifer species for which parenchyma fraction values were compiled in a global xylem 

parenchyma dataset (see Table S1). 

 



 

 

Fig. S2 Poly-co-linearity matrix based on the GBIF dataset for the following parameters: ray 

parenchyma (RP.perc), axial parenchyma (AP.perc), ray and axial parenchyma (RAP.perc), 

organ (root, trunk, branch), latitude (lat), longitude (long), altitude (alt), potential 

evapotranspiration (PET), mean precipitation during the driest quarter (MPDQ), mean annual 

temperature (MAT), aridity index (AI). 

 



 

 

Fig. S3 Comparison of total parenchyma fractions in wood based on our own measurements and 

data from literature for 10 species (a) and 14 genera (b). The following species were included in 

Fig. S3(a), with the number of specimens obtained from literature between brackets: Aa, Abies 

alba (3); Cb, Carpinus betulus (1); Fs, Fagus sylvatica (5); Fb, Ficus benjamina (2); Fe, 

Fraxinus excelsior (2); Ls, Liquidambar styraciflua (3); Pa, Picea abies (4); Qr, Quercus robur 

(3); Rp, Robinia pseudoacacia (5); Tc, Tilia cordata (1). The genera included in Fig. S3(b) (with 



 

reference to the number of species/specimens from literature) are: Ab, Abies (6/9); Ac, Acer 

(14/19); Ca, Carpinus (8/8); Cei, Ceiba (2/5); Fa, Fagus (4/8); Fi, Ficus (29/31); Fr, Fraxinus 

(7/12); Li, Liquidambar (3/5); Picea (5/8); Pr, Prunus (9/9); Qu, Quercus (39/60); Ro, Robinia 

(1/5); Te, Terminalia (9/12); Ti, Tilia (9/9). The regression (solid) line and the 1:1 (dashed) line 

are shown. ***, P ≤ 0.001; *, P ≤ 0.05. 

 

 



 

Fig. S4 Comparison of mean annual temperature (a) and mean annual precipitation (b) values for 

244 species from the global xylem parenchyma dataset for which both sampling locations and 

GBIF locations were available. The regression (solid) line and the 1:1 (dashed) line are shown. 

***, P ≤ 0.001. 

 





 

Fig. S5 The effect of MAT (a), MAP (b), and altitude (c) on the proportion of axial parenchyma 

(AP) in angiosperm wood based on a general additive model (GAM) with a binomial distribution 

for the exact location dataset (red) and the GBIF derived climate data (blue). Each climate 

variable was limited to three partitions. The solid line represents the fitted smoother; 95% 

confidence intervals are shown in colour. Each dot represents a specimen for which the sampling 

location was reported in literature, or climate data were obtained from the WorldClim database. 

Pseudo-R
2
 measures the approximate deviance explained by each explanatory variable. 

 





 

Fig. S6 The effect of MAT (a), MAP (b), and altitude (c) on the proportion of ray parenchyma 

(RP) in angiosperm wood based on a general additive model with a binomial distribution for the 

exact location dataset (red) and the GBIF derived climate data (blue). Each climate variable was 

limited to three partitions. The solid line represents the fitted smoother; 95% confidence intervals 

are shown in colour. Each dot represents a specimen for which the sampling location was 

reported in literature, or climate data were obtained from the WorldClim database. Pseudo-R
2
 

measures the approximate deviance explained by each explanatory variable. 

 

Table S1 The Global Wood Parenchyma Database, including 961 records, but excluding Zheng 

& Martínez-Cabrera (2013). Data were extracted from 55 sources and include species name, 

plant organ, growth form, and xylem tissue fractions (%) of ray parenchyma, axial parenchyma, 

and total parenchyma. Specimens were grouped according to three major climatic zones, which 

follow Köppen (1936). 

See separate Excel file. 
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Table S2 Summary of statistics for the general additive models (GAM) fitted with a binomial 

distribution for the exact locations dataset. The response variables were RAP, AP and RP. Each 

explanatory variable was fitted with a smoother with a maximum of three effective degrees of 

freedom (e.d.f). P-values are approximate (Wood, 2006). Pseudo-R
2
 measures the approximate 

deviance explained by each explanatory variable. 

Response 

variable 

Explanatory 

variable 

e.d.f F-value P-value Pseudo-

R
2
 

RAP MAT 1.945 37.210 < 0.001 21.05% 

(n = 270) MAP 1.000 5.219 0.023 1.6% 

 Altitude 1.000 12.933 < 0.001 3.6% 

      

AP MAT 1.728 5.108 0.008 7.11% 

(n = 137) MAP 1.000 1.471 0.227 1.41% 

 Altitude 1.000 2.946 0.088 2.23% 

      

RP MAT 1.000 21.954 < 0.001 21.03% 

(n = 182) MAP 1.876 4.964 0.008 1.2% 

 Altitude 1.000 3.584 0.060 5.4% 

 

 

Reference 

Wood SN. 2006. Generalized additive models: an introduction with R. London, UK: Chapman 

and Hall. 

  



 

 

 

Table S3 Summary of statistics for the general additive models (GAM) fitted with a binomial 

distribution for the GBIF locations dataset. The response variables were RAP, AP and RP. Each 

explanatory variable was fitted with a smoother with a maximum of three effective degrees of 

freedom (e.d.f). P-values are approximate (Wood, 2006). Pseudo-R
2
 measures the approximate 

deviance explained by each explanatory variable. 

Response 

variable 

Explanatory 

variable 

e.d.f F-value P-value Pseudo-

R
2
 

RAP MAT 1.950 48.234 <0.001 31.65% 

(n = 221) MAP 1.000 8.848 0.003 2.8% 

 Altitude 1.000 10.433 0.001 3.1% 

      

AP MAT 1.922 14.615 <0.001 19.05% 

(n = 142) MAP 1.000 2.955 0.088 1.2% 

 Altitude 1.426 14.615 <0.001 5% 

      

RP MAT 1.000 12.988 <0.001 13.05% 

(n = 142) MAP 1.876 3.842 0.024 5.86% 

 Altitude 1.000 0.044 0.834 <0.01% 

 

Reference 

Wood SN. 2006. Generalized additive models: an introduction with R. London, UK: Chapman 

and Hall. 
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