Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds

Marcin Odachowski, Amadeu Bonet, Stephanie Essafi, Philip Conti-Ramsden, Jeremy N. Harvey, Daniele Leonori and Varinder K. Aggarwal

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

Supporting Material II

NMR spectra, GC, SFC & HPLC chromatograms

1e

¹¹B NMR (96 MHz, NONE)¹

1f-oxidised

¹H-NMR (400 MHz, CDCl₃) va/mo36320_MOG123rac - 3.5 3.0 2.5 HO, 2.0 РМР 1.5 1.0 - 0.5 0.0 2.00. 2.00. 3.00- 1.00-1.004 1.014 2:00-2 3:01-4 3:01-4 H00.1 5.5 5.0 f1 (ppm) 1.5 0.0 4.5 2.5 2.0 9.5 9.0 8.5 8.0 7.5 . 7.0 . 6.5 6.0 4.0 3.5 3.0 1.0 0.5

 $^{^{1}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

¹³C-NMR (100 MHz, CDCl₃)

Chiral SFC traces: racemic

Chiral SFC traces: enantioenriched

 $^{^{2}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

 $[\]frac{1}{3}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

1r

¹H NMR (400 MHz, CDCl₃)

¹¹B NMR (96 MHz, NONE)

10 ¹H NMR (400 MHz, CDCl₃)

¹¹B NMR (96 MHz, CDCl₃)⁴

32.064

1p

 $[\]frac{1}{5}$ The ¹¹B NMR of steroid **10** is believed to be weak due to possible aggregation effects.

¹¹B NMR (96 MHz, CDCl₃)

-33.565

¹¹B NMR (96 MHz, NONE)⁶

 $^{^{6}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

21

¹H NMR (400 MHz, CDCl₃)

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

2d

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

¹³C-NMR (100 MHz, CDCl₃)

Chiral SFC traces: enantioenriched

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Chiral SFC traces: enantioenriched

2m

100

40

1

150

1.20

T

J

100

1

$2\mathbf{q}$

2t

20 ¹H NMR (400 MHz, CDCl₃)

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: enantioenriched

Chiral GC traces: enantioenriched

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: racemic + enantioenriched

Chiral HPLC traces: enantioenriched

4e

Chiral SFC traces: enantioenriched

2u

Chiral HPLC traces: racemic

4g

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Chiral HPLC traces: enantioenriched

4h

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: enantioenriched

7q

¹³C NMR (100 MHz, CDCl₃)

Chiral SFC traces: racemic

5b

Chiral HPLC traces: enantioenriched

6a

¹H NMR (400 MHz, CDCl₃)

Chiral SFC traces: enantioenriched

6q

00 190 180

170 160 150

SI-II-69

80 70 60

90

40 30 20 10

50

140 130 120 110 100 f1 (ppm) · 0 --5

6p ¹H NMR (400 MHz, CDCl₃)

9a

Chiral SFC traces: enantioenriched

¹H NMR (400 MHz, CDCl₃)

9q

¹H NMR (400 MHz, CDCl₃)

9g

9h

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: enantioenriched + racemic

Chiral SFC traces: racemic

10q

10p

¹H NMR (400 MHz, CDCl₃)

Chiral SFC: enantioenriched

111

SI-II-87

25

11h

Chiral SFC traces: racemic

Elapsed Time(min)

12

18b

 7 e.r. of 18ga reflects the e.r. of 18g (see below).

130

- da

19b and 21 – unseparable mixture

GC-MS chromatogram of inseparable mixture of products:

Coupling product **13b**:

Bromination on C(sp³) centre:

19g

13b

12b

¹H NMR (400 MHz, CDCl₃)

14b

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

¹³C NMR (100 MHz, CDCl₃)

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

16b

16b-[OH]

Chiral SFC traces: enantioenriched

16g

Chiral SFC traces: racemic

17b

190 180

170 160

140 130

120

. 110 100 90 f1 (ppm)

. 150

¹H NMR (400 MHz, CDCl₃)

80

. 70 60 50

40

30

L-0.10

10

20

17b-[OH]

Chiral HPLC traces: racemic

20b

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

Chiral HPLC traces: racemic

Chiral HPLC traces: enantioenriched

9ba

¹H NMR (400 MHz, CDCl₃)

¹¹B NMR (96 MHz, NONE)⁸

Chiral HPLC traces: racemic

 $^{^{8}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral HPLC traces: enantioenriched

9ga

¹H NMR (400 MHz, CDCl₃) 7772 7777 7777 7777 7777 7777 7777 7777 7777 7777 7777 7777 2800 2600 MeQ B(pin) 2400 2200 11. I 11/11 2000 MeO 1800 Ρh 1600 1400 1200 1000 800 600 400 200 0 12.05 1.00 ⊭ 3.01 ¥ 3.01 ⊁ |3.91 1.00 Å 3.00 -- -200 0.0 9.5 8.5 7.5 6.5 5.5 5.0 f1 (ppm) 2.5 9.0 8.0 7.0 6.0 4.5 3.5 0.5 4.0 3.0 2.0 1.5 1.0 ¹³C NMR (100 MHz, CDCl₃) xx98159_AB686pur_CARBON 06 ---- 143.54 $< \frac{128.62}{127.98} \sim 125.26$ ---- 94.19 < 55.38 < 55.07</pre> -35.95-31.06725.0724.8624.21--- 83.64 55 50 45 40 35 30 25 20 15 10 - 5 0 --5 190 180 150 110 100 f1 (ppm) 80 70 60 50 40 10 170 160 140 130 120 90 30 20

¹¹B NMR (96 MHz, CDCl₃)⁹

Chiral SFC traces: racemic

 $^{^{9}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral SFC traces: enantioenriched

Chiral SFC traces: racemic + enantioenriched

11ba-major

¹H NMR (400 MHz, CDCl₃)

¹¹B NMR (96 MHz, CDCl₃)¹⁰

Chiral SFC traces: racemic

 $^{^{10}}$ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral SFC traces: enantioenriched

11ba-minor

¹¹B NMR (96 MHz, NONE)¹¹

Chiral SFC traces: racemic

¹¹ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral SFC traces: enantioenriched

15ba

¹H NMR (500 MHz, DMSO)

¹¹B NMR (96 MHz, NONE)¹²

 $^{^{12}}$ The broad peak at –5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral SFC traces: enantioenriched

18aa

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Chiral SFC traces: racemic

 13 The broad peak at –5 ppm is due to the use of standard NMR tube (contains borosilicates).

18ga

Chiral SFC traces: racemic

¹⁴ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

8ba

¹H NMR (400 MHz, CDCl₃)

¹¹B NMR (96 MHz, CDCl₃)¹⁵ va/mo35280_MOABbthioBpinee single pulse decoupled gated NOE

Chiral SFC traces: racemic

¹⁵ The broad peak at -5 ppm is due to the use of standard NMR tube (contains borosilicates).

Chiral SFC traces: enantioenriched