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Nilotinib is a tyrosine kinase inhibitor (TKI) developed to manage imatinib-resistance in patients with chronic
myeloid leukemia (CML). It inhibits similar molecular targets to imatinib, but is a significantly more potent
inhibitor of Bcr-Abl. Nilotinib exhibits off-target effects in other tissues, and of relevance to bone metabolism,
hypophosphataemia has been reported in up to 30% of patients receiving nilotinib. We have assessed the
effects of nilotinib on bone cells in vitro and on bone metabolism in patients receiving nilotinib for treatment
of CML. We firstly investigated the effects of nilotinib on proliferating and differentiating osteoblastic cells,
and on osteoclastogenesis in murine bone marrow cultures and RAW264.7 cells. Nilotinib potently inhibited
osteoblast proliferation (0.01–1 uM), through inhibition of the platelet-derived growth factor (PDGFR). There
was a biphasic effect on osteoblast differentiation such that it was reduced by lower concentrations of
nilotinib (0.1–0.5 uM), with no effect at higher concentrations (1 uM). Nilotinib also potently inhibited
osteoclastogenesis, predominantly by stromal-cell dependent mechanisms. Thus, nilotinib decreased
osteoclast development in murine bone marrow cultures, but did not affect osteoclastogenesis in
RAW264.7 cells. Nilotinib treatment of osteoblastic cells increased expression and secretion of OPG and
decreased expression of RANKL. In 10 patients receiving nilotinib, levels of bone turnover markers were in the
low-normal range, despite secondary hyperparathyroidism, findings that are similar to those in patients
treated with imatinib. Bone density tended to be higher than age and gender-matched normal values. These
data suggest that nilotinib may have important effects on bone metabolism. Prospective studies should be
conducted to determine the long-term effects of nilotinib on bone density and calcium metabolism.
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Introduction

Nilotinib is a tyrosine kinase inhibitor (TKI) developed to manage
imatinib-resistance in patients with chronic myeloid leukemia (CML).
Nilotinib inhibits similar molecular targets to imatinib, but is a
significantly more potent inhibitor of Bcr-Abl than imatinib, with
comparable potency in the inhibition of the platelet-derived growth
factor (PDGFR) and c-KIT [1–4]. At therapeutic concentrations (1.7–
3.6 μM) it may also inhibit the macrophage colony stimulating factor
(M-CSF) receptor, and the collagen-related discoidin domain re-
ceptors (DDR-1 and −2) [5–7]. It has been used for the treatment of
patients with CML who are resistant to or intolerant of other therapy
[3,8–10], butmay become a first-line agent because of recent evidence
of greater efficacy than imatinib in treating CML [10]. Nilotinib is also
being investigated for use in advanced gastrointestinal stromal
tumors (GIST), systemic mastocytosis and hypereosinophilic syn-
drome [11–13]. As with other small molecule TKIs, nilotinib exhibits
off-target or “bystander” effects due to inhibition of its molecular
targets in healthy tissues [14]. Of relevance to bone metabolism,
hypophosphataemia has been reported in up to 30% of patient
receiving nilotinib for treatment of CML in Phase II and III clinical trials
[10,15].

Studies published by our group and others have suggested that the
related TKI, imatinib mesylate, has significant effects on bone and
calcium metabolism [16–28]. In vitro, imatinib decreases osteoblast
proliferation and survival, and increases osteoblast differentiation,
actions which may be attributable to inhibition of PDGFR signaling
[24,26–28]. Imatinib decreases osteoclastogenesis in vitro, bybothdirect
and indirect, stromal-cell dependent mechanisms [19,20,24,29]. The
similarities in the molecular targets of imatinib and nilotinib suggest
that nilotinib might also affect skeletal cell function. Nilotinib has been
reported to inhibit osteoclast formation and function, and promote
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osteoclast apoptosis [5], but to date there are no published data
regarding its effects on osteoblasts or of its effects on bone and calcium
metabolism in vivo. In the currentwork, we have assessed the actions of
nilotinib on bone cells in vitro and in patients receiving nilotinib for
treatment of CML.

Materials and methods

Cell culture

Primary rat osteoblastic cells were prepared as previously described
[30]. The osteoblast-like character of these cells has been established by
demonstration of high levels of alkaline phosphatase activity and
osteocalcin production [31] and a sensitive adenylyl cyclase response
to parathyroid hormone and prostaglandin E2 [32]. Murine pre-
osteoblastic MC3T3-E1 cells (ATCC, Cryosite Distribution, Lane Cove,
NSW, Australia), murine bone marrow stromal ST2 cells (St Vincent's
Institute, Melbourne, Australia), and murine macrophage RAW264-7
cells (St Vincent's Institute, Melbourne, Australia) were maintained in
standard cell culture conditions. Murine bone marrow cultures were
established after harvesting marrow cells from the femora and tibiae of
4- to 6-week-old male animals, as previously described [33].

All protocols involving use of animals have been approved by the
University of Auckland Animal Ethics Committee.

Media and reagents

Minimum essential media (MEM), minimum essential media α
modification (αMEM), and Dulbecco's minimum essential media
(DMEM) powder were purchased from Gibco BRL (Invitrogen Life
Technologies, Carlsbad, CA). L-ascorbic acid-2-phosphate and β-
glycerophosphate were purchased from Sigma-Aldrich Co. (St. Louis,
MO). Imatinibmesylate and nilotinibwere supplied byNovartis Pharma
AG (Basel, Switzerland). Recombinant human osteoprotegerin (OPG)
andmurine receptor activator of nuclear factor κB ligand (RANKL)were
fromAmgen Inc (ThousandOaks, Ca). Rat platelet-derivedgrowth factor
(PDGF)-BB was from R&D Systems (Minneapolis, MN).

Proliferation assay

Proliferation of osteoblastic cells was measured by cell counts and
[3H]-thymidine incorporation. In experiments designed to test the
effects of nilotinib on proliferation, cells were cultured overnight in 5%
FCS, then the media changed to 1% FCS at the time of addition of
nilotinib. Cell numbers were analyzed 24 h after addition of nilotinib by
detaching cells from the wells using trypsin/EDTA (0.05%/0.53 mM) for
approximately 5 min at 37 C. Counting was performed in a hemocy-
tometer chamber. [3H]-thymidine incorporationwasmeasuredduring a
6 h window at the end of 24 h of treatment, as previously described
[30,34]. In experiments designed to test the effects of nilotinib on PDGF-
stimulated osteoblast mitogenesis, cells were cultured overnight in 5%
FCS, then placed in serum-free media for 24 h prior to addition of PDGF
with orwithout nilotinib for 24 h,withmeasurement of [3H]-thymidine
incorporation during a 6 h window at the conclusion of the treatment
period. In these experiments, nilotinib-only controls were included and
[3H]-thymidine incorporation induced by PDGF in the presence or
absence of nilotinib was expressed as a ratio to the values obtained in
cultures treated with vehicle or nilotinib alone, respectively.

Live/dead cell viability assay

Cell viability was assessed in primary rat osteoblasts treated with
vehicle or nilotinib using a Live/Dead Viability/Cytotoxicity Kit
(Invitrogen), according to the manufacturer's instructions.
Mineralization assay

MC3T3-E1 cells were plated in 6-well tissue culture dishes, at a
density of 5×104 cells/well, in 10% FCS/MEM/sodium pyruvate. When
cells were confluent (approximately 3 days after plating) and no longer
proliferating,mediawere changed to15%FCS/αMEMsupplementedwith
50 μg/ml L-ascorbic acid-2-phosphate and 10 mM β-glycerophosphate,
and test substances were added. These supplemented media were
changed twice weekly and test substances were replaced. After 18–
21 days, the cells were fixed in neutral buffered formalin, rinsed
thoroughly with distilled water, and the cultures stained for mineral
usingVonKossa stain. Quantification ofmineralized areaswas performed
using a semi-automatic image analysis Bioquant system (Bioquant Image
Analysis Corporation, Nashville, TN).

Osteoclastogenesis assays

Assays of osteoclastogenesis in RAW264.7 cells and murine bone
marrow cells were performed as previously described [24]. After
culture for 4–5 day (RAW264.7 cells) or 7 day (bone marrow), cells
were fixed and stained for tartrate-resistant acid phosphatase (TRAP).
Multinucleated cells (containing three or more nuclei) positive for
TRAP were counted. In addition to the previously described cultures,
murine bonemarrow cultures were performedwith nilotinib addition
at a later time point in the experiment.

Osteoprotegerin assay

Osteoprotegerin, an endogenous inhibitor of RANKL signaling, was
measured in conditionedmedia fromcultures of cells treatedwithvehicle
or nilotinib, using the murine osteoprotegerin/TNFRSF11B DuoSet (R&D
Systems,Minneapolis,MN), according to themanufacturer's instructions.

Analysis of gene expression

Total cellular RNAwas extracted fromcultured cells andpurifiedusing
RNeasy minikit (Qiagen). Genomic DNA was removed using RNase-free
DNase set (Qiagen). Reverse transcription was carried out as previously
described [35], and cDNA was used for real-time PCR. The primer-probe
setswere purchased fromApplied Biosystems (Foster City, CA).Multiplex
PCR was performed with FAM-labeled probes specific for the gene of
interest, and VIC-labeled 18S rRNA probes according to the company's
instructions, using ABI PRISM 7900HT sequence detection system
(Applied Biosystems). Samples were assayed in duplicate or triplicate.
The relative level of mRNA expression was determined using the ΔΔCt
calculation method as previously described [35]. Expression data were
normalized to the control value at the earliest time point assayed.

RNA interference

RNA interference (“gene-silencing”) was performed using Stealth
select probes specific murine PDGFRB (Invitrogen catalogue #
MSS207504), PDGFRA (Invitrogen catalogue #MSS207501) or formurine
ABL-1 (Invitrogen catalogue#MSS235749) or aGC control sequence. ST2
cells were seeded into 24 well plates at a density of 5×104 cells/ml in
DMEM/5% FCS and incubated for 24 h. Cells were then transfected with
the PDGFRB, PDGFRA or the ABL-1 probe or the GC control probe using
Lipofectamine transfection reagent. After 6 h, media was changed to
DMEM/1% FCS and the plates were treated as for a standard proliferation
assayasdescribedabove. In cultures treated inparallel, RNAwascollected
after 24 h for analysis of expression of the target gene of interest.

Subjects

The study population consisted of ten subjects with BCR/ABL
positive CML who had been treated with nilotinib for a median of



Table 1
Demographic, disease and treatment characteristics of study subjects.

Variable Value

Age (y) 49 [32–56]
Gender (M/F) 3/7
Menopausal Status (pre/post) 4/3
Body mass index (kg/m2) 27 [19–41]
Disease duration (months) 72 [32–159]
Number with cytogenetic response 9
Duration of nilotinib treatment (months) 32 [12–54]
Number taking nilotinib 800 mg/day 9a

Data are n, or median [range].
a Nilotinib dose was 400 mg daily in one subject (see text).
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32 months (range 12–54). The demographic, disease and treatment
data are shown in Table 1. None had metabolic bone disease or
impaired renal function, but two patients were receiving calcium
supplements, one of whom had had low-normal serum calcium
(8.2 mg/dL) while taking imatinib. Seven subjects had received
400 mg of nilotinib twice daily since starting treatment. Nilotinib
dose was reduced to 400 mg daily in three subjects because of drug-
related side-effects (pancytopenia, headache and malaise); in two
cases the dose was increased back to 400 mg twice daily within four
months, while the third patient remained on 400 mg daily. At the time
of sampling, all but one patient was taking 800 mg daily and had
attained a complete cytogenetic response. All ten patients had
previously received imatinib, for a median duration of 32 months
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Fig. 1. Effects of nilotinib on [3H]-thymidine incorporation in (A) primary rat osteoblasts, (
primary rat osteoblasts. (E) Representative image of effects of nilotinib on cell viability in prim
IM, imatinib.
(range 9–68). Imatinib therapy was stopped and nilotinib started
because of failure to achieve a major cytogenetic response in six
subjects, and loss of cytogenetic response in four patients.

Previously published data from a prospectively studied cohort of
patientswithCML treatedwith imatinib for 2 years, inwhichwe reported
the development of secondary hyperparathyroidism and decreased bone
turnover, [23], are included here for comparative purposes. None of the
nilotinib-treated patients had participated in the imatinib study.

The study was approved by the Northern X Regional Ethics
Committee (approval number NTX/09/03/022), and all participants
gave written informed consent.

Biochemistry
All subjects provided serum, plasma and urine samples, after

overnight fast. Serum calcium, albumin, phosphate and creatinine, and
urine phosphate and creatinine were measured on a Roche Modular
autoanalyser. Albumin-adjusted serum calcium was calculated using
the formula sCa adj=total sCa–0.8 (sAlbumin [g/dL]–4). Tubular
maximum for phosphate reabsorption (TmP/GFR) was calculated as
previously described [36]. Serum 25(OH)D was measured by radioim-
munoassay (DiaSorin, Stillwater, Mn). Intact parathyroid hormone
(PTH) and total testosterone were measured using electrochemilumi-
nescence immunoassays (E170, Roche, Basel, Switzerland).

Bone turnover markers
Serum levels of β-C-terminal telopeptide of type I collagen (βCTX)

and procollagen type-I N-terminal propeptide (PINP) were measured
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as previously described [37]. Coefficients of variation of these markers
are as follows: PINP, 1.9%; βCTX, 5.1%.

Bone mineral density
BMDwasmeasured using a Lunar Prodigy densitometer (GE Lunar,

Madison, WI), as previously described [23]. Body weight was
measured using electronic scales.

Statistical analyses
Data were analyzed using GraphPad Prism (v5.04) (GraphPad

Software, San Diego, CA). Data from experiments evaluating multiple
time points or drug/peptide concentrations were analyzed by
repeated measures analysis of variance (ANOVA), with Dunnett's
post-hoc test. Paired data were analyzed by Student's t test. Data from
nilotinib-treated patients were compared with the midpoint of the
laboratory normal range using Student's related groups test, or the
Wilcoxon signed rank test if data were not normally distributed. Data
from nilotinib-treated patients were compared with imatinib-treated
patients using Student's t test.

Results

Nilotinib is a potent inhibitor of osteoblast proliferation and this effect is
mediated by the PDGFR

At concentrations comparable to or lower than those that occur in
serum in patients treated with standard doses of nilotinib [14], there
was a dose-dependent inhibition of proliferation of actively growing
primary rat osteoblastic cells as evidenced by reduced [3H]-thymidine
incorporation and a reduction in cell number (Figs. 1A and D
respectively). At the same concentrations, nilotinib inhibited mito-
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Fig. 2. The effects of nilotinib on osteoblast mitogenesis are mediated by inhibition of PDGFR
(C) MC3T3-E1 cells, effects that are inhibited by nilotinib in each cell type. (D) Nilotinib does
vs PDGF; **, pb0.01 vs PDGF; ***, pb0.001 vs PDGF.
genesis of ST2 cells andMC3T3-E1 cells (Figs. 1B and C). This was not a
non-specific cytotoxic effect of nilotinib, as there was no evidence of
cell detachment or increased death in the primary rat osteoblasts
(Figs. 1E). When compared to imatinib, nilotinib more potently
inhibited mitogenesis in each of the osteoblast cultures. In previous
work we have shown that the effects of imatinib mesylate on
osteoblast proliferation are mediated by the PDGFR [24]. We therefore
investigated whether inhibition of PDGFR signaling also mediates the
anti-proliferative effects of nilotinib. In primary rat osteoblasts, ST2
cells and MC3T3-E1 cells, PDGF potently stimulated mitogenesis of
osteoblastic cells, an effect that was reversed by co-treatment with
nilotinib (Figs. 2A–C). This was not a non-specific inhibitory effect, as
co-treatment with nilotinib did not inhibit the mitogenic effect of
lactoferrin (Fig. 2C). To confirm these findings in a more direct
fashion, we used gene silencing techniques to inhibit expression of the
PDGFRB and PDGFRA genes. Using these techniques, PDGFRB gene
expression was reduced by more than 70% leading to a 40% inhibition
of mitogenesis in ST2 cells (Fig. 3A). A similar degree of inhibition of
PDGFRA did not significantly reduce mitogenesis (Fig. 3B). We also
considered the possibility that inhibition by nilotinib of one of its
other targets may be contributing to the effects we observed.
However, reducing ABL gene expression by more than 70% did not
significantly affect mitogenesis of ST2 cells (Fig. 3C). As ST2 cells do
not express the KIT gene [24], we did not further investigate a role for
c-KIT in mediating the anti-proliferative effects of nilotinib.

Nilotinib inhibits differentiation of osteoblastic cells

In contrast to imatinib, nilotinib had an inhibitory effect on the
formation of mineralized tissue in long-term cultures of osteoblastic
cells. The effect of nilotinib appeared to be biphasic, such that it
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inhibited differentiation ofMC3T3-E1 cells at concentrations of 0.1 μM
and 0.5 μM, while having a neutral effect at 1.0 μM (Figs. 4A and B).

Nilotinib inhibits osteoclastogenesis

We assessed the effects of nilotinib on osteoclast development in
vitro, using murine bone marrow cultures stimulated with 1,25
(OH)2D. The number of newly developed osteoclasts was significantly
decreased by nilotinib at concentrations of 0.5 μMand higher (Figs. 5A
and B). In a similar fashion to imatinib, there appeared to be a dose-
dependent reduction in the number of stromal cells in the presence of
nilotinib, consistent with the anti-proliferative effects we observed in
osteoblastic cells. When nilotinib was added at a later time-point the
inhibitory effect on osteoclastogenesis was less marked than when it
was present for all of the experimental period (Fig. 5C). Stromal cell
numbers were reduced in both cases, but to a lesser extent when
nilotinib was added later in the assay. To further investigate whether
the inhibition of osteoclastogenesis by nilotinib was attributable to
indirect actions on the stromal cell population, we assessed the effect
of nilotinib on formation of osteoclasts using the RAW-264.7
macrophage cell line. In these cultures, stromal cells are not present
and TRAP-positive multinucleated osteoclasts develop in response to
treatment with RANKL. Nilotinib did not inhibit the development of
osteoclasts in RANKL-treated RAW-264.7 cells (Fig. 5D).

A mechanism by which nilotinib might indirectly inhibit osteoclas-
togenesis is by altering stromal cell production of cytokines known to
influence osteoclast development [38]. RANKL mRNA expression was
reduced in cultures of ST2 cells (data not shown), and OPG mRNA
expression was increased in cultures of ST2 cells and murine bone
marrowculture treatedwithnilotinib (Figs. 5E andF).WemeasuredOPG
protein in cell-conditionedmedium from ST2 cells treated with nilotinib
and found that itwas significantly increasedover control values (Fig. 5G).
These data suggest that an increase in OPG production by stromal/
osteoblastic cells may contribute to the anti-resorptive actions of
nilotinib, in addition to its effect to reduce stromal cell number. Taken
together, these data suggest that nilotinibmay inhibit osteoclastogenesis
by a stromal cell-dependentmechanism(s), however,we cannot exclude
the possibility that nilotinib may have a direct inhibitory effect on the
development of osteoclast precursors, or on survival of pre-osteoclasts.

Patients treated with nilotinib have secondary hyperparathyroidism and
low-normal markers of bone turnover

Biochemistry
The patients treated with nilotinib had secondary hyperparathy-

roidism. Mean levels of calcium and phosphate were at the lower end
of the normal range (mean [SD] 8.5 [0.3] mg/dL and 2.9 [0.6] mg/dL
respectively, pb0.001 and pb0.05 vs normal population mean)
(Figs. 6A and B), and the mean level of PTH was at the upper end of
the normal range (mean [SD] 59.9 [40.2] pg/ml, pb0.05 vs normal
population mean) (Fig. 6D). One patient had a PTH level above the
upper limit of the normal range. Themean level of TmPwas below the
normal range (mean [SD] 2.5 [0.7] mg/dL GFR, pb0.01 vs normal
population mean) (Fig. 6C). Levels of each of these biochemical
parameters were similar to those in patients with CML treated with
imatinib for 2 years [23] which are reproduced here for comparative
purposes (Figs. 6A–D). In the nilotinib-treated patients, mean (SD)
estimated glomerular filtration rate was 106 (20) ml/min/1.73 m2,
and serum 25OHD was 35 (15) nmol/L.

Bone turnover
In patients treated with nilotinib, mean levels of the bone formation

marker P1NP and the bone resorption marker, βCTX, were in the lower
part of the normal range, and each was significantly different to the
mean value in healthy premenopausal women (mean [SD] 28.9 [12.4]
μg/L and 149 [97] ng/L respectively, p=0.0004 and p=0.0008
respectively) (Figs. 6E and F). Both values were higher than in
imatinib-treated patients (mean [SD] 15.6 [3.1] μg/L, p=0.025 vs
nilotinib-treated patients and 90 [31] ng/L, p=0.02 vs nilotinib-treated
patients respectively). The patient receiving a low dose of nilotinib
(400 mg daily) had a P1NP level above the middle of the normal
premenopausal range. Two nilotinib-treated post-menopausal patients
had βCTX levels at the mid-point of the normal premenopausal range.

Bone mineral density
The mean bone mineral density (BMD) in the nilotinib-treated

patients tended to be higher than the age and gender-matched normal
mean value at the total body and lumbar spine sites but not at the
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proximal femur (z-score mean [SD] total body 0.99 [1.30], p=0.04;
lumbar spine 0.69 [1.01], p=0.06; total hip 0.60 [1.30], p=0.18). There
were no significant differences between the BMD of the nilotinib treated
patients and the patients treated with imatinib for 2 years (data not
shown).

Discussion

Small molecule TKIs are emerging as powerful tools in the
management of an array of diseases. Imatinib mesylate is the prototype
TKI, and studies published by our group and others suggest that it has
important effects on bone and calcium metabolism [16–28]. Nilotinib is
active against a similar array of molecular targets to imatinib but is more
potently inhibitory of the ABL tyrosine kinase. Recent evidence that
nilotinib is superior to imatinib in achieving remission in CML makes it
likely that nilotinib will be more frequently prescribed in the future [10].
In this work we found that nilotinib, at concentrations similar to those
observed in vivo [14] inhibits osteoblast proliferation without affecting
cell viability,has aneutral or inhibitoryeffect onosteoblastdifferentiation,
and inhibits osteoclastogenesis in vitro. In patients, nilotinib decreases
bone turnover, despite causing secondary hyperparathyroidism.

As with imatinib [24], nilotinib's inhibitory effect on osteoblast
proliferation is mediated through PDGFR signaling. Thus, in each of
three osteoblastic cell types, nilotinib inhibited the mitogenic effect of
PDGF. Gene silencing demonstrated that the PDGFRβ ismost likely to be
the critical receptor in mediating these effects since siRNA targeting of
this receptor decreases osteoblast mitogenesis. Gene silencing of
PDGFRA and ABL had no effect on osteoblast mitogenesis, and
osteoblasts from ABL−/−mice proliferate normally [39], arguing against
a pivotal role for either PDGFRα or c-ABL in mediating nilotinib's
inhibitory effects on osteoblast proliferation. In contrast to imatinib,
which induces osteoblast differentiation at concentrations greater than
0.05 μM [24], nilotinib inhibits or has a neutral effect on osteoblast
differentiation. It has previously been reported that ABL−/−mice have
dysfunctional osteoblasts, with impaired differentiation, while we and
others have reported that the stimulatory effects of imatinib on
differentiation of osteoblasts may be mediated by inhibition of the
PDGFR [24,27,28]. Thus, we speculate that the effects of nilotinib on
osteoblast differentiation result from the relative balance of its
inhibitory effects on c-ABL and the PDGFR. At doses b1.0 μM the c-ABL
inhibitory effect predominates, leading to inhibition of differentiation.
At higher doses there is a significant PDGFR inhibitory effect, which
rescues the impairment of osteoblast differentiation induced by
inhibition of c-ABL.

The current work also demonstrates that nilotinib inhibits osteo-
clastogenesis, in keeping with the findings of a previous study [5] and
with previous findings with imatinib [19,20,24]. In a similar fashion to
that seen with imatinib, we found that nilotinib potently inhibited
osteoclastogenesis in the murine bone marrow assay treated with 1,25
(OH)2D, inwhich stromal cell-derived osteoclastogenic cytokines play a
critical role in driving maturation of osteoclast precursors. Experiments
assessing the direct effect of nilotinib on osteoclast development,
performed by using the stromal cell-independent RAW-264.7 cells,
suggested that the anti-osteoclastogenic actions of nilotinib are largely
stromal cell-dependent, however the possibility that nilotinib has a
direct inhibitory effect on osteoclast precursors cannot be excluded. Our
findings suggest that nilotinib induces stromal cell-dependent inhibi-
tion of osteoclastogenesis by limiting the number of stromal cells
available to support differentiation of osteoclast precursors and by
increasing the production by stromal cells of osteoprotegerin, a secreted
decoy receptor for RANKL. The findings that both imatinib [24] and
nilotinib (currentwork) increase stromal cell production ofOPG suggest
that signaling via a commonmolecular target regulates the synthesis of
this critical endogenous regulator of osteoclastogenesis.

We have demonstrated that patients receiving nilotinib for
treatment of CML have alterations in bone and calcium metabolism
that are similar in nature and magnitude to those observed in patients
treated with imatinib [23]. Thus, patients treated with nilotinib have
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decreased bone turnover, despite secondary hyperparathyroidism. The
reason(s) for the effects of TKIs on calcium and phosphate metabolism
remain uncertain. In imatinib-treated patients, secondary hyperpara-
thyroidism persists for at least 2 years, well beyond the time during
which uncoupling of bone formation and bone resorption is observed
[23], and the mean duration of nilotinib therapy in the current study is
more than 2 years. Thus, a non-skeletal action, such as decreased
intestinal calcium absorption, may explain the persistent secondary
hyperparathyroidism in patients receiving imatinib or nilotinib. The
current study is limited by its cross-sectional design and by the fact that
each patient had previously received imatinib for at least 9 months and
most for more than 2 years. It is not known whether the effects of
imatinib on calcium metabolism are reversible, and although it seems
unlikely, we cannot exclude the possibility that the effects we observed
in the nilotinib-treated patients are the result of irreversible actions of
the imatinib therapy each patient had previously received.

The bone turnover data are in keeping with the in vitro data that
demonstrate that nilotinib inhibits both osteoblast differentiation and
osteoclastogenesis, while also inhibiting proliferation of immature
osteoblastic cells. Bone density tended to be higher than normal in the
nilotinib-treated group, raising the possibility that it exerts an anti-
resorptive effect in vivo, but the cross-sectional nature of this study
means that it is not possible to definitively determinewhether nilotinib
alters bone density. Similarly we were not able to determine whether
patients taking nilotinib experienced the significant gains inweight and
fat mass that we observed in patients treated with imatinib [23].

In summary, nilotinib inhibits osteoblast proliferation and differen-
tiation, and osteoclastogenesis in vitro, and leads to low levels of bone
turnover and secondary hyperparathyroidism in patients being treated
for CML.Cross-sectional bonedensitydata suggest that nilotinib therapy
might increase bone density. Prospective studies of the effects of
nilotinib on bone and calcium metabolism should be undertaken.
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