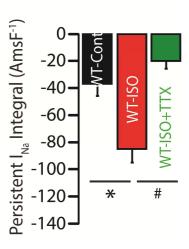
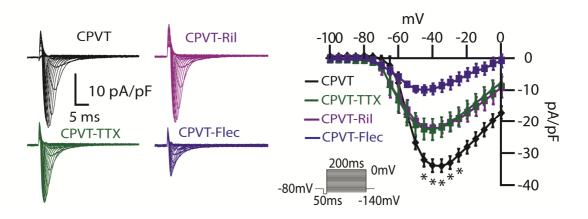
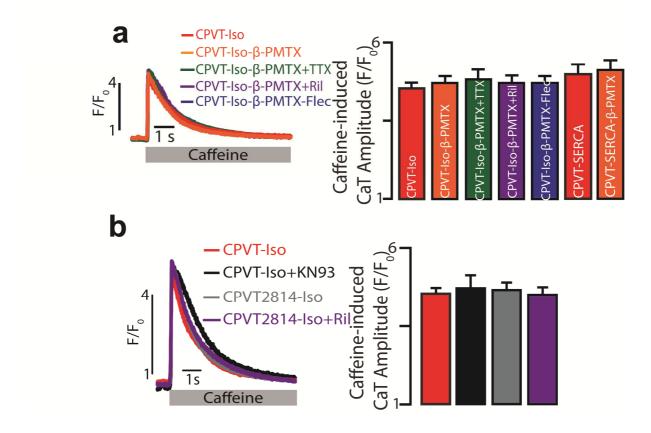
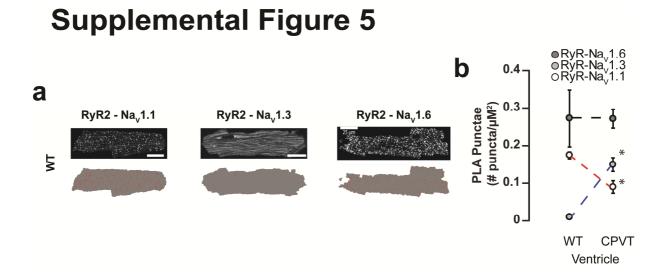
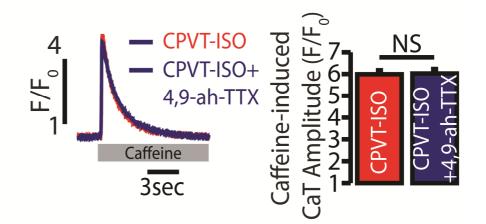

IF: Cx43 - Na_v1.5

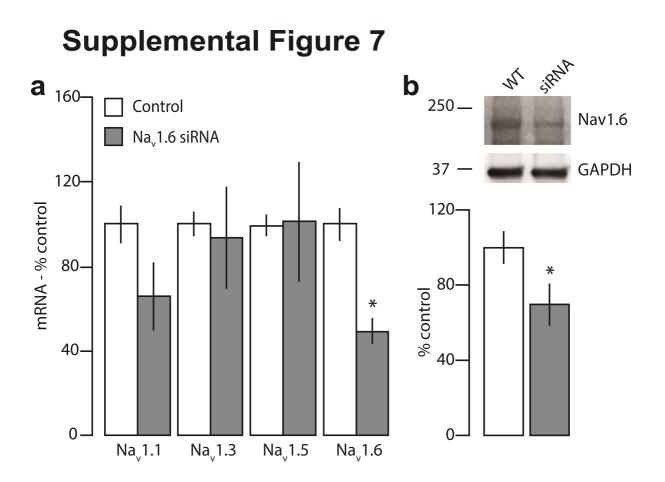


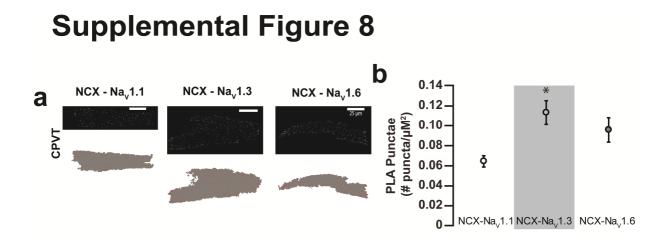

DL: Cx43 - Na_v1.5











Although triggered arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are often caused by increased levels of circulating catecholamines, the mechanistic link between β-adrenergic receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear. Here, we systematically investigated the subcellular and molecular consequences of β-AR stimulation in the promotion of catecholamine-induced cardiac arrhythmias. Using mouse models of cardiac calsequestrin-associated CPVT, we demonstrate that a subpopulation of Na⁺ channels, mainly the neuronal Na⁺ channels nNa_v, colocalize with RyR2 and Na⁺/Ca²⁺ exchanger (NCX) are a part of the β -AR-mediated arrhythmogenic process. Specifically, augmented Na⁺ entry via nNa_v in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca²⁺-ATPase (SERCA)-mediated SR Ca²⁺ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na⁺ entry involves β-AR-mediated activation of CAMKII subsequently leading to nNa_v augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Taken together, these data suggest that the arrhythmogenic alteration in Na⁺/Ca²⁺ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na⁺ influx through nNa_v. Therefore, selective inhibition of these channels and Na_v1.6 in particular can serve as a potential antiarrhythmic therapy.

- Catecholaminergic polymorphic ventricular tachycardia (CPVT) is often caused by increased levels of circulating catecholamines; however, the mechanistic link between βadrenergic receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear.
- In both CPVT and wild type mice, a subpopulation of Na⁺ channels (neuronal Na⁺ channels; nNa_v) colocalize with RyR2 and Na⁺/Ca²⁺ exchanger (NCX).
- Augmented Na⁺ entry via nNa_v and enhanced sarcoplasmic reticulum (SR) Ca²⁺-ATPase (SERCA)-mediated SR Ca²⁺ refill are both essential and necessary for CPVT.
- Augmentation of Na⁺ entry involves β-AR-mediated activation of Ca²⁺/calmodulindependent protein kinase II (CAMKII).
- Selective pharmacological blockade as well as silencing of Na_v1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias *in vivo*.