

Supplementary Figure 1 | Ability of 1-4 to disrupt preformed metal-free and metal−**A**β **aggregates.** (**a**) Scheme of the disaggregation experiment: Metal-free and metal treated Aβ aggregates were generated by incubating mixtures of freshly prepared Aβ₄₀ or Aβ₄₂ (25 μM) in the presence or absence of Cu(II) (blue, 25 μM) or Zn(II) (green, 25 μ M) at 37 °C with agitation. After 24 h, the samples were treated with **1-4** (50 μ M) and incubated for an additional 24 h. Gel electrophoresis and Western blot analysis of the molecular weight distribution of the resulting (**b**) Aβ⁴⁰ and (**d**) Aβ⁴² species using an anti-Aβ antibody (6E10). Morphologies of the (**c**) Aβ⁴⁰ and (**e**) Aβ⁴² species as observed using TEM (scale bar = 200 nm).

Supplementary Figure 2 | Ability of 1-4 to change the morphology of the resultant Aβ**⁴² species from the inhibition experiment** (**Fig. 2**)**.** Images were obtained by TEM (scale bar = 200 nm).

Supplementary Figure 3 | Toxicity of 1-4 at different concentrations (5 to 20 µ**M) and incubation time points (24 to 72 h) in M17 cells.** Viability of cells (%) was calculated relative to that of cells incubated only with 1% v/v DMSO. Error bars represent the standard deviation (s.d.) from three independent experiments (*P* < 0.05).

Supplementary Figure 4 | Stability studies of 1-4 in metal-free conditions by UV– Vis and ESI–MS. The stability of **1**-**4** (50 µM) by (**a**,**e**,**i**,**m**) UV-Vis in 20 µM HEPES, pH 7.4, 150 µM NaCl over 5 h (blue: immediately after addition of the sample; orange: after 5 h incubation at 37 °C) and by ESI–MS (b,f,j,n) immediately after addition of the sample and (c,g,k,o) after incubation at 37 °C for 5 h in ddH₂O. (d,h,l,p) Structures and masses of molecules observed in the ESI-MS studies.

Supplementary Figure 5 | Stability studies of 1-4 in the presence of Cu(II) by UV– Vis and ESI-MS. The stability of $1-4$ (50 μ M) in the presence of Cu(II) (25 μ M) by (**a**,**e**,**i**,**m**) UV-Vis in 20 µM HEPES, pH 7.4, 150 µM NaCl over 5 h (blue: immediately after addition of the sample; green: after 10 min incubation; orange: after 5 h incubation at 37 °C) and by ESI–MS (b,f,j,n) immediately after addition of the sample and (c,g,k) after incubation at 37 °C for 5 h in ddH₂O. (d,h,l,o) Structures and masses of molecules observed in the ESI-MS studies.

Supplementary Figure 6 | Solution speciation studies of 2 and Cu(II)−**2 complexes.** (**a**) Variable-pH UV–Vis titration spectra for **2** (100 µM). The resulting spectra were fitted to obtain the pK_a value $[pK_a = 5.0(8)]$ and the speciation diagram (**b**). *F*^L = Fraction of ligand with at the specified protonation state. (**c**) Variable-pH UV–Vis titration spectra for Cu(II)−2. (d,e) The speciation diagram (F_{Cu} = Fraction of free Cu and Cu(II)−L) and the stability constants (logβ) of Cu(II)−**2**. The parenthesis indicates the error in the last digit of the values. Conditions: $Cu(II):L = 1:2$, $[2] = 50 \mu M$; samples were incubated at room temperature for 24 h before titrations. Charges omitted for clarity.

Supplementary Figure 7 | ESI–MS analyses of Aβ**⁴² incubated with Cu(II) and 1-3.** Compared against metal-containing and ligand-free data, **1**-**3** are shown to be capable of metal-dependent interactions with monomeric Aβ₄₂ ([Aβ₄₂] = 40 μM; [Cu(II)] = 80 μM; [**1**-**3**] = 400 µM). Both **1** and **3** promote the formation of Aβ mass loss product 89 Da lighter than the metal-free peptide, consistent with our Aβ⁴⁰ data. **2** is observed to produce stable ternary complexes comprising the molecule, $A\beta_{42}$, and one to two Cu(II). Whilst studies with **4** were attempted, the greatly increased aggregation kinetics and additional metal-associated chemical noise provided by the copper ions prevented successful completion. Differences in the charge state depicted in the figure are used to Best represent the complexes observed.

Best represent the complexes observed.

Den the complexes of the complexes of the complexes of the complexes of the best represent the complexes observed.

Den the complexes of the

Supplementary Figure 8 | Tandem mass spectrometry sequencing studies of the metal-dependent chemical modification observed in 1 and 3. Tandem mass spectrometry (MS²) analysis supports that both (b) 1 and (c) 3 are capable of producing a metal-dependent chemical modification that leads to a mass loss of 89 Da. In both instances data support that the chemical modification is contained within the first five residues of the Aβ N-terminus (D1, A2, E3, F4, and R5), and is consistent with previously published data¹. Data are shown against control Aβ₄₀ MS² sequencing data (**a**) acquired under the same conditions. (**d**) Singly charged *b* and *y* ions are shown with the sequence fragments containing the identified mass loss highlighted in red. Ions highlighted with an asterisk indicate overlapping b⁺/internal sequence fragments irresolvable due to resolution limitations of the instrument. Complementing the above, a list of all peptides identified in our $MS²$ data is presented in Supplementary Table 5.

Supplementary Figure 9 | ESI–MS analyses of Aβ**⁴⁰ incubated with 1-4 under copper-free conditions.** Data support that none of the compounds is capable of binding $A\beta_{40}$ in the absence of Cu(II) within a time frame consistent with those presented in Fig. 5 ($[A\beta_{40}]$ = 18 μ M; [1-4] = 120 μ M). The * represents an adduct

Supplementary Figure 10 | MALDI–MS spectra of Aβ**⁴⁰ (left) or A**β**⁴² (right) incubated with 1-4 in the presence of Cu(II) for 24 h.** With the addition of **1** and **3**, the truncated Aβ⁴⁰ (loss of 89 Da, indicated with an asterisk) appears, which implies that **1** and **3** have similar interactions to **L2-b** with Aβ¹ . Oxidized products were observed in the presence of **1**, **3**, and **4**.

Supplementary Figure 11 | ESI–MS analyses of 4 with Aβ**⁴⁰ under metal-free conditions.** ESI–MS spectra for analyzing the resultant **4** (**a**; from 50 to 250 Da) and monomeric +3-charged Aβ (**b**; from 1425 to 1525 Da) upon incubation of the compound with Aβ for 6 h. (**a**) **4** is observed to be cleaved into 2-methyl-*1H*-pyrrole (81 Da) and *N,N*-dimethyl-*p*-phenylenediamine (M_{ii}), which could be further transformed into *p*benzoquinoneimine (Miv). (**b**) The indicated peptide ion has an increase of 103 Da in mass from +3-charged A β_{40} , which corresponds to an adduct of A β with a sodium ion and 2-methylpyrrole (81 Da). (**c**) ESI–MS spectra for oligomeric Aβ species (**i**, +5 charged dimer; **ii**, +5-charged trimer; **iii**, +3-charged dimer) in the presence of **4**. The asterisk denotes the ion composed of Aβ species, 2-methylpyrrole, and sodium ion [for example, in the case of +5-charged dimer, $2A\beta_{40}$ + 2-methylpyrrole (81 Da) + Na + 4H].

Supplementary Figure 12 | Mass spectrometric analysis of Aβ**⁴⁰ incubated with 4 for 24 h.** Data shown depict incubations of Aβ⁴⁰ with **4** after 24 h at a ratio of 1:25 (peptide concentration, 25 μ M). Data support that an interaction between the ligand and monomeric Aβ was not observed over this time span. Data further account for any potential interactions between Aβ and **DMPD** or benzoquinone (**BQ**). The projected *m*/*z* locations of these peaks are shown using dashed lines.

Supplementary Figure 13 | ESI–MS2 analysis at the +3-charged Aβ **(***m***/***z* **1444) and oxidized A**β **(***m***/***z* **1449) found in the presence of Cu(II) and 4.** b*ⁿ ^z*⁺ indicates the *z*charged N-terminal fragment ions including 1 to nth amino acids. y ions denote the Cterminal fragments. The residue (methionine) is known to be readily oxidized and transformed into the methionine sulfoxide or methionine sulfone². In addition, the histidine residue is another plausible oxidation site in $\mathsf{A}\beta^3$, which can form 2-oxohistidine⁴. Fragments larger than b_{35} only exist as the oxidized form. From b_{13} to b_{34} , most ions are found in both unoxidized and oxidized forms. These results indicate that There are several oxidation sites other than M35, which are from B that there are several oxidation sites other than M35, which are probably H13 and H14.

The several oxidation sites of the main M35, which are probably H

Supplementary Table 1 | Calculated and measured BBB permeability parameters for 1-4.

^a MW, molecular weight; *^b c*logP, calculated log of water−octanol partition coefficient; *^c* HBA, hydrogen bond acceptor; *^d* HBD, hydrogen bond donor; *^e* PSA, polar surface area; *^f* logBB = −0.0148 × PSA + 0.152 × *c*logP × 0.130. *^g* Determined using the parallel artificial membrane permeability assay adapted for BBB (PAMPA-BBB).

Supplementary Table 2 | Changes in the body weight (gram) of the 5×**FAD AD model mice during the experimental period***^a* **.**

^a There is no difference in the body weight between vehicle- and **1** (1 mg/kg/day)-treated 5×FAD mice throughout the experimental 30 day period.

*** Mean ± s.e.m.

	Metal-free		$+ Cu(II)$	
Compound	k (min ⁻¹) ^a	$t_{1/2}$ (min) ^b	k (min ⁻¹) ^a	$t_{1/2}$ (min) ^b
	C	e	0.09 ± 0.03	8 ± 3
$\mathbf 2$	\mathbf{C}	e	\overline{c}	e
3	\mathbf{C}	e	0.013 ± 0.001	53 ± 3
	0.016 ± 0.004	43 ± 5	$\overline{}^d$	≤ 1

Supplementary Table 3 | Rates of transformation and half lives of 1-4 in the presence and absence of Cu(II).

*^a*Rate of decay of the absorbance peak at 250, 384, and 400 nm for **4**, [Cu(II) + **1**], and $[Cu(II) + 2]$, respectfully. ^{*b*} Half life of the absorbance peak in minutes. ^{*c*} Spectral changes were too slow to accurately measure the rate during the duration of the experiment. ^{*d*} Decay of compound occurred too rapidly to measure in the experiment conditions ([**1-4**] = 50 μM; [Cu] = 25 μM; 25 μM HEPES, pH 7.4, 150 μM NaCl; 37 °C). ^e No noticeable spectral changes were observed over 5 h.

Supplementary Table 4 | Calculated collision cross section (CCS) from IM–MS analysis.

Calculated CCS data are given for the presented stoichiometries and have been calculated using established methods^{5,6}. These data suggest the existence of five different conformational species across all ligand stoichiometries observed. Two of these are observed only with **2**. Data are the average of six repeats with errors reported as a function of least square analysis.

Supplementary Table 5. Products of collision induced fragmentation identified.

All b^+ ions with the prefix 'Modified' represent those containing the observed mass loss of 89.2 Da. * Due to instrumental resolution limits peaks highlighted may represent either b_6 ⁺ or an internal A₂EFRHD⁺ fragment. $\frac{1}{2}$ Due to instrumental resolution limits peaks highlighted may represent either b_5 ⁺ or an internal F_{20} AEDVG fragment.

Supplementary Methods

Materials and methods. All reagents were purchased from commercial suppliers and used as received unless otherwise noted. $A\beta_{40}$ and $A\beta_{42}$ (the sequence of $A\beta_{42}$: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) were purchased from Anaspec Inc. (Fremont, CA, USA). Trace metals were removed from buffers and solutions used in Aβ experiments by treating with Chelex overnight (Sigma-Aldrich, St. Louis, MO, USA). Optical spectra were recorded on an Agilent 8453 UV-visible spectrophotometer. Absorbance values for biological assays, including cell viability and antioxidant assays, were measured on a Molecular Devices SpectraMax 190 microplate reader (Sunnyvale, CA, USA). 1 H and 13 C NMR spectra were recorded using a 400 MHz Agilent NMR spectrometer.

Preparation of 4-nitro-*N***-(pyridin-2-ylmethyl)aniline.** 4-Nitro-*N*-(pyridin-2 ylmethyl)aniline was synthesized using previously reported methods with modifications⁷. To a flame-dried flask equipped with a stir bar and a reflux condenser under N_2 (g), 1fluoro-4-nitrobenzene (231 µL, 2.2 mmol) and *N*,*N*-diisopropylethylamine (836 µL, 4.8 mmol) were added to DMF (25 mL) followed by the introduction of 2- (aminomethyl)pyridine (247 μ L, 2.4 mmol) at room temperature. The resulting solution was heated to 70 °C. After 24 h, the brown solution was added to water (75 mL) and extracted with EtOAc (3 x 75 mL). The organic layers were washed with water (2 x 75 mL) and brine (75 mL), dried with MgSO₄, and concentrated under vacuum. The resulting residue was then purified on a silica column (25% to 100% EtOAc in hexanes) yielding a yellow solid (0.29 g, 58%) [TLC (EtOAc:hexanes = 50:50 (v/v)): *R*_f = 0.25]. ¹H NMR [400 MHz, CD₂Cl₂, δ (ppm)]: 8.56 (d, 1H, J = 8 Hz), 8.09 (d, 2H, J = 8 Hz), 7.71 (t, 1H, *J* = 8 Hz)*,* 7.30 (d, 1H, *J* = 8 Hz), 7.25 (d, 1H, *J* = 4 Hz), 6.68 (d, 2 H, *J* = 8 Hz), 6.04 (s, 1H), 4.53 (d, 2H, $J = 8$ Hz). ¹³C NMR [100 MHz, CD₂Cl₂, δ (ppm)]: 156.2, 153.5, 149.5, 138.5, 137.2, 126.6, 123.0, 122.1, 111.8, 48.2.

Preparation of 1. The compound 1 was purchased from Ryan Scientific (Mt. Pleasant, SC, USA) and recrystallized from CH_2Cl_2/h exanes four times. ¹H NMR [400 MHz, (CD3)2SO, δ (ppm)]: 8.49 (d, 1H, *J* = 4 Hz), 7.70 (t, 1H, *J* = 4 Hz), 7.35 (d, 1H, *J* = 4 Hz), 7.22 (t, 1H, *J =* 4 Hz), 6.36 (m, 4H), 5.46 (s, 1H), 4.23 (m, 4H). 13C NMR [100 MHz, CD2Cl2, δ (ppm)]: 159.58, 149.50, 141.44, 138.65, 136.75, 122.30, 121.99, 116.85, 114.88, 50.69. ESI(+)MS (*m*/z): [M+H]+ Calcd. for C12H14N3, 200.12; found, 200.03.

Additionally, 1 was also synthesized by adapting previously reported methods⁸ to reduce 4-nitro-*N*-(pyridin-2-ylmethyl)aniline. To a solution of 4-nitro-*N*-(pyridin-2 ylmethyl)aniline (0.52 g, 2.3 mmol) and *tris*(acetylacetonato)iron(III) (0.024 g, 3 mol%) in ethanol (20 mL) in a round-bottom flask equipped with a stir bar and a reflux condenser, hydrazine hydrate (581 µL, 11 mmol) was added. The solution was then heated under reflux for 2 h and additional 4 equivalents of hydrazine hydrate were introduced. The mixture was allowed to react for an additional 3 h before removing the solvent under vacuum. The resulting brown oil was purified by silica column chromatography (EtOAc (100%) to EtOAc: Et₃N (99%: 1%); TLC (EtOAc: Et₃N = 99:1 (v/v)), R_f = 0.20). The HCl salt of the product was then prepared by dissolving in MeOH and adding excess 5 M HCl. The solvent was removed under vacuum and the resulting residue was washed with $Et₂O$ (3 x 5 mL). The residues were dissolved in water (20 mL). The aqueous layer was washed with Et_2O (3 x 20 mL) and collected. After removing the water under vacuum and recrystallization using MeOH and $Et₂O$, the product was obtained (pale yellow powder, 0.45 g. 85%). ¹H NMR [400 MHz, (CD₃)₂SO, δ (ppm)]: 9.59 (s, 1H), 8.59 (d, 1H, J = 4 Hz), 7.90 (t, 1H, J = 4 Hz), 7.59 (m, 2H), 7.05 (d, 2H, J = 8 Hz), 6.67 (d, 2H, J = 8 Hz), 4.43 (s, 2H). ¹³C NMR [100 MHz, $(CD_3)_2$ SO, δ (ppm)]: 156.0, 147.1, 144.6, 142.9, 125.0, 124.6, 124.0, 120.8, 113.0, 44.8. HRMS (m/z): [M+H]+ Calcd. for $C_{12}H_{14}N_3$, 200.1188; found, 200.1190.

Preparation of 2. The compound **2** was purchased from Ryan Scientific and recrystallized from CH₃CN and water three times (off-white powder). ¹H NMR [400 MHz, $(CD₃)₂SO, δ (ppm)$]: 8.52 (d, 1H, J = 4 Hz), 7.73 (t, 1H, J = 8 Hz), 7.35 (d, 1H, J = 8 Hz), 7.24 (t, 1H, J = 8 Hz), 6.35 (t, 1H, J = 8 Hz), 5.75 (s, 2H), 5.71 (s, 1H), 4.31 (d, 2H, 4 Hz), 3.61 (s, 6H). ¹³C NMR [100 MHz, (CD₃)₂SO, δ (ppm)]: 161.1, 159.8, 150.2, 148.8, 136.6, 122.0, 121.1, 91.1, 88.6, 54.7, 48.5. HRMS (m/z): $[M+H]^{+}$ Calcd. for $C_{14}H_{17}N_{2}O_{2}$, 245.1290; found, 245.1288.

Preparation of 3. The compound 3 was purchased from Ryan Scientific and was recrystallized from hot hexanes and washed 5x with cold hexanes (yellow powder). 1 H NMR [400 MHz, $(CD_3)_2$ SO, δ (ppm)]: 8.29 (d, 1H, J = 8 Hz), 8.00 (d, 1H, J = 8 Hz), 7.93 (d, 1H, J = 8 Hz), 7.74 (t, 1H, J = 8 Hz), 7.56 (m, 2H), 6.57 (m, 4H), 5.91 (t, 1H, J = 4 Hz), 4.47 (d, 2H, J = 8 Hz), 2.67 (s, 6H). ¹³C NMR [100 MHz, CD₂Cl₂, δ (ppm)]: 159.9, 148.2, 144.8, 141.0, 136.9, 130.0, 129.4, 128.2, 127.9, 126.6, 120.5, 116.1, 114.7, 51.2, 42.39. HRMS (m/z): $[M+H]^+$ Calcd for $C_{18}H_{20}N_3$, 278.1657, found, 278.1656.

Preparation of 4. The compound **4** was purchased from Ukrorgsyntez (Ukraine) and washed with hexanes with one drop of $CH₂Cl₂$ once and hexanes three or four times (dark brown powder). ¹H NMR [400 MHz, (CD₃)₂SO, δ (ppm)]: 10.65 (s, 1H), 6.60 (m, 4H), 5.91 (s, 2H), 5.09 (s, 1H), 4.07 (d, 2H, J = 8 Hz), 2.70 (s, 6H). ¹³C NMR [100 MHz, CD2Cl2, δ (ppm)]: 145.3, 140.9, 130.8, 117.6, 115.9, 115.2, 108.7, 106.3, 43.20, 42.27. HRMS (m/z): $[M+H]^+$ Calcd. for $C_{13}H_{18}N_3$, 216.1501; found, 216.1502.

Supplementary References

- 1. Beck, M. W. *et al.* A rationally designed small molecule for identifying an *in vivo* link between metal−amyloid-β complexes and the pathogenesis of Alzheimer's disease. *Chem. Sci.* **6**, 1879−1886 (2015).
- 2. Stadtman, E. R. & Levine, R. L. Protein oxidation. *Ann. N. Y. Acad. Sci.* **899**, 191-208 (2000).
- 3. Inoue, K., Garner, C., Ackermann, B. L., Oe, T. & Blair, I. A. Liquid chromatography/tandem mass spectrometry characterization of oxidized amyloid beta peptides as potential biomarkers of Alzheimer's disease. *Rapid Commun. Mass Spectrom.* **20**, 911-918 (2006).
- 4. Uchida, K. Histidine and lysine as targets of oxidative modification. *Amino Acids* **25**, 249-257 (2003).
- 5. Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion mobility–mass spectrometry analysis of large protein complexes. *Nat. Protoc.* **3**, 1139-1152 (2008).
- 6. Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V.; Ruotolo, B. T. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. *Anal. Chem.* **82**, 9557−9565 (2010).
- 7. Jones, C. K. *et al*. Discovery, synthesis, and structure–activity relationship development of a series of *N*-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4) with oral efficacy in an antiparkinsonian animal model. *J. Med. Chem.* **54**, 7639−7647 (2011).
- 8. Sharma, U. *et al.* Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. *Chem. Eur. J.* **17**, 5903−5907 (2011).