

Supplementary Figure 1 | Ability of 1-4 to disrupt preformed metal-free and metal-A β aggregates. (a) Scheme of the disaggregation experiment: Metal-free and metal treated A β aggregates were generated by incubating mixtures of freshly prepared A β_{40} or A β_{42} (25 µM) in the presence or absence of Cu(II) (blue, 25 µM) or Zn(II) (green, 25 µM) at 37 °C with agitation. After 24 h, the samples were treated with 1-4 (50 µM) and incubated for an additional 24 h. Gel electrophoresis and Western blot analysis of the molecular weight distribution of the resulting (b) A β_{40} and (d) A β_{42} species using an anti-A β antibody (6E10). Morphologies of the (c) A β_{40} and (e) A β_{42} species as observed using TEM (scale bar = 200 nm).

Supplementary Figure 2 | Ability of 1-4 to change the morphology of the resultant $A\beta_{42}$ species from the inhibition experiment (Fig. 2). Images were obtained by TEM (scale bar = 200 nm).

Supplementary Figure 3 | Toxicity of 1-4 at different concentrations (5 to 20 μ M) and incubation time points (24 to 72 h) in M17 cells. Viability of cells (%) was calculated relative to that of cells incubated only with 1% v/v DMSO. Error bars represent the standard deviation (s.d.) from three independent experiments (*P* < 0.05).

Supplementary Figure 4 | Stability studies of 1-4 in metal-free conditions by UV– Vis and ESI–MS. The stability of 1-4 (50 μ M) by (a,e,i,m) UV-Vis in 20 μ M HEPES, pH 7.4, 150 μ M NaCl over 5 h (blue: immediately after addition of the sample; orange: after 5 h incubation at 37 °C) and by ESI–MS (b,f,j,n) immediately after addition of the sample and (c,g,k,o) after incubation at 37 °C for 5 h in ddH₂O. (d,h,l,p) Structures and masses of molecules observed in the ESI-MS studies.

Supplementary Figure 5 | Stability studies of 1-4 in the presence of Cu(II) by UV– Vis and ESI–MS. The stability of 1-4 (50 μ M) in the presence of Cu(II) (25 μ M) by (a,e,i,m) UV-Vis in 20 μ M HEPES, pH 7.4, 150 μ M NaCl over 5 h (blue: immediately after addition of the sample; green: after 10 min incubation; orange: after 5 h incubation at 37 °C) and by ESI–MS (b,f,j,n) immediately after addition of the sample and (c,g,k) after incubation at 37 °C for 5 h in ddH₂O. (d,h,I,o) Structures and masses of molecules observed in the ESI-MS studies.

Supplementary Figure 6 | Solution speciation studies of 2 and Cu(II)–2 complexes. (a) Variable-pH UV–Vis titration spectra for 2 (100 μ M). The resulting spectra were fitted to obtain the p K_a value [p $K_a = 5.0(8)$] and the speciation diagram (b). F_L = Fraction of ligand with at the specified protonation state. (c) Variable-pH UV–Vis titration spectra for Cu(II)–2. (d,e) The speciation diagram (F_{Cu} = Fraction of free Cu and Cu(II)–L) and the stability constants (log β) of Cu(II)–2. The parenthesis indicates the error in the last digit of the values. Conditions: Cu(II):L = 1:2, [2] = 50 μ M; samples were incubated at room temperature for 24 h before titrations. Charges omitted for clarity.

Supplementary Figure 7 | ESI–MS analyses of $A\beta_{42}$ incubated with Cu(II) and 1-3. Compared against metal-containing and ligand-free data, 1-3 are shown to be capable of metal-dependent interactions with monomeric $A\beta_{42}$ ($[A\beta_{42}] = 40 \mu$ M; $[Cu(II)] = 80 \mu$ M; [1-3] = 400 μ M). Both 1 and 3 promote the formation of A β mass loss product 89 Da lighter than the metal-free peptide, consistent with our $A\beta_{40}$ data. 2 is observed to produce stable ternary complexes comprising the molecule, $A\beta_{42}$, and one to two Cu(II). Whilst studies with 4 were attempted, the greatly increased aggregation kinetics and additional metal-associated chemical noise provided by the copper ions prevented successful completion. Differences in the charge state depicted in the figure are used to best represent the complexes observed.

Supplementary Figure 8 | Tandem mass spectrometry sequencing studies of the metal-dependent chemical modification observed in 1 and 3. Tandem mass spectrometry (MS^2) analysis supports that both (**b**) 1 and (**c**) 3 are capable of producing a metal-dependent chemical modification that leads to a mass loss of 89 Da. In both instances data support that the chemical modification is contained within the first five residues of the A β N-terminus (D1, A2, E3, F4, and R5), and is consistent with previously published data¹. Data are shown against control A β_{40} MS² sequencing data (**a**) acquired under the same conditions. (**d**) Singly charged *b* and *y* ions are shown with the sequence fragments containing the identified mass loss highlighted in red. Ions highlighted with an asterisk indicate overlapping *b*⁺/internal sequence fragments irresolvable due to resolution limitations of the instrument. Complementing the above, a list of all peptides identified in our MS² data is presented in Supplementary Table 5.

Supplementary Figure 9 | ESI–MS analyses of $A\beta_{40}$ incubated with 1-4 under copper-free conditions. Data support that none of the compounds is capable of binding $A\beta_{40}$ in the absence of Cu(II) within a time frame consistent with those presented in Fig. 5 ([$A\beta_{40}$] = 18 μ M; [1-4] = 120 μ M). The * represents an adduct refractory to the preparatory methods employed to prepare the peptides for analysis.

Supplementary Figure 10 | MALDI–MS spectra of $A\beta_{40}$ (left) or $A\beta_{42}$ (right) incubated with 1-4 in the presence of Cu(II) for 24 h. With the addition of 1 and 3, the truncated $A\beta_{40}$ (loss of 89 Da, indicated with an asterisk) appears, which implies that 1 and 3 have similar interactions to L2-b with $A\beta^1$. Oxidized products were observed in the presence of 1, 3, and 4.

Supplementary Figure 11 | ESI–MS analyses of 4 with $A\beta_{40}$ under metal-free conditions. ESI–MS spectra for analyzing the resultant 4 (**a**; from 50 to 250 Da) and monomeric +3-charged A β (**b**; from 1425 to 1525 Da) upon incubation of the compound with A β for 6 h. (**a**) 4 is observed to be cleaved into 2-methyl-*1H*-pyrrole (81 Da) and *N*,*N*-dimethyl-*p*-phenylenediamine (M_{ii}), which could be further transformed into *p*-benzoquinoneimine (M_{iv}). (**b**) The indicated peptide ion has an increase of 103 Da in mass from +3-charged A β_{40} , which corresponds to an adduct of A β with a sodium ion and 2-methylpyrrole (81 Da). (**c**) ESI–MS spectra for oligomeric A β species (**i**, +5-charged dimer; **ii**, +5-charged trimer; **iii**, +3-charged dimer) in the presence of 4. The asterisk denotes the ion composed of A β species, 2-methylpyrrole, and sodium ion [for example, in the case of +5-charged dimer, 2A β_{40} + 2-methylpyrrole (81 Da) + Na + 4H].

Supplementary Figure 12 | Mass spectrometric analysis of $A\beta_{40}$ incubated with 4 for 24 h. Data shown depict incubations of $A\beta_{40}$ with 4 after 24 h at a ratio of 1:25 (peptide concentration, 25 µM). Data support that an interaction between the ligand and monomeric $A\beta$ was not observed over this time span. Data further account for any potential interactions between $A\beta$ and **DMPD** or benzoquinone (**BQ**). The projected *m*/*z* locations of these peaks are shown using dashed lines.

Supplementary Figure 13 | ESI–MS² analysis at the +3-charged A β (*m*/*z* 1444) and oxidized A β (*m*/*z* 1449) found in the presence of Cu(II) and 4. $b_n^{z^+}$ indicates the *z*-charged N-terminal fragment ions including 1 to n^{th} amino acids. y ions denote the C-terminal fragments. The residue (methionine) is known to be readily oxidized and transformed into the methionine sulfoxide or methionine sulfone². In addition, the histidine residue is another plausible oxidation site in A β^3 , which can form 2-oxo-histidine⁴. Fragments larger than b_{35} only exist as the oxidized form. From b_{13} to b_{34} , most ions are found in both unoxidized and oxidized forms. These results indicate that there are several oxidation sites other than M35, which are probably H13 and H14.

Parameters	1	2	3	4	Lipinski's rules and others
MW ^a	199	244	277	215	≤ 450
cLogP [♭]	1.96	1.73	3.14	1.86	≤ 5.00
HBA ^c	3	4	3	3	≤ 10
HBD^d	3	1	1	2	≤ 5
PSA (Ų) ^e	50.9	43.4	28.2	31.1	≤ 90
logBB ^f	-0.563	-0.249	0.191	-0.047	< -1.0 poorly distributed in the brain
-log <i>P</i> e ^g	5.0(1)	4.2(8)	4.2(2)	4.9(0)	−logP _e < 5.4 (CNS+); −logP _e > 5.7 (CNS-)
CNS +/- prediction	CNS+	CNS+	CNS+	CNS+	

Supplementary Table 1 | Calculated and measured BBB permeability parameters for 1-4.

^{*a*} MW, molecular weight; ^{*b*} clogP, calculated log of water–octanol partition coefficient; ^{*c*} HBA, hydrogen bond acceptor; ^{*d*} HBD, hydrogen bond donor; ^{*e*} PSA, polar surface area; ^{*f*} logBB = $-0.0148 \times PSA + 0.152 \times clogP \times 0.130$. ^{*g*} Determined using the parallel artificial membrane permeability assay adapted for BBB (PAMPA-BBB).

Gender of	Treatment						Day					
animals		1	3	6	9	12	15	18	21	24	27	30
	Vehicle	28.5	28.0	27.0	27.5	27.0	27.8	27.3	26.8	26.8	27.0	26.8
	(n = 5)	±	±	±	±	±	±	±	±	±	±	±
	(11 0)	0.8*	0.8	0.8	0.8	0.6	0.8	0.8	0.7	0.7	0.7	0.3
Male	1	28.0	27.6	27.6	27.8	27.4	27.8	28.0	27.8	27.6	28.0	27.0
maio	(n = 5)	±	±	±	±	±	±	±	±	±	±	±
	(1 = 5)	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.8	0.7	0.9	0.7
	P value	0.6796	0.7265	0.5871	0.7902	0.6596	> 0.9999	0.5340	0.3772	0.4231	0.4103	0.7972
	Vehicle	20.3	20.6	21.6	20.6	20.6	20.9	21.6	21.8	21.4	21.3	21.8
		±	±	±	±	±	±	±	±	±	±	±
	(n = 4)	1.0	1.0	0.7	0.7	0.7	1.0	0.9	0.6	0.3	0.7	0.3
Female	1	20.8	20.8	20.8	21.0	21.2	20.8	21.2	21.4	21.4	21.8	21.6
	· · · ·	±	±	±	±	±	±	±	±	0.25±	±	±
	(n = 5)	0.6	0.7	0.4	0.6	0.5	0.6	0.8	0.7	0.7	0.6	0.7
	P value	0.6703	0.8703	0.3225	0.6505	0.4958	0.9276	0.7435	0.6860	> 0.9999	0.5983	0.8102

Supplementary Table 2 | Changes in the body weight (gram) of the $5 \times FAD AD$ model mice during the experimental period^a.

^a There is no difference in the body weight between vehicle- and **1** (1 mg/kg/day)-treated $5 \times$ FAD mice throughout the experimental 30 day period.

*Mean ± s.e.m.

	Metal-	+ Cu(II)			
Compound	<i>k</i> (min ⁻¹) ^a	$k (\min^{-1})^a t_{1/2} (\min)^b$		t _{1/2} (min) ^b	
1	_c	_e	0.09 ± 0.03	8 ± 3	
2	_c	_e	_c	_e	
3	_c	_e	0.013 ± 0.001	53 ± 3	
4	0.016 ±0.004	43 ± 5	_d	< 1	

Supplementary Table 3 \mid Rates of transformation and half lives of 1-4 in the presence and absence of Cu(II).

^a Rate of decay of the absorbance peak at 250, 384, and 400 nm for **4**, [Cu(II) + **1**], and [Cu(II) + **2**], respectfully. ^b Half life of the absorbance peak in minutes. ^c Spectral changes were too slow to accurately measure the rate during the duration of the experiment. ^d Decay of compound occurred too rapidly to measure in the experiment conditions ([**1-4**] = 50 μ M; [Cu] = 25 μ M; 25 μ M HEPES, pH 7.4, 150 μ M NaCl; 37 °C). ^e No noticeable spectral changes were observed over 5 h.

Supplementary Table 4 | Calculated collision cross section (CCS) from IM–MS analysis.

	Conformational Species (Å ²)										
	1	2	3	4	5						
Αβ40	658.6 +/- 30.6	721.8 +/- 31.4	Х	Х	Х						
Aβ ₄₀ Cu	658.7 +/- 28.8	727.3 +/- 31.6	782.3 +/- 34.7	Х	Х						
$A\beta_{40} Cu_2$	656.9 +/- 32.5	732.8 +/- 31.9	786.4 +/- 35.6	Х	Х						
Aβ ₄₀ 2 Cu	Х	717.1 +/- 31.3	х	682.9 +/- 32.5	760.3 +/- 33.0						
$A\beta_{40}$ 2 Cu_2	Х	Х	х	683.7 +/- 36.3	761.2 +/- 40.8						

Calculated CCS data are given for the presented stoichiometries and have been calculated using established methods^{5,6}. These data suggest the existence of five different conformational species across all ligand stoichiometries observed. Two of these are observed only with **2**. Data are the average of six repeats with errors reported as a function of least square analysis.

Supplementary Table 5. Products of collision induced fragmentation identified.

Products of collision induced dissociation	Ion species observed				
b sequence ions	z	m/z	Аро	Derivative 1 modification	Derivative 3 modification
b ₄	1	463.1823	No	No	No
b ₅ ‡	1	619.2835	Yes	No	Yes
b ₆ *	1	756.3424	Yes	Yes	Yes
b ₇	1	871.3693	Yes	Yes	Yes
b ₈	1	958.4013	Yes	No	No
b ₉	1	1015.4228	Yes	No	No
b ₁₀	1	1178.4861	Yes	No	No
b ₁₁	1	1307.5287	Yes	No	Yes
b ₁₂	1	1406.5971	No	No	No
b ₈	2	479.7043	No	No	No
b ₉	2	508.215	Yes	No	No
b ₁₀	2	589.7467	No	No	No
b ₁₁	2	654.268	Yes	No	Yes
b ₁₂	2	703.8022	Yes	Yes	Yes
b ₁₃	2	772.3317	Yes	No	Yes
b ₁₄	2	840.8611	Yes	No	Yes
b ₁₅	2	904.8904	Yes	No	Yes
b ₁₆	2	968.9379	Yes	No	Yes
b ₁₇	2	1025.4799	Yes	No	Yes
b ₁₈	2	1075.0141	Yes	No	Yes
b ₁₉	2	1148.5483	Yes	No	Yes
b ₂₀	2	1222.0825	Yes	No	Yes
b ₂₁	2	1257.6011	Yes	No	Yes
b ₂₂	2	1322.1224	Yes	No	Yes
b ₂₃	2	1379.6359	Yes	Yes	Yes
b ₂₄	2	1429.1701	Yes	No	Yes
b ₂₅	2	1457.6808	Yes	Yes	Yes
b ₂₆	2	1501.1968	Yes	No	No
b ₂₇	2	1558.2183	Yes	No	No
b ₂₈	2	1622.2658	Yes	No	No
b ₂₉	2	1650.7765	No	No	No
b ₃₀	2	1686.2951	No	No	No
b ₃₁	2	1742.8371	Yes	No	No
b ₃₂	2	1799.3791	Yes	No	No
b ₃₃	2	1827.8898	No	No	No

b ₃₄	2	1884.4319	Yes	No	No
b ₃₅	2	1949.9521	No	No	No
b ₂₆	3	1001.1336	Yes	No	No
b ₂₇	3	1039.1479	Yes	No	No
b ₂₈	3	1081.8463	Yes	No	No
b ₂₉	3	1100.8534	Yes	No	No
b ₃₀	3	1124.5325	Yes	No	No
b ₃₁	3	1162.2271	Yes	No	No
b ₃₂	3	1199.9218	Yes	No	No
b ₃₃	3	1218.929	Yes	No	No
b ₃₄	3	1256.6237	Yes	No	No
b ₃₅	3	1300.3038	Yes	No	No
b ₃₆	3	1333.3266	Yes	No	No
b ₃₇	3	1352.3338	Yes	No	No
b ₃₈	3	1371.341	Yes	No	No
b ₃₉	3	1404.3638	Yes	No	No
Modified b ₄	1	374.1261	No	No	No
Modified b ₅	1	530.2272	No	Yes	Yes
Modified b ₆	1	667.2861	No	Yes	Yes
Modified b ₇	1	782.3131	No	Yes	Yes
Modified b ₈	1	869.3451	No	Yes	Yes
Modified b ₉	1	926.3666	No	No	No
Modified b ₁₁	2	609.7399	No	Yes	Yes
Modified b ₁₂	2	659.2741	No	Yes	No
Modified b ₁₃	2	727.8035	No	Yes	Yes
Modified b ₁₄	2	796.333	No	Yes	Yes
Modified b ₁₅	2	860.3623	No	Yes	Yes
Modified b ₁₆	2	924.4098	No	Yes	Yes
Modified b ₁₇	2	980.9518	No	Yes	Yes
Modified b ₁₈	2	1030.486	No	Yes	Yes
Modified b ₁₉	2	1104.0202	No	Yes	Yes
Modified b ₂₀	2	1177.5544	No	Yes	Yes
Modified b ₂₁	2	1213.073	No	Yes	Yes
Modified b ₂₂	2	1277.5943	No	Yes	No
Modified b ₂₃	2	1335.1077	No	Yes	Yes
Modified b ₂₄	2	1384.642	No	Yes	No
Modified b ₂₅	2	1413.1527	No	Yes	Yes
Modified b ₂₆	2	1456.6687	No	No	No
Modified b ₂₇	2	1513.6902	No	Yes	No
Modified b ₂₈	2	1577.7376	No	Yes	No
Modified b ₂₉	2	1606.2484	No	No	No

Modified b ₃₀	2	1641.7669	No	Yes	Yes
Modified b ₃₁	2	1698.309	No	Yes	Yes
Modified b ₃₂	2	1754.851	No	No	No
Modified b ₃₃	2	1783.3617	No	Yes	No
Modified b ₃₄	2	1839.9038	No	Yes	Yes
Modified b ₂₇	3	1009.4625	No	No	No
Modified b ₂₈	3	1052.1609	No	Yes	No
Modified b ₂₉	3	1071.168	No	Yes	Yes
Modified b ₃₀	3	1094.847	No	Yes	Yes
Modified b ₃₁	3	1132.5417	No	Yes	Yes
Modified b ₃₂	3	1170.2364	No	Yes	Yes
Modified b ₃₃	3	1189.2436	No	Yes	Yes
Modified b ₃₄	3	1226.9383	No	Yes	Yes
Modified b ₃₅	3	1270.6184	No	Yes	Yes
Modified b ₃₆	3	1303.6412	No	Yes	Yes
Modified b ₃₇	3	1322.6484	No	No	No
Modified b ₃₈	3	1341.6555	No	Yes	Yes
Modified b ₃₉	3	1374.6783	No	Yes	Yes

Products of collision induced dissociation	lon species observed					
y sequence ions	z	m/z	Аро	Derivative 1 modification	Derivative 3 modification	
y ₂	1	217.1547	Yes	Yes	Yes	
Уз	1	274.1761	Yes	Yes	Yes	
	1	331.1976	Yes	Yes	Yes	
y ₅	1	430.266	Yes	Yes	Yes	
y ₆	1	561.3065	Yes	Yes	Yes	
У7	1	674.3906	Yes	Yes	Yes	
У 8	1	731.412	Yes	Yes	Yes	
у 9	1	844.4961	Yes	Yes	Yes	
y ₁₀	1	957.5802	No	No	No	
<u>Y₂₀</u>	2	943.5062	No	No	No	
Y 21	2	1017.0404	Yes	Yes	Yes	
y ₂₂	2	1090.5746	No	Yes	Yes	
У 23	2	1140.1088	No	No	No	
y ₃₁	2	1657.3737	No	No	No	
y ₃₂	2	1685.8845	Yes	Yes	Yes	
У 33	2	1729.4005	Yes	Yes	Yes	
y ₃₄	2	1786.9139	Yes	Yes	Yes	

y ₃₅	2	1855.4434	Yes	No	No
y ₃₆	2	1933.494	No	No	No
y ₃₁	3	1105.2516	No	No	No
y ₃₂	3	1124.2587	Yes	Yes	Yes
У 33	3	1153.2694	Yes	No	No
y ₃₄	3	1191.6117	Yes	No	No
y 35	3	1237.298	No	No	No

Products of collision induced dissociation		I	on specie	es observed	
Internal sequence ions	z	m/z	Аро	Derivative 1 modification	Derivative 3 modification
KGA-NH3 and QK-NH3	1	240.1343	Yes	Yes	Yes
KGA and QK	1	257.1608	Yes	Yes	Yes
HQ	1	266.1248	Yes	Yes	Yes
VGGV-28	1	285.1921	Yes	Yes	Yes
GLM	1	302.1533	Yes	Yes	Yes
VGGV	1	313.187	Yes	Yes	Yes
MVGG	1	345.1591	Yes	Yes	Yes
AllG and GAII	1	355.234	Yes	Yes	Yes
KGAI and QKL	1	370.2449	Yes	Yes	Yes
GSNK and SNKG	1	387.1987	No	Yes	Yes
VFF	1	394.2125	Yes	Yes	Yes
HQF	1	394.2197	Yes	Yes	Yes
GLMV and LMVG	1	401.2217	Yes	Yes	Yes
GAIIG	1	412.2554	Yes	Yes	Yes
GSNKG-28	1	416.2252	Yes	Yes	Yes
MVGGV-28	1	416.2326	Yes	Yes	Yes
GSNKG	1	444.2201	Yes	Yes	Yes
MVGGV	1	444.2275	Yes	Yes	Yes
QKLV-NH ₃	1	452.2867	Yes	Yes	Yes
VGSNK-28	1	458.2722	Yes	Yes	Yes
KGAII	1	483.3289	Yes	Yes	Yes
NKGAI	1	484.2878	No	No	Yes
VGSNK	1	486.2671	Yes	Yes	Yes
GAIIGL-28	1	497.3446	Yes	Yes	Yes
HQKL	1	507.3038	Yes	Yes	Yes
IGLMV	1	514.3058	No	No	Yes
GSNKGA	1	515.2572	Yes	Yes	Yes
GLMVGG	1	515.2646	Yes	Yes	Yes

	1				
GAIIGL	1	525.3395	Yes	Yes	Yes
SNKGAI-28	1	543.3249	Yes	Yes	Yes
IGLMVG-28	1	543.3323	Yes	Yes	Yes
SNKGAI	1	571.3198	Yes	Yes	Yes
IGLMVG	1	571.3272	Yes	Yes	Yes
VGSNKGA-28	1	586.3307	Yes	Yes	Yes
GLMVGGV-28	1	586.3381	Yes	Yes	Yes
FAEDVG-28	1	591.2773	Yes	Yes	Yes
HQKLV	1	606.3722	Yes	Yes	Yes
VGSNKGA	1	614.3257	Yes	Yes	Yes
GLMVGGV	1	614.333	Yes	Yes	Yes
FAEDVG‡	1	619.2722	Yes	Yes	Yes
GSNKGAI	1	628.3413	Yes	Yes	Yes
IGLMVGG	1	628.3487	Yes	Yes	Yes
GAIIGLM	1	656.38	Yes	Yes	Yes
IIGLMVG	1	684.4113	Yes	Yes	Yes
VGSNKGAI-28	1	699.4148	Yes	Yes	Yes
IGLMVGGV-28	1	699.4222	Yes	Yes	Yes
VGSNKGAI	1	727.4097	Yes	Yes	Yes
IGLMVGGV	1	727.4171	Yes	Yes	Yes
GSNKGAII and SNKGAIIG	1	741.4254	Yes	Yes	Yes
IIGLMVGG	1	741.4328	Yes	Yes	Yes
HQKLVF	1	753.4406	Yes	Yes	Yes
AEFRHD*	1	756.3424	Yes	Yes	Yes
GSNKGAIIG	1	798.4468	Yes	Yes	Yes
VGSNKGAII	1	840.4938	Yes	Yes	Yes
IIGLMVGGV	1	840.5012	Yes	Yes	Yes
SNKGAIIGL	1	854.5094	Yes	No	No
KGAIIGLMV-NH ₃	1	866.5168	Yes	Yes	No
KGAIIGLMV and					
AIIGLMVGGV-28	1	883.5434	Yes	Yes	Yes
GSNKGAIIGL	1	911.5309	Yes	No	No
AIIGLMVGGV	1	911.5383	Yes	No	No
NKGAIIGLMV and					
KGAIIGLMVGG	1	997.5863	Yes	No	No

All b^+ ions with the prefix 'Modified' represent those containing the observed mass loss of 89.2 Da. * Due to instrumental resolution limits peaks highlighted may represent either b_6^+ or an internal A₂EFRHD⁺ fragment. [‡] Due to instrumental resolution limits peaks highlighted may represent either b_5^+ or an internal F₂₀AEDVG fragment.

Supplementary Methods

Materials and methods. All reagents were purchased from commercial suppliers and used as received unless otherwise noted. A β_{40} and A β_{42} (the sequence of A β_{42} : DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) were purchased from Anaspec Inc. (Fremont, CA, USA). Trace metals were removed from buffers and solutions used in A β experiments by treating with Chelex overnight (Sigma-Aldrich, St. Louis, MO, USA). Optical spectra were recorded on an Agilent 8453 UV-visible spectrophotometer. Absorbance values for biological assays, including cell viability and antioxidant assays, were measured on a Molecular Devices SpectraMax 190 microplate reader (Sunnyvale, CA, USA). ¹H and ¹³C NMR spectra were recorded using a 400 MHz Agilent NMR spectrometer.

Preparation of 4-nitro-*N***-(pyridin-2-ylmethyl)aniline.** 4-Nitro-*N*-(pyridin-2ylmethyl)aniline was synthesized using previously reported methods with modifications⁷. To a flame-dried flask equipped with a stir bar and a reflux condenser under N₂ (g), 1fluoro-4-nitrobenzene (231 μ L, 2.2 mmol) and *N*,*N*-diisopropylethylamine (836 μ L, 4.8 mmol) were added to DMF (25 mL) followed by the introduction of 2-(aminomethyl)pyridine (247 μ L, 2.4 mmol) at room temperature. The resulting solution was heated to 70 °C. After 24 h, the brown solution was added to water (75 mL) and extracted with EtOAc (3 x 75 mL). The organic layers were washed with water (2 x 75 mL) and brine (75 mL), dried with MgSO₄, and concentrated under vacuum. The resulting residue was then purified on a silica column (25% to 100% EtOAc in hexanes) yielding a yellow solid (0.29 g, 58%) [TLC (EtOAc:hexanes = 50:50 (v/v)): *R*_f = 0.25]. ¹H NMR [400 MHz, CD_2Cl_2 , δ (ppm)]: 8.56 (d, 1H, J = 8 Hz), 8.09 (d, 2H, J = 8 Hz), 7.71 (t, 1H, J = 8 Hz), 7.30 (d, 1H, J = 8 Hz), 7.25 (d, 1H, J = 4 Hz), 6.68 (d, 2 H, J = 8 Hz), 6.04 (s, 1H), 4.53 (d, 2H, J = 8 Hz). ¹³C NMR [100 MHz, CD_2Cl_2 , δ (ppm)]: 156.2, 153.5, 149.5, 138.5, 137.2, 126.6, 123.0, 122.1, 111.8, 48.2.

Preparation of 1. The compound **1** was purchased from Ryan Scientific (Mt. Pleasant, SC, USA) and recrystallized from CH₂Cl₂/hexanes four times. ¹H NMR [400 MHz, $(CD_3)_2SO$, δ (ppm)]: 8.49 (d, 1H, J = 4 Hz), 7.70 (t, 1H, J = 4 Hz), 7.35 (d, 1H, J = 4 Hz), 7.22 (t, 1H, J = 4 Hz), 6.36 (m, 4H), 5.46 (s, 1H), 4.23 (m, 4H). ¹³C NMR [100 MHz, CD₂Cl₂, δ (ppm)]: 159.58, 149.50, 141.44, 138.65, 136.75, 122.30, 121.99, 116.85, 114.88, 50.69. ESI(+)MS (*m*/*z*): [M+H]⁺ Calcd. for C₁₂H₁₄N₃, 200.12; found, 200.03.

Additionally, **1** was also synthesized by adapting previously reported methods⁸ to reduce 4-nitro-*N*-(pyridin-2-ylmethyl)aniline. To a solution of 4-nitro-*N*-(pyridin-2-ylmethyl)aniline (0.52 g, 2.3 mmol) and *tris*(acetylacetonato)iron(III) (0.024 g, 3 mol%) in ethanol (20 mL) in a round-bottom flask equipped with a stir bar and a reflux condenser, hydrazine hydrate (581 μ L, 11 mmol) was added. The solution was then heated under reflux for 2 h and additional 4 equivalents of hydrazine hydrate were introduced. The mixture was allowed to react for an additional 3 h before removing the solvent under vacuum. The resulting brown oil was purified by silica column chromatography (EtOAc (100%) to EtOAc:Et₃N (99%:1%); TLC (EtOAc:Et₃N = 99:1 (v/v)), *R*_f = 0.20). The HCl salt of the product was then prepared by dissolving in MeOH and adding excess 5 M HCl. The solvent was removed under vacuum and the resulting residue was washed with Et₂O (3 x 5 mL). The residues were dissolved in water (20 mL). The aqueous layer

was washed with Et₂O (3 x 20 mL) and collected. After removing the water under vacuum and recrystallization using MeOH and Et₂O, the product was obtained (pale yellow powder, 0.45 g. 85%). ¹H NMR [400 MHz, $(CD_3)_2SO$, δ (ppm)]: 9.59 (s, 1H), 8.59 (d, 1H, J = 4 Hz), 7.90 (t, 1H, J = 4 Hz), 7.59 (m, 2H), 7.05 (d, 2H, J = 8 Hz), 6.67 (d, 2H, J = 8 Hz), 4.43 (s, 2H). ¹³C NMR [100 MHz, $(CD_3)_2SO$, δ (ppm)]: 156.0, 147.1, 144.6, 142.9, 125.0, 124.6, 124.0, 120.8, 113.0, 44.8. HRMS (m/z): [M+H]⁺ Calcd. for C₁₂H₁₄N₃, 200.1188; found, 200.1190.

Preparation of 2. The compound **2** was purchased from Ryan Scientific and recrystallized from CH₃CN and water three times (off-white powder). ¹H NMR [400 MHz, $(CD_3)_2SO$, δ (ppm)]: 8.52 (d, 1H, J = 4 Hz), 7.73 (t, 1H, J = 8 Hz), 7.35 (d, 1H, J = 8 Hz), 7.24 (t, 1H, J = 8 Hz), 6.35 (t, 1H, J = 8 Hz), 5.75 (s, 2H), 5.71 (s, 1H), 4.31 (d, 2H, 4 Hz), 3.61 (s, 6H). ¹³C NMR [100 MHz, $(CD_3)_2SO$, δ (ppm)]: 161.1, 159.8, 150.2, 148.8, 136.6, 122.0, 121.1, 91.1, 88.6, 54.7, 48.5. HRMS (m/z): [M+H]⁺ Calcd. for C₁₄H₁₇N₂O₂, 245.1290; found, 245.1288.

Preparation of 3. The compound **3** was purchased from Ryan Scientific and was recrystallized from hot hexanes and washed 5x with cold hexanes (yellow powder). ¹H NMR [400 MHz, $(CD_3)_2SO$, δ (ppm)]: 8.29 (d, 1H, J = 8 Hz), 8.00 (d, 1H, J = 8 Hz), 7.93 (d, 1H, J = 8 Hz), 7.74 (t, 1H, J = 8 Hz), 7.56 (m, 2H), 6.57 (m, 4H), 5.91 (t, 1H, J = 4 Hz), 4.47 (d, 2H, J = 8 Hz), 2.67 (s, 6H). ¹³C NMR [100 MHz, CD_2Cl_2 , δ (ppm)]: 159.9, 148.2, 144.8, 141.0, 136.9, 130.0, 129.4, 128.2, 127.9, 126.6, 120.5, 116.1, 114.7, 51.2, 42.39. HRMS (m/z): $[M+H]^+$ Calcd for $C_{18}H_{20}N_3$, 278.1657, found, 278.1656.

Preparation of 4. The compound **4** was purchased from Ukrorgsyntez (Ukraine) and washed with hexanes with one drop of CH₂Cl₂ once and hexanes three or four times (dark brown powder). ¹H NMR [400 MHz, (CD₃)₂SO, δ (ppm)]: 10.65 (s, 1H), 6.60 (m, 4H), 5.91 (s, 2H), 5.09 (s, 1H), 4.07 (d, 2H, J = 8 Hz), 2.70 (s, 6H). ¹³C NMR [100 MHz, CD₂Cl₂, δ (ppm)]: 145.3, 140.9, 130.8, 117.6, 115.9, 115.2, 108.7, 106.3, 43.20, 42.27. HRMS (m/z): [M+H]⁺ Calcd. for C₁₃H₁₈N₃, 216.1501; found, 216.1502.

Supplementary References

- Beck, M. W. *et al.* A rationally designed small molecule for identifying an *in vivo* link between metal–amyloid-β complexes and the pathogenesis of Alzheimer's disease. *Chem. Sci.* 6, 1879–1886 (2015).
- Stadtman, E. R. & Levine, R. L. Protein oxidation. Ann. N. Y. Acad. Sci. 899, 191-208 (2000).
- Inoue, K., Garner, C., Ackermann, B. L., Oe, T. & Blair, I. A. Liquid chromatography/tandem mass spectrometry characterization of oxidized amyloid beta peptides as potential biomarkers of Alzheimer's disease. *Rapid Commun. Mass Spectrom.* 20, 911-918 (2006).
- Uchida, K. Histidine and lysine as targets of oxidative modification. *Amino Acids* 25, 249-257 (2003).
- Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C.
 V. Ion mobility–mass spectrometry analysis of large protein complexes. *Nat. Protoc.* 3, 1139-1152 (2008).

- Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V.; Ruotolo, B. T. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. *Anal. Chem.* 82, 9557–9565 (2010).
- Jones, C. K. *et al.* Discovery, synthesis, and structure–activity relationship development of a series of *N*-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4) with oral efficacy in an antiparkinsonian animal model. *J. Med. Chem.* **54**, 7639–7647 (2011).
- 8. Sharma, U. *et al.* Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. *Chem. Eur. J.* **17**, 5903–5907 (2011).