Table S2. Strains and plasmids used in this study

Strain or plasmid	Description	Reference or source		
Strain				
DH5a	Cloning, F ⁻ Φ80 <i>lac</i> ZΔM15 Δ(<i>lac</i> ZYA- <i>arg</i> F) U169 recA1 endA1 hsdR17(r _k ⁻ , m _k ⁺) phoA supE44thi- 1 gyrA96 relA1 λ ⁻	Invitrogen		
W3110	Glycocompetent E. coli rph- l IN(rrnD-rrnE)	(1)		
BL21 (DE3)		New England BioLabs		
Campylobacter jejuni 81-176	Protein expression, $huA2$ [lon] $ompT$ gal (λ DE3) [dcm] $\Delta hsdS$ λ DE3 = λ sBamHIo $\Delta EcoRI$ -B int::(lacI::PlacUV5::T7 gene1) $i21 \Delta nin5$	(2)		
Plasmids			Forward primer	Reverse primer
RK212.2	Helper plasmid for conjugation Tet ^R , Carb ^R	(3)		
pACYC::pgl	Constitutive expression of <i>pgl</i> locus, Cm ^R	(4)		
pET24a	Expression vector, IPTG inducible, Kan ^R	Novagen		
pET24a:: <i>peb3-cyt</i>	Δ1-20, deletion of Sec signal sequence for cytoplasmic expression, C-terminal his6x tag	This study	TAATTC <u>CATATG</u> GATGTAAACCTTTACGGACC	TCAGAAA <u>TCTGAG</u> TTCTCTCCAGCCGTATT T
pET24a::peb3-cyt N90Q	Mutation of glycosylation site	This study	GTGATTTTGGAAAAGATTTTCAGGTGAGTAAA ATCAAGCCTTTA	TAAAGGCTTGATTTTACTCACCTGAAAATC TTTTCCAAAATCAC
pET24a:: <i>peb3-cyt</i> N90Q D68N	Substitution of glycosylation consensus sequence DFNVS at residues 66-70	This study	GGTTTGAAAAGGCTAAAAAAGATTTTAATGTG AGTTTTGGCGCTTCAGATCAATCG	CGATTGATCTGAAGCGCCAAAACTCACATT AAAATCTTTTTTAGCCTTTTCAAACC
pET24a:: <i>peb3-cyt</i> N90Q G72N	Substitution of glycosylation consensus sequence DFNVS at residues 70-74	This study	GGCTAAAAAAGATGCAGATATTGATTTTAATG TGTCAGATCAATCGGCTTTAGCTATAG	CTATAGCTAAAGCCGATTGATCTGACACAT TAAAATCAATATCTGCATCTTTTTTAGCC
pET24a:: <i>peb3-cyt</i> N90Q Q152N	Substitution of glycosylation consensus sequence DFNVS at residues 150-154	This study	GTTTGGGAAGATATGATAGGTGATTTTAATGT GAGTAAAACCATACAAAATTTTAGAAAC	GTTTCTAAAATTTTGTATGGTTTTACTCACA TTAAAATCACCTATCATATCTTCCCAAAC

pET24a:: <i>peb3-cyt</i> N90Q A179N	Substitution of glycosylation consensus sequence DFNVS at residues 177-181	This study	CAAATAGTGGAAGTGCAAGAAAGGATTTTAA TGTGAGTCAAGCCGATGCTTGGATCACTTG	CAAGTGATCCAAGCATCGGCTTGACTCACA TTAAAATCCTTTCTTGCACTTCCACTATTTG
pET24a:: <i>peb3-cyt</i> N90Q I199N	Substitution of glycosylation consensus sequence DFNVS at residues 197-201	This study	GACTGGTCAAAAAGCAATGATTTTAATGTGAG TGCCGTAGCTATAGAAA	TTTCTATAGCTACGGCACTCACATTAAAAT CATTGCTTTTTGACCAGTC
pET22b:: <i>ycbK</i>	<i>pelB</i> sequence replaced with <i>E.</i> <i>coli ycbK</i> signal sequence (TAT)	This study	TAATTC <u>CATATG</u> GACAAATTCGACGCTAATCG	TCAGAAA <u>GGATCC</u> GAGTGTTGCAAACGCA GGGGTCG
pET22b:: <i>torAcj</i>	<i>pelB</i> sequence replaced with <i>C.</i> <i>jejuni torA</i> signal sequence (TAT)	This study	TAATTC <u>CATATG</u> CTAGATAGAAGAAAATTTTT AAAAATTG	TCAGAAA <u>GGATCC</u> TTTTGAAGCTTCTACGG TTTTTCCTGC
pBAD::mNectarine	Expression vector, arabinose inducible, Amp ^R	(5)		
pBAD::peb3	Full length <i>peb3</i> , C-terminal his tag	This study	TAATT <u>TCATGA</u> AAAAAATTATTACTTTATTTG G	TCAGAA <u>GAATTC</u> TCAGTGGTGGTGGTGGTGGTG GTGCTCG
pBAD::ycbK::peb3	Replacement of Sec signal sequence (1-20) with Tat signal sequence from <i>ycbk</i>	This study	TAATT <u>TCATGA</u> AAGACAAATTCGACGCTAATC GCC	TCAGAA <u>GAATTC</u> TCAGTGGTGGTGGTGGTG GTGCTCG
pBAD::pelB::acrA	<i>pelB</i> N-terminal signal sequence replaced 1-22	This study	TAATT <u>TCATGA</u> AATACCTGCTGCCGACCGCTG CT	TCAGAA <u>GAATTC</u> TCAGTGGTGGTGGTGGTG GTGCTCG
pBAD::ycbK::acrA	<i>ycbK</i> N-terminal signal sequence replaced 1-22	This study	TAATT <u>TCATGA</u> AAGACAAATTCGACGCTAATC GCC	TCAGAA <u>GAATTC</u> TCAGTGGTGGTGGTGGTG GTGCTCG
pCE111/28	<i>C. jejuni</i> expression vector, Cm ^r <i>flaA</i> s ²⁸ promoter, derivative of pRY111	(6, 7)		
pCE111/28::rbs	Insertion of RBS before BamHI site	This study	GATCAGAAGGAGATATAG	GATCCTATATCTCCTTCT
pCE111/28H::rbs	Insertion of His-tag after XhoI site	This study	TCGAGCACCACCACCACCACTGAGGTAC	CTCAGTGGTGGTGGTGGTGGTGC
pCE111/28 H::rbs:: <i>peb3</i>	Full length peb3	This study		
pCE111/28 H:: rbs:: <i>torA::peb3</i>	<i>torAcj</i> N-terminal signal sequence replaced 1-22	This study		
pCE111/28 H:: rbs:: <i>pelB::acrA</i>	<i>pelB</i> N-terminal signal sequence replaced 1-22	This study		
pCE111/28H:: rbs:: <i>torA::acrA</i>	<i>torAcj</i> N-terminal signal sequence replaced 1-22	This study		

Restriction sites are underlined

- Hayashi, K., Morooka, N., Yamamoto, Y., Fujita, K., Isono, K., Choi, S., Ohtsubo, E., Baba, T., Wanner, B. L., Mori, H., and Horiuchi, T. (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2, 2006.0007
- Korlath, J. A., Osterholm, M. T., Judy, L. A., Forfang, J. C., and Robinson, R. A. (1985) A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis. 152, 592–596
- 3. Figurski, D. H., and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provide. Proc. Natl. Acad. Sci. U.S.A. 76, 1648–1652
- 4. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wren, B. W., and Aebi, M. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. *Science*. **298**, 1790–1793
- 5. Johnson, D. E., Ai, H.-W., Wong, P., Young, J. D., Campbell, R. E., and Casey, J. R. (2009) Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. *J Biol Chem.* 284, 20499–20511
- 6. Larsen, J. C., Szymanski, C., and Guerry, P. (2004) N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J Bacteriol. 186, 6508-6514
- 7. Yao, R., Alm, R. A., Trust, T. J., and Guerry, P. (1993) Construction of new *Campylobacter* cloning vectors and a new mutational cat cassette. *Gene.* 130, 127–130