
Note 1: Resolution of mass accumulation rate sensor

How precisely can we measure the mass accumulation rate of a cell? To measure the mass accumulation
rate, we will measure the cell size k times, once every �t minutes, and fit a model to explain how it varies
over time. Here we will assume the total duration of the measurements (k�t) is short enough that a line is
an appropriate model. So the problem becomes, how precisely can we know the slope of a line?

Fortunately, least-squares slope estimates can be written as a linear combination of the observed size
values, Y , as follows [5]:
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Here X is a k ⇥ 2 matrix, where the first column is filled with ones, and the second column corresponds
to the evenly-spaced times at which the cell size is measured. For simplicity, we assume the times are
mean-centered, yielding the following time vector:
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the coe�cient vector relating the measured sizes to the slope estimator (specifically, this coe�cient vector
is the second row of (XT
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Since the slope estimate is a linear combination of observed size values Y = [y
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T , errors also

propagate linearly. If all the size measurements have independent and identically distributed errors with
mean zero and root-mean-square-error (RMSE) �✏, then the slope RMSE is �✏ times the magnitude of the
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It is worth note that we could parameterize this instead in terms of total time transiting the array,
T = k�t, with k measurements occurring at evenly-spaced increments throughout this interval.

�

slope

⇡ �✏

p
12

T

p
k



In this form, it is clearly seen that the standard error scales inversely proportional to the total measurement
duration, with a

p
k dependence on the number of measurements made during that interval (in direct analogy

to the central limit theorem).
We can use equation (2) generally to estimate the resolution of any sytem measuring rates of mass or

volume increase, but specifically in the case of a serial SMR array, it also provides a convenient way to
express the e↵ect of the flow rate, which controls the trade-o↵ between mass accumulation rate resolution
and throughput. As we increase the flow rate, we decrease �t proportionally, which decreases the mass
accumulation rate resolution. Simultaneously, the throughput goes up directly proportionally to flow rate.
An added e↵ect is that faster flow rates yield larger mass error, �✏, as the cell spends a smaller amount of time
in the cantilever and therefore cannot filter out as much frequency noise. For white-noise-dominated resonant
frequency measurements (here corresponding to flow rates faster than what we’ve utilized in this paper for
large-channel devices, e.g. �t < 2 minutes), we expect that �✏ will scale roughly inversely proportional to
the square root of �t:

�✏ =
↵p
�t

(3)

Plugging this into (2) suggests that as we increase the flow rate, the mass accumulation rate error is
expected to scale with throughput (1/�t) to the three-halves.
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We have illustrated this resolution-noise trade-o↵ in Supplementary Figure 14. For slower flow, �✏ may
not be dominated by white frequency noise but instead by flicker (pink) or brown noise, and therefore (3)
will sizably underestimate the actual mass noise magnitude.

Note 2: Mass sensitivity scales with frequency

3/2
for varied cantilever lengths

The cantilever resonant frequency f is given by f = 1
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, where k is the spring constant and meff is the

e↵ective mass of the cantilever. meff is proportional to the cantilever length l [6], and k is proportional to
1/l3 [7], therefore f / 1

l2 .

We can similarly determine how the cantilever mass sensitivity [8], s depends on length: s / f
m / 1

l3 .

Combining these two facts, we find s will be proportional to f

3/2, when all dimensional parameters other
than the length of the cantilever are kept constant.



Note 3: Explanation of peak matching algorithm

We attempt to identify all the peaks (up to twelve, one in each cantilever) that we believe originate from
the same cell. To do this, we use a heuristic approach in which we build “cells”, collections of peaks that
we believe belong to the same cell. At each cantilever in turn, starting at the second cantilever, we try to
match the observed peaks at that cantilever with the previously observed cells. To match peaks to their
corresponding cells, we define a cost function, detailed below, representing our assumptions about how cells
both grow and flow through the device. We then try to find a way of pairing the already-observed cells (from
the first n cantilevers) with the peaks observed at cantilever n+1 that minimally violates our expectations.
Additionally, we also include the possibility that a cell is not observed at a particular cantilever, possibly
due to simultaneously entering the cantilever at the same time as another cell, or adhering to the device
walls. We include this possibility by adding fictitious cells (“gaps”) such that a previously-observed cell can
be assigned to a gap if there are no peaks at sensor n that are likely to originate from that cell. Similarly,
a peak in cantilever n+1 can be assigned to a gap if it doesnt appear to clearly appear to correspond to an
existing cell.

Pseudo-code for our matching approach is given below (variables are denoted in blue):

Initialize each peak in sensor 1 as its own cell, put them all in cellList

For each sensor n in 1:(numberOfSensors-1)
peaksToBeAssigned = all peaks in sensor n+1

costs = matrix( number of rows = length(cellList),
number of columns = length(peaksToBeAssigned) )

Pad costs with extra rows and columns for 'unassigned' cells
Set entries of costs for assigning a cell to 'unassigned' to gapCost
Set entries of costs for assigning 'unassigned' to 'unassigned' to 0

For each r in 1:length(cellList)
For each c in 1:length(peaksToBeAssigned)

costs[r,c] = -log( P(peaksToBeAssigned[c] | cellList[r]) )

Find optimal assignment for costs via Hungarian algorithm

Any peaks in peaksToBeAssigned that were assigned to existing cells in the cellList
should be concatenated onto the end of their corresponding cell.

Any entries in peaksToBeAssigned NOT assigned to existing cells are added to the
cellList as cells containing only one peak.

The heart of this approach is how we define a cost function representing our prior assumptions about
device behavior (e.g. cells take approximately two minutes to transit from one cantilever to the next, and
can’t possibly show up at cantilever 2 before appearing at cantilever 1) and cell behavior (over such a short
time period, cell mass usually changes roughly linearly, and the rate of change is unlikely to be extremely
large). To represent these assumptions, we use a probabilistic model of seeing a peak of a particular mass
and time at sensor n+1, given the previous n peaks we’ve already decided are part of the cell’s trajectory.
Using the negative log of the probability gives us a cost function for which minimizing the cost corresponds
to maximizing the likelihood of the data.
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While it is straightforward to obtain frequentist estimates of �
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datapoints, we cannot estimate these quantities easily with only one or two datapoints. To mitigate this we
use Bayesian estimators, which are shaped by a prior distribution when only one or a few datapoints are
available, and shaped more by the data when more data becomes available. The conjugate prior for �
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We also assume that since �✏ is known, µ�0 is just the mean mass from the n previous observations, and
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where N(x|µ,�2) is the normal density function evaluated at x with mean µ and variance �

2. Examples
of this cost function for simulated cells are shown in Supplementary Figure 4, demonstrating how this cost
function narrows as more and more data is observed.

In sum, the cost depends on the new data (mn+1

, tn+1

), the previously observed data (m
1:n, t1:n), and

five user-defined parameters:

parameter description
� sensor RMS error
µ�1

prior expectation for mean mass accumulation rate
�

2

�1
prior expectation for mass accumulation rate variance

µ

�t expected average time between sensors
�

2

�t expected variance in time between sensors

Additionally, there is one more parameter for the cost of a gap, yielding six parameters in total controlling
the matching process.

It is worth note that by simply choosing the best matching between the previously-observed cells and
the newly-observed peaks at every step, we do not properly take into account uncertainty in the matching
process. While we have not undertaken this task here, future work to do so may utilize Murty’s algorithm
[9] to obtain not only the optimal assignment (as provided by the Hungarian algorithm), but a ranked set
of the best assignments (e.g. the top 50 assignments). This would allow one to check which assignments are
tenuous and which are very certain.



Note 4: Comparison of measurement precision between SMRs and quantitative

phase microscopy (QPM)

Comparisons of SMR and QPMmass measurements cannot be made directly because the two methods exploit
di↵erent physical principles. QPM requires computing an unwrapped phase shift function from image data
to yield optical thickness. Optical thickness is integrated over the area of a cell, and the result is multiplied
by a constant to convert it into dry mass units. The constant is based on an average refractive increment of
mostly globular proteins [10]. On the other hand, SMR measurements are based on the change in resonant
frequency of an oscillating cantilever caused by a cell passing through an embedded microfluidic channel.
The frequency shift is divided by a sensitivity constant (Hz/pg) to obtain buoyant mass. The sensitivity
constant is a device parameter and independent of the properties of the analytes. It is obtained by direct
calibration with particles of known buoyant mass.

Supplementary Figures 13A and 13C show mass measurements of E.coli cells with similar interdivision
times made by QPM (left panel) and SMR (right panel). The left panel shows dry mass versus time for three
E. coli cells measured by Mir et al. using QPM [3]. Buoyant mass versus time for 11 E. coli cells measured
by SMR is shown on the right. Buoyant mass error for these cells is 0.22 fg, based on repeat measurements
of a single inert polystyrene particle similar in size and density to these cells (1.36 µm diameter, 1.05 g/mL).
One way to compare the precision of the two methods is to convert the SMR buoyant mass to dry mass.
This is possible using a method we validated in a previous study [11]. Briefly, we measured the buoyant
mass of E. coli cells in two fluids with di↵erent densities. The first fluid was a standard phosphate-bu↵ered
saline solution. The second fluid was identical to the first, except the water in the formula was replaced by
heavy water (D

2

O). Using the method of Archimedes, we found the density of E. coli biomass (E. coli ’s dry
density) to be 1.45 g/mL. This constant can be used to convert buoyant mass to dry mass, as shown on
the right axis in Supplementary Figure 13C. The conversion produces good agreement between the E. coli
dry mass obtained by the two methods. Converting buoyant mass error to dry mass error yields an error of
0.63 fg, approximately 30 times smaller than values produced by QPM.

Another way to assess the precision of the two methods is to compare the relative uncertainties of both
techniques. Because they are unitless, relative uncertainties can be compared directly. In Mir et al. [3],
measurements of a ⇠1.5 pg cell dry mass have a standard deviation of ⇠0.0196 pg, yielding a relative
uncertainty of 1.3%. SMR measurements of similarly-sized cells with an average buoyant mass around 0.3 pg
have a standard deviation of 0.20 fg, or 0.06% relative uncertainty, about 20 times better precision than
QPM. Both the dry mass conversion and relative uncertainty approaches give similar values.

We also find that serial and single SMR measurements of mass accumulation rates exhibit less varia-
tion than those measured by QPM. Supplementary Figures 13B and 13D compare mass accumulation rate
measurements obtained by QPM and SMR. The left panel (Supplementary Figure 13B) shows dry mass
accumulation rate (referred to as growth rate) vs. dry mass of 20 cells measured in reference [3]. Supple-
mentary Figure 13D shows two analogous datasets produced by the SMR method - one taken with a single
SMR device at low throughput and another taken on a serial SMR array with a higher flow rate.

How does the noise of the single SMR compare to the serial SMR array results shown in Figure 6 and
Supplementary Figure 13? The uncertainty in SMR buoyant mass measurements depends on the flow rate
of cells through the device. By varying the flow rate, the system can be optimized for throughput or
measurement precision. The noise level in the serial SMR array measurements (Figure 6) is about 3 times
higher than the single SMR in Supplementary Figure 13C because of the faster flow rate. This could be
reduced at the expense of lower throughput.
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