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Are Interactions between cis-Regulatory Variants
Evidence for Biological Epistasis
or Statistical Artifacts?

Alexandra E. Fish,1 John A. Capra,1,2 and William S. Bush3,*

The importance of epistasis—or statistical interactions between genetic variants—to the development of complex disease in humans has

been controversial. Genome-wide association studies of statistical interactions influencing human traits have recently become compu-

tationally feasible and have identified many putative interactions. However, statistical models used to detect interactions can be

confounded, which makes it difficult to be certain that observed statistical interactions are evidence for true molecular epistasis.

In this study, we investigate whether there is evidence for epistatic interactions between genetic variants within the cis-regulatory

region that influence gene expression after accounting for technical, statistical, and biological confounding factors. We identified

1,119 (FDR ¼ 5%) interactions that appear to regulate gene expression in human lymphoblastoid cell lines, a tightly controlled, largely

genetically determined phenotype. Many of these interactions replicated in an independent dataset (90 of 803 tested, Bonferroni

threshold). We then performed an exhaustive analysis of both known and novel confounders, including ceiling/floor effects, missing

genotype combinations, haplotype effects, single variants tagged through linkage disequilibrium, and population stratification. Every

interaction could be explained by at least one of these confounders, and replication in independent datasets did not protect against

some confounders. Assuming that the confounding factors provide a more parsimonious explanation for each interaction, we find it

unlikely that cis-regulatory interactions contribute strongly to human gene expression, which calls into question the relevance of

cis-regulatory interactions for other human phenotypes. We additionally propose several best practices for epistasis testing to protect

future studies from confounding.
Introduction

Epistasis, a phenomenon wherein the effect of a genetic

variant on the phenotype is dependent on other genetic

variants, was first identified more than a century ago; how-

ever, it has been highly contested whether or not epistasis

plays an important role in the development of complex

traits inhumans. Inmodelorganisms, epistasis is commonly

observed: variants associated with the trait of interest often

interactwith other variants, andmore broadly, such interac-

tions account for anotableproportionofvariance inamulti-

tude of phenotypes.1–3 Epistasis may play a similar role in

humans—additive genetic effects are unable to account for

the majority of heritability in most complex traits4,5—but

evidence for epistasis in human remains elusive. Most

studies rely on the statistical association between genetic

variants and phenotype to identify signs of epistasis, and

the interactions identified are notoriously difficult to repli-

cate.6,7 This may be attributable to the inherent inability

to tightly control a variety of factors when studying pheno-

types in humans, or to the fact that most phenotypes

studied are several steps removed from the underlying

biological processes that influence them. These metho-

dological limitations make it unclear whether the lack of

observed epistasis in humans is a true feature of the genetic

architecture, or whether epistasis is simply much more

difficult to observe outside experimental systems.
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Human-derived cell lines, as a proxy for primary tissue,

provide a unique opportunity to investigate epistasis.

Like model systems, the environment for cell lines can be

tightly controlled, and moreover, comprehensive genetic

and gene expression data can readily be collected. This en-

ables the study of the genetic architecture underlying

thousands of genes’ expression—a quantitative phenotype

directly tied to the nucleotide sequence—through statisti-

cal association studies. Gene expression is an ideal pheno-

type to study epistasis, because molecular mechanisms

that drive gene expression are known to involve complex

molecular interactions among transcription factors and

regulatory sequences, and experimental maps of chro-

matin looping and transcription factor binding enable

biological interpretations for observed statistical interac-

tions.8,9 Moreover, the study of gene expression is also

directly relevant to complex disease—although there are

some striking examples of causal coding variants,10,11 the

vast majority of variants identified in genome-wide associ-

ation studies are non-protein coding. Thus it is presumed

that the disruption of gene regulation is causally involved

in the development of many common diseases.12,13 In

several instances, it has been shown that single-nucleotide

variants regulate gene expression by altering the function

of regulatory elements and that these altered gene expres-

sion profiles result in clinical phenotypes.14,15 By better

understanding the genetic control of gene expression, we
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Table 1. Dataset Composition by Ethnicity

Analysis Total Sample Size

Ethnicity

CHB CEU GIH JPT LWK MXL MKK YRI

Discovery 210 45 60 – 45 – – – 60

Replication 232 34 – – 35 80 38 – 45

The number of individuals of each ethnicity (1KG abbreviations) in the discovery and replication analyses.
may therefore better understand the genetic architectures

underlying complex disease.

Genetic variants associatedwith gene expression levels—

termed expression quantitative trait loci (eQTL)—have

been studied extensively in primary human tissue and in

cell lines. Inmany eQTL analyses, a gene-based approached

is taken wherein variants within the cis-regulatory region

for a given gene are tested for association with its expres-

sion. Until recently, the number of association tests

required to perform a similar genome-wide association

test for interactionswasnot computationally feasible.How-

ever, advances in computational power are continually

diminishing this barrier and two genome-wide studies of

epistasis have identified replicating interactions.16,17 The

validity of these interactions, however, was questioned

when it was demonstrated that through complex linkage

disequilibrium (LD) patterns, these putative interactions

could tag single-variant eQTL.18 Notably, all of the interac-

tions identified in those studies were either no longer

significant or were strongly attenuated when the effects of

additional cis-eQTL were considered. This illustrates that,

compared to single-locus analyses, the statistical models

used to detect epistasis are subject to distinct confounding

factors, which are rarely addressed in studies of epistasis.

In this study, we investigate whether evidence for epis-

tasis within the cis-regulatory region in humans persists

after systematically accounting for technical, statistical,

and biological confounding factors. We performed a tar-

geted investigation of interactions regulating gene expres-

sion levels in human lymphoblastoid cell lines (LCLs): the

analysis was restricted to nominal eQTL within the target

gene’s cis-regulatory region (p < 0.05) to drastically reduce

the number of association tests performed1,19 while retain-

ing the genomic regions most likely to harbor pertinent

regulatory elements. Few genes showed evidence of epis-

tasis (165 of 11,465 genes tested), although multiple inter-

actions were often detected for the same gene. A total of

1,119 interactions were identified, many of which repli-

cated in an independent dataset (90 of 803 possible). We

then investigated confounding factors—technical (vari-

ants within probe binding sites, ceiling/floor effect),

statistical (missing genotype combinations, population

stratification), and biological (haplotype effects, tagging

cis-eQTL)—that provide alternative, more parsimonious

explanations than biological epistasis. Ultimately, each of

the interactions identified could be accounted for by an

alternative mechanism, suggesting that the majority of
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statistical interactions identified without accounting for

confounding factors are spurious associations. Many of

these confounding factors are inherent to the statistical

models used and will therefore generalize to other pheno-

types; consequently, the analytic framework of this study

will be of use to many future studies of statistical epistasis.
Subjects and Methods

Our code has been made freely available online (see Web

Resources).
Genotyping and Gene Expression Data
The discovery dataset was comprised of individuals ascertained as

part of the International HapMap Project, PhaseIþII,20 which con-

sisted of 210 unrelated individuals with genome-wide genotyping

data (Phase IþII, release 24). For each of these individuals, Stranger

et al. collected and normalized gene expression levels from immor-

talized LCLs using the Sentrix Human-6 Expression Bead Chip,

v.1.21 All probes with a HapMap SNP underlying the expression

probe were removed from analysis.21 We applied a population

normalization procedure, described by Veyrieras et al.,22 to the

gene expression values such that the expression of each genewithin

each population followed a normal distribution. This removed pop-

ulation-level differences in gene expression, which enabled us to

combine all ethnicities in our analysis. Our replication dataset con-

sists of 232 unrelated individuals from the 1000 Genomes Project

(1KG), for whom gene expression in LCLs was available. These indi-

viduals had been sequenced at low coverage as part of the 1KG Proj-

ect;23we usedgenetic data fromphase I, version3. Stranger et al. also

collected and normalized gene expression levels in LCLs for these

individuals using Illumina Sentrix Human-6 Expression BeadChip,

v.2.24 We applied the same population normalization procedure22

to these data. Both the discovery and replication dataset are multi-

ethnic; the sample composition by ethnicity is shown in Table 1.

Two additional replication datasets were used to investigate a

promising interaction. The first consisted of 283 European-descent

individuals from the Genotype-Tissue Expression (GTEx) Project,

for whom gene expression in whole blood was assessed by RNA

sequencing.25 Genotype data for these individuals were collected

on both the HumanOmni5-Quad Array and the Infinium Exome

Chip and then imputed to 1KG.25 The second dataset consisted

of brain samples from autopsied European-descent individuals in

the Mayo Late Onset Alzheimer’s Disease Consortium.26 These in-

dividuals were genotyped on the Illumina HumanHap300-Duo

Genotyping Beadchip and gene expression was collected using

the Illumina Whole-Genome DASL HT BeadChip.26 370 individ-

uals had expression data available from cerebellum, and 385 had

expression in the temporal cortex.
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Figure 1. Workflow Used to Identify and
Group ieQTL
In the discovery analysis, nominally signif-
icant cis-eQTL (denoted by triangles) were
paired together and tested for interactions
significantly associated with gene expres-
sion levels (denoted by arcs). The within-
pair LD was then calculated (Figure S1),
and interactions composed of variants in
modest LD (r2 > 0.6) with one another
were removed from the remainder of the
analysis. Some of the remaining inter-
actions represented the same pair of inter-
acting genomic loci (Figure S2) and were
partitioned into distinct groups (denoted
by the arc color). For two interactions to
be grouped together, each SNP within
one significant ieQTL model had to be in
high LD (r2 R 0.9) with a SNP within the
second ieQTL model, and vice versa.
Generating SNP Pairs for Interaction Testing
To generate SNP pairs for each gene, we first identified all common

SNPs within the gene’s cis-regulatory region. To be considered com-

mon, variants had to have a MAF > 5% when all ethnicities were

combined. Based on cis-eQTL analyses,22 the cis-regulatory region

wasdefinedas starting500kbupstreamof thegene’s startandending

500 kb downstream of the gene’s stop (including the gene itself);

gene boundaries were taken from ENSEMBL. Previously, these vari-

ants were individually tested for association with the gene’s expres-

sion level in the discovery dataset by Veyrieras et al.22 Based on

this analysis, we filtered out SNPs whose marginal effects were not

nominally associated with gene expression (excluded p> 0.05), un-

der the hypothesis that nominally associated variantsmay represent

weak marginal effects from a true underlying interaction. We then

considered all possible SNP pairs among the remaining variants.

Once this was done for each gene, more than 21 million SNP pairs

were generated for interaction testing.

Identifying Significant Interactions
Each SNP pair was tested for interactions significantly associated

with the expression of the gene for which it was generated. The

following interaction model27 was used, which contains additive

and dominant effects for each variant and all four possible interac-

tion terms in order to ensure that variance is properly partitioned

across the genetic terms:

y ¼ mþ a1x1 þ d1z1 þ a2x2 þ d2z2 þ iaax1x2 þ iadx1z2

þ idaz1x2 þ iddz1z2 þ PC1�3;

(Equation 1)

where y represents gene expression, x1 and x2 use additive encod-

ing to represent the genotype at SNP A and SNP B, respectively,
The American Journal of Human G
z1 and z2 use Cordell’s27 dominant encod-

ing to represent the genotype at SNP A

and B, respectively, a1 and d1 are estimated

coefficients representing the additive and

dominant effects of SNP A, a2 and d2 are

estimated coefficients representing the ad-

ditive and dominant effects of SNP B, and

iaa, iad, ida, and idd are estimated coefficients

representing both additive and dominant

interaction effects. The top three principal
components were also included as covariates (PC1–3). To determine

the significance of interactions, this model was compared to a

reduced model lacking the four interaction terms using a likeli-

hood ratio test (LRT):

y ¼ mþ a1x1 þ d1z1 þ a2x2 þ d2z2 þ PC1�3: (Equation 2)

This test was implemented with the program INTERSNP.28 We

calculated an FDR of 5% using the qvalue package in R.29

Identification of Representative Interaction eQTL

Models for Distinct Pairs of Interacting Genomic Loci
Some interaction eQTL (ieQTL) models identified in the discovery

analysis were redundant due to LD. For two ieQTL models to be

considered redundant, each SNP within one significant ieQTL

model had to be in high LD (r2 R 0.9) with a SNP within the sec-

ond ieQTL model, and vice versa. By using this criterion, the pairs

were effectively correlated at r2 R 0.8, the threshold typically used

for tag-SNP selection. The redundant SNP pairs have very similar

bs for all parameters (Figure S2), indicating that they represent

the same signal from a pair of interacting genomic loci. Redundant

ieQTL models were grouped together. The model with the most

significant LRT p value in the discovery analysis was used to

represent the entire group inmost analyses, so that each pair of in-

teracting genomic loci was equally represented. A visual schematic

of this process is provided in Figure 1.

Statistical Power Estimation
We performed simulation analyses to determine the power to

identify interactions. We first randomly sampled a set of 20,000

SNP pairs having all nine genotype combinations present, and

then we used the observed genetic data to simulate gene
enetics 99, 817–830, October 6, 2016 819



expression values. We simulated gene expression values based on

the observed genotypes, the actual additive and dominant main

effects for each of the two interacting variants, and an error term

drawn from a standard normal distribution, and we embedded

interaction terms of varying strength.

To properly represent the main effects of the variants, we used

bs for the additive and dominant terms for each variant reflecting

the actual effects within our dataset. We used

y ¼ mþ a1x1 þ d1z1 þ PC1�3; (Equation 3)

where y represents gene expression, x1 uses additive encoding to

represent the genotype for the variant, z1 uses Cordell’s27 domi-

nant encoding to represent the genotype, and the top three prin-

cipal components were included as covariates (PC1–3).

We then determined the effect size for the interaction terms.

There are four interaction terms in the model: additive by additive

(iaa); additive by dominant; dominant by additive; and dominant

bydominant. The iaa term is significant inall significant interaction

models identified in the actual discovery analysis, whereas the

other terms are not—these terms are included so that phenotypic

variance is appropriately partitionedbetweengenetic components.

Consequently, these three interaction terms were treated as

nuisance variables when simulating gene expression values; their

bs were drawn from a normal distribution (mean ¼ 0, standard de-

viation¼ 0.03).Weused the effect sizes of cis-eQTL (p< 5.03 10�8)

in our analysis to establish a ‘‘moderate’’ anticipated effect size

(cis-eQTL median: b ¼ 0.771) and a ‘‘high’’ anticipated effect size

(cis-eQTL 75th percentile: b ¼ 0.908). These bs are well within the

range of observed effect sizes for significant interactions (iaa me-

dian: b ¼ 0.65 and iaa max: b ¼ 2.57). We then simulated gene

expression data for each of the two effect sizes for eachpair of SNPs.

Next, we performed the same LRTused in the discovery analysis

to identify significant interactions. All interactions with p values

below the FDR¼ 5% threshold (p% 1.3283 10�5) were considered

significant. We then repeated this process 10 times using the same

20,000 pairs of variants. In each of these ten iterations, power was

calculated as the total number of pairs found to have a significant

interaction divided by the total number of simulated interactions

tested. Themeanandstandarddeviationacross these ten iterations,

broken out by variant MAF and LD, is reported in Table S1.
Variants within the Probe-Binding Site
To determine whether variants were within the probe binding lo-

cations, we first used BLAT to identify the probe binding location

in hg19 coordinates. Some probes returned multiple hits; conse-

quently, we filtered the binding sites (binding sites had to be on

the same chromosome as the gene, have a length > 30 base pairs,

and an identity score> 95%) to identify unique binding locations.

We then exclusively looked within a subset of our discovery

dataset with sequencing data in the 1KG Project (n¼ 174) to deter-

mine whether there were any variants within binding sites that

might confound the interaction analysis.
Ceiling/Floor Effect
Microarrays have a limited dynamic range that is not able to cap-

ture the extremes of gene expression. If the combined additive ef-

fect of two variants exceeds the threshold of detection, their

apparent combined effect will be less than the sum of their indi-

vidual effects. Thus, they may be spuriously identified as interact-

ing. If this occurs, there will be a characteristic pattern of bs: the

main effects for variants will be in the same direction, and the
820 The American Journal of Human Genetics 99, 817–830, October
interaction term b will be in the opposite direction. We looked

for this characteristic pattern to determine an upper bound of

the prevalence of the ceiling/floor effect within our results. First,

we identified the significant variables (b 5 SE could not contain

zero) in the model. All interactions were then categorized as

having 0, 1, or 2 SNPs with a significant main effect—either addi-

tive or dominant main effects counted; if both additive and domi-

nant main effects were significant for the same variant, the one

with the largest effect size was used to represent the main effect.

For interactions where both variants had at least one significant

main effect, we determined whether or not they had a concordant

direction of effect. For those pairs with concordant directions of

effect, we compared the significant interaction term with the

largest absolute effect size to determine whether it was discordant

with the main effects. If this was the case, the interaction had a

pattern consistent with a ceiling/floor effect and was not consid-

ered clear evidence for epistasis.
Population Specific cis-eQTL
Population-specific cis-eQTL can confound the interaction anal-

ysis, even though gene expression values were population nor-

malized and the top three PCs were included as covariates. To

investigate this, we first stratified the discovery dataset by each

of the three ethnicities (CEU, YRI, CHBþJPT) and tested each

interaction for significance, using the same methodology. For in-

teractions that were not significant (p < 0.05) in any of the

populations, we determined whether the interacting variants

were population-specific cis-eQTL using Equation 3. Variants

with nominally significant (p< 0.05)main effects were considered

cis-eQTL. If a variant was identified as a cis-eQTL in only a subset of

populations, it was considered population specific.
Conditional cis-eQTL Analysis
To determine whether ieQTL pairs were tagging a cis-eQTL as sug-

gested by Wood et al.,18 we first identified all nominal cis-eQTL

(p< 0.05) for genes with significant ieQTL. To identify all nominal

cis-eQTL, we used a subset of the discovery analysis individuals

(n ¼ 174) who were also sequenced as part of the 1KG Project.23

We used the called genotypes from Phase III, v.5. The same gene

expression data previously described for the discovery set was

used. Within this subset, we performed a single-marker cis-eQTL

analysis for each common variant (MAF > 5%) within the cis-reg-

ulatory region,

y ¼ mþ a1x1 þ PC1�3; (Equation 4)

where y represents gene expression, x1 uses additive encoding to

represent the genotype for the variant, and the top three principal

components were included as covariates (PC1–3). Variants with

nominal significant (p < 0.05) main effects were considered

cis-eQTL.

To determine whether any of these cis-eQTL could account for

the interaction, we created all pairs of cis-eQTL and ieQTL for

the same gene. We incorporated each cis-eQTL into each interac-

tion model:

y ¼ mþ a1x1 þ d1z1 þ a2x2 þ d2z2 þ a3x3 þ d3z3 þ iaax1x2 þ iadx1z2

þ idaz1x2 þ iddz1z2 þ PC1�3;

(Equation 5)

where y represents gene expression, x1 and x2 use additive en-

coding to represent the genotype at interacting SNPs A and B,
6, 2016



respectively, z1 and z2 use Cordell’s dominant encoding to repre-

sent the genotype at interacting SNPs A and B, respectively, a1
and d1 are estimated coefficients representing the additive and

dominant effects of SNPA, a2 and d2 are estimated coefficients rep-

resenting the additive and dominant effects of SNP B, and iaa, iad,

ida, and idd are estimated coefficients representing both additive

and dominant interaction effects. The main effect of the cis-

eQTL is represented with additive encoding by x3 and with

dominant encoding by z3; the estimated coefficients correspond-

ing to the main effects are a3 and d3, respectively. The top three

principal components were also included as covariates (PC1–3).

We then performed a LRT comparing this model to a reduced

model lacking the interaction terms:

y ¼ mþ a1x1 þ d1z1 þ a2x2 þ d2z2 þ a3x3 þ d3z3 þ PC1�3:

(Equation 6)

If the LRT p value of an interaction was nominally significant

(p< 0.05) for all conditional analyses, we considered this evidence

that the interaction and cis-eQTL represented independent

signals.
Results

Discovery and Replication of Genetic Interactions

that Impact Gene Expression Levels

We identified interactions between nominal cis-eQTL that

were significantly associated with gene expression levels.

Our analysis was conducted using 210 individuals from

the HapMap Project, Phase IþII, on whom both genotyp-

ing20 and gene expression data within LCLs21 were avail-

able. A population normalization procedure was applied

to the gene expression data, so that there were no system-

atic differences between populations.22 The overall work-

flow for the analysis is shown in Figure 1. For each gene

with expression data (n ¼ 11,465), we identified common

SNPs (global MAF > 5%) within its cis-regulatory region,

defined as 500 kb upstream to 500 kb downstream of the

gene. To increase power, we considered only variants

nominally associated with the gene’s expression (p <

0.05) in a single-marker analysis.22 We analyzed all pair-

wise combinations of these variants for each gene, result-

ing in more than 21 million SNP pairs. We then performed

a likelihood ratio test (LRT) comparing a full model, which

contains the top three PCs, main effects, and interaction

terms, to a reduced model, containing only the covariates

and main effects, to determine which interactions signifi-

cantly improved model fit.27 Given the large number of

correlated tests, we controlled the false discovery rate

(FDR) at 5% (p % 1.328 3 10�5) across p values from all

LRT performed.29 Assuming moderate and large effect

sizes, respectively, we had 21.6%–55.3% and 44.3%–8.9%

power to detect interactions between high-frequency vari-

ants (MAF 0.2–0.5) in low LD with one another (Table S1).

LD between variants complicates the interpretation of

the interaction models. We addressed two types of LD in

significant interaction models: within-pair LD, defined as

the LD between the variants in the same interaction
The Americ
model, and between-pair LD, defined as the LD between

variants in different interaction models. Modest within-

pair LD indicates that the variants may be identifying a

haplotype, which could carry a single variant that is actu-

ally driving the association with gene expression. Wood

et al. have demonstrated that even very stringent LD-prun-

ing thresholds (r2 > 0.1 or D0 > 0.1) are insufficient to

protect against confounding by cis-eQTL,18 so we adopted

a two-stage strategy to address this concern. First, we

removed all pairs with variants in modest LD with one

another (r2 > 0.6) from the remainder of the analysis

(median r2 between remaining pairs of interacting variants

was 0.06, Figure S1). We then directly tested for confound-

ing by cis-eQTL in a later analysis. Ultimately, 5,439 in-

teraction models were both significant and passed the

within-pair LD filtering criteria; they were significantly

associated with the expression of 165 unique genes (Table

S2).We then calculated between-pair LD, or the correlation

of variants in different interaction models. Highly corre-

lated interaction models were grouped together (Subjects

and Methods, Figure 1) because they likely represent the

same pair of interacting genomic loci, as evidenced by their

very similar statistical models (Figure S2). The 5,439 inter-

action models represented 1,119 pairs of interacting

genomic loci (Table S2). The interaction model with the

most significant p value in the discovery analysis was

selected to represent the entire group in all subsequent

analyses, unless specifically stated otherwise, to ensure

that each pair of interacting genomic loci was equally

represented.

Next, we performed a replication analysis using an inde-

pendent dataset of 232 unrelated individuals from the 1KG

Project who had both whole-genome sequencing23 data

and gene expression levels in LCLs24 available. All ieQTL

composed of variants that were common (MAF > 5%) and

had available genotyping datawere tested for significant in-

teractions with the same procedure used in the discovery

analysis. Of the 803 ieQTL tested, 363 had p values < 0.05

and 90 passed a Bonferroni multiple testing correction for

all tests performed in the replication analysis.

Many Factors Confound Interaction Testing

Statistical interactions can be produced by a variety of fac-

tors other than biological epistasis, including technical

artifacts, statistical artifacts, and LD artifacts driven by

other biological processes. Technical artifacts are caused

by the limitations of the data itself; for instance, limita-

tions in the dynamic range of measureable gene expression

can result in interactions being identified through the

ceiling/floor effect. Statistical artifacts can result in an

incorrect inference from a statistical model; for example,

when there are population-level differences in the pheno-

type, analyzing multiple ethnicities together can produce

spurious associations due to population stratification.

Technical and statistical artifacts are especially troubling

because they are unlikely to represent real biological asso-

ciation between the loci and phenotype. Other biological
an Journal of Human Genetics 99, 817–830, October 6, 2016 821



Figure 2. The Interaction between rs1783165 and rs1673426
Associated with the Expression of PKHD1L1 May Be a Ceiling
Effect
The ceiling effect, caused by limitations in the detectable range of
gene expression, has a hallmark pattern—both variants have main
effects with concordant direction of effect, and the interaction
term has a discordant direction.
(A and B) The minor allele of rs1673426 (A) increases the expres-
sion of PKHD1L1. The minor allele of rs1783165 (B) also increases
the expression of PKHD1L1, meaning both variants have a concor-
dant direction of effect.
(C) The interaction plot depicts the mean gene expression for all
individuals with the specified genotype combination, with each
line representing the number of minor alleles at rs1673426.
When there is only one minor allele at rs1673426, the mean
gene expression increases for eachminor allele at rs1783165; how-
ever, when there are two minor alleles at rs1673426, the increase
in gene expression due to minor alleles at rs1783165 reaches a
‘‘maximum’’ at one minor allele. There is no additional increase
in expression for having two minor alleles at rs1783165. This is
denoted by the flat line connecting the two genotype combina-
tions. Given that each minor allele at rs1783165 increases gene
expression on the background of one minor allele at rs1673426,
and that the maximum reached on the background of two minor
alleles at rs1673426 is very close to the maximum gene expression
levels possible to observe, we consider this an example of the
ceiling effect.
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phenomena, namely haplotype effects and cis-eQTL ef-

fects, can be captured by interaction analyses due to LD

patterns. We investigated whether the observed 1,119

significant ieQTLmodels from the discovery analysis could

be explained by each of these phenomena.

Some Statistical Interactions Are Consistent with

Confounding by Technical Limitations

The gene expression data used in this analysis was

collected using microarrays. Microarray technology has a

limited dynamic range, meaning that the upper and lower

bound on the level of gene expression that microarrays can

detect does not cover the full range observed in nature.

If the combined effect of two variants behaving addi-

tively exceeds the detectable limit, their individual effects

will not be fully captured as they hit the maximum (i.e.,

ceiling) or minimum (i.e., floor) value detectable by micro-

arrays. This phenomenon, known as the ceiling/floor ef-

fect, may result in such pairs of variants being spuriously

identified as epistasis.30 Interactions caused by the ceil-

ing/floor effect have a characteristic pattern of effects:

the main effects of both variants have the same direction,

and the interaction terms are in the opposite direction. For

example, both main effects may increase gene expression,

but the interactions will decrease gene expression. An

example of an interaction putatively caused by the ceiling

effect is shown in Figure 2. Of 1,119 locus pairs, 48

exhibited a pattern consistent with the ceiling/floor effect.

It is possible that true genetic interactions could also pro-

duce this pattern; consequently, we consider this an upper

bound of the influence of ceiling/floor artifacts within our

analysis.

The interpretation of microarray data is also complicated

by genetic variants in the probe binding site, because

different alleles may have different affinities for the probe.

Probes containing any HapMap variant had previously

been removed from the analysis;21,22 however, HapMap

does not provide comprehensive coverage of genetic vari-

ants. Consequently, we looked in a subset of individuals

from the discovery analysis (n ¼ 174) with low-coverage

sequencing data through the 1KG Project to see whether

genetic variants within the probe binding site may result

in apparent interactions. The probes for 508 of 1,119

ieQTL contained a SNPs or indel in the 1KG Project. The

probes for 255 ieQTL contained at least one common

(MAF > 5%) variant. Although the conditional analysis

(Subjects and Methods) performed later would likely ac-

count for the effect of these variants, we did not consider

ieQTL with a common variant in the binding site evidence

for biological epistasis. The probes for the remaining 253

ieQTL contained at least one rare variant, but no common

variation. To determine whether these rare variants could

result in the interaction, we performed the interaction

analysis using only the 1KG individuals who did not

have a rare variant in the probe binding site. The inter-

actions for 200 ieQTL remained nominally significant

(p < 0.05) when all individuals with rare variants were
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Figure 3. Interactions Impacting the
Expression of CPEB4 May Represent
Haplotype Effects
(A) A significant interaction between
rs6864691 and rs969518 regulating the
expression of CPEB4 was identified. The
cis-eQTL rs72812817 mediated this inter-
action in the conditional analysis; how-
ever, none of these variants were within
putative regulatory elements in GM12878
assayed by the ENCODE Project.
(B) However, a D0 heatmap of the region
(the numbers correspond to SNP labels in
A) illustrated that an indel, rs144869372,
always occurred on the background of the
cis-eQTL (D0 ¼ 1).
(C) This occurs despite modest r2 values, as
shown in the r2 heatmap of the region.
There is evidence from ENCODE (A) sug-
gesting the indel may be functional, as it
occurs within both a ChromHMM strong
enhancer (yellow) and a CTCF binding
peak in GM12878.
(D) Notably, the indel is predicted to alter
the binding of CTCF by HaploReg, by
altering the last three nucleotides in the
binding motif. Given the functional geno-
mics evidence, the indel may be the causal
variant and is detected by interactions that
tag the haplotype carrying the indel.
removed. Consequently, the interactions for 811 ieQTL are

not attributable to variants within the probe binding sites.

Missing Genotype Combinations May Result in ieQTL

Linear regression models for epistasis may be unable to

accurately decompose variance between genetic terms if

there is either LD between the interacting variants or if

there are missing genotype combinations. The issue of

LD has previously been explored, and the Cordell model

is robust to LD between variants when all genotype combi-

nations are present.31 Consequently, we examined all in-

teractions within the discovery dataset to see whether all

of the nine possible two-locus genotype combinations

were present. For 457 of the 1,119 ieQTL, at least one geno-

type combination was absent. Although failure to see

certain two-locus genotypes may be due to lethal combina-

tions, and thus perhaps is evidence for epistasis, it may also

simply be a result of certain combinations being uncom-

mon due to allele frequencies and the proximity between

variants. Either way, the statistical model used cannot

provide robust estimates unless all genotype combinations

are present, and therefore, we do not consider these inter-

actions as evidence for biological epistasis.

Haplotype Effects Captured through Complex LD

Patterns May Produce ieQTL

In some LD architectures, a combination of two variants

can identify haplotypes. Although there is evidence to

suggest haplotypes form in response to biological interac-

tions between variants,32,33 haplotypes may simply carry

a single variant that additively regulates gene expression.
The Americ
Thus, interactions between two variants in LD with one

another may simply be tagging a cis-eQTL. Wood et al.

demonstrated that this could occur even when strict

LD-pruning thresholds (r2 > 0.1 or D0 > 0.1) were used;

therefore, we consider it unlikely that any LD-pruning

threshold would be sufficient to eliminate confounding

by cis-eQTL.18 Consequently, we adopted a two-stage strat-

egy to address haplotype effects, wherein we first use a

lenient LD threshold to filter out interactions and then

directly tested whether the interaction can be accounted

for by cis-eQTL.

In the first stage, we used LD patterns to filter out vari-

ants in moderate LD with one another, because they prob-

ably represent a haplotype. We did this by first removing

all interaction models composed of variants in modest

LD with one another (r2 > 0.6) from all portions of the

study, as previously mentioned. We then investigated

whether or not variants within the same interactionmodel

were in modest LD with one another as assessed by D0; of
the 1,119 interacting loci, 806 had D0 values < 0.6. We

did not consider any of the variants with D0 thresholds
exceeding this threshold as evidence for epistasis, because

they probably carry a single variant driving the effect. An

example of this phenomenon observed in our data is illus-

trated in Figure 3. The distribution of LD statistics, both r2

and D0, for interaction models is shown in Figure S1.

In the second stage of the analysis, we directly tested

whether or not the interaction could be accounted for by

cis-eQTL by conditioning the interaction on each of the

target gene’s cis-eQTL in turn. We first identified all nomi-

nal, common cis-eQTL (p < 0.05) for the interaction’s
an Journal of Human Genetics 99, 817–830, October 6, 2016 823



Figure 4. The Interacting SNPs Regu-
lating ACCS Are Probably Tagging a Sin-
gle-Variant cis-eQTL through Linkage
Disequilibrium
The interaction between rs178501 and
rs7121151 is mediated by the cis-eQTL
rs2074038 in the conditional analysis
(interaction p value > 0.05).
(A) While the interacting variants are in
low LD with the cis-eQTL based on r2, their
high D0 indicates they often occur on the
same haplotype.
(B) The interacting variants are not located
within DNase hypersensitivity sites, pre-
dicted chromatin states with a regulatory
function (GM12878 Combined), or any
of the uniform binding peaks identified
for all transcription factors tested in
GM12878 by ENCODE; however, the cis-
eQTL is located within the canonical pro-
moter for ACCS, a DNase hypersensitivity
site, and numerous transcription factor
binding peaks identified in GM12878 by
ENCODE.
(C) Notably, the cis-eQTL occurs within a
binding peak for both ELF1 and SPI1 in
GM12878 and also alters the binding
motifs of these transcription factors at the
position highlighted in orange. Thus, the
cis-eQTL rs2074038 is probably the causal
variant, and the interaction is simply
capturing its effect through LD.
regulated gene using a subset of individuals from our dis-

covery dataset (n ¼ 174) with sequencing data available

through the 1KG Project so that we would have a compre-

hensive list of genetic variation. Although the 1KG

sequencing data is low coverage, it is extremely unlikely

we would fail to detect the effect of a common cis-

eQTL—1KG estimates they had 99.3% power to detect

variants of 1% frequency.23 Even if a common cis-eQTL

was missed, all variants that could tag it through LD would

additionally have to be absent for its effect to not be

captured in the conditional analysis. We then created all

pairs of cis-eQTL and ieQTL for the same gene. For each

of these combinations, we performed a conditional anal-

ysis in which the additive and dominant main effect for

the cis-eQTL were incorporated into both the full and

reduced model used in the LRT to determine the signifi-

cance of the interaction. The majority of interactions

appeared to be mediated by cis-eQTL (Figure 4); however,

139 of the 965 testable ieQTL remained significant (p <

0.05) in all conditional analyses performed, indicating

that these interactions are not explained by cis-eQTL.

Population-Specific eQTLs May Produce Statistical

Interactions

In our discovery and replication analyses, we analyzed

multiple ethnicities together. When there are population

differences in the distribution of both genotypes and phe-

notypes, analyzing multiple populations together can

lead to spurious results, due to a phenomenon known as
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population stratification. The population normalization

procedure applied to the gene expression data removes sys-

tematic population differences in the phenotype, thereby

enabling multiple ethnicities to be combined for analysis

without risk of known complications from population

stratification. Although this approach has been used in

other studies, we also controlled for the top three PCs in

our analysis to adjust for residual ethnicity-dependent

effects.22,34 Furthermore,weperformed a stratified analysis,

wherein we tested each of the 1,119 ieQTL in each of the

three discovery ethnicities (CEU, YRI, and CHBþJPT) sepa-

rately. Although the Cordell model was not robust in the

stratified analysis inmany cases (due to the reduced sample

size, all nine possible two-locus genotype combinations

were often not observed in all populations), 859 of 1,119

ieQTL were at least nominally significant (p < 0.05) in at

least one population, suggesting that population stratifica-

tion is unlikely to account for their significance.

However, the interaction for 260 ieQTL was completely

attenuated in the stratified analysis. In some cases, this

may be attributed to reduced power to detect effects

because the sample size is smaller; however, it could also

suggest that interaction testing was subject to an unknown

form of population stratification. Upon further investiga-

tion, we found that 234 of 260 ieQTL attenuated in the

stratified analysis involved at least one population-specific

cis-eQTL, meaning that a variant was a significant cis-eQTL

in only a subset of populations. Population-specific cis-

eQTL may be a product of reduced power to detect effects
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Figure 5. Population-Specific eQTLs May Underlie ieQTL Regulating C12orf54
The interaction between rs2731091 and rs4760707 regulating C12orf54 replicated but was not nominally significant (p < 0.05) in any
population in the stratified analysis.
(A) Due to the population normalization procedure, there are not systematic differences in the expression of C12orf54 between popu-
lations; however, we found that each variant was a population-specific cis-eQTL.
(B) rs4760707 was a cis-eQTL in CHBþJPT (p ¼ 7.25 3 10�6) but not in YRI (p ¼ 0.17) or CEU (p ¼ 0.96).
(C) rs2731091 significantly regulated gene expression as a cis-eQTL in YRI (p ¼ 7.28 3 10�6) but not CEU (p ¼ 0.14) or CHBþJPT
(p ¼ 0.84).
(D) There were clear population differences in the frequency of two-locus genotypes between populations; in combination, it appears
the population differences in two-locus genotypes and population-specific cis-eQTL produced a nuanced form of population
stratification.
when allele frequencies are different between populations;

however, there were also instances in which variants with

very similar allele frequencies had different marginal ef-

fects across populations (Figure S3).24 Such variants might

be a product of population-dependent ability to tag causal

cis-eQTL due to differential LD patterns. In relation to

interaction testing, systematic differences in both the

main effect of each variant and the frequency of two-locus

genotype combinations between populations resulted in a

spurious interaction signature; an example is provided in

Figure 5. To investigate whether population-specific effects

may impact the 859 ieQTL that were nominally significant

in at least one population, we calculated the within-popu-

lation LD between each pair of interacting variants. 689 of

859 ieQTL were significant in at least one population

where the variants were not in LD with one another

(r2 and D0 < 0.6) (Table S3). We did not consider the 170

ieQTL that were exclusively significant in populations

with population-specific haplotypes as clear evidence for

biological epistasis. Ultimately, 689 of the 1,119 ieQTL

were inconsistent with population-specific effects.

ieQTL Can Be Entirely Accounted for by Alternative

Mechanisms

Ultimately, we investigated whether confounding factors

could cumulatively account for all the interactions identi-
The Americ
fied in this analysis (Tables 2 and S3). Of the 1,119 interact-

ing genomic loci identified, 90 significantly replicated

using a Bonferroni multiple testing correction threshold.

Of these, 26 ieQTL could be explained by technical

artifacts (i.e., the ceiling/floor effect and/or variants

within the probe binding sites). 50 of the remaining 64

ieQTL could be explained by statistical artifacts (i.e., popu-

lation stratification and/or missing genotypes). Biological

explanations other than epistasis—namely haplotype

effects or the tagging of cis-eQTL—could account for all

remaining ieQTL that replicated at the most stringent

Bonferroni level.

We additionally investigated the impact of filtering out

interactions consistent with confounding prior to the

replication analysis. Removing these interactions prior to

replication testing had a considerable influence on the

multiple testing correction threshold: only 86 of the

1,119 interactions identified in the discovery analysis

were not consistent with the ceiling/floor effect, popula-

tion stratification, variants within the probe binding site,

missing genotype combinations, haplotype effects, or the

tagging of cis-eQTL (Table S4). 37 of the 86 ieQTL had suf-

ficient data to be tested in the replication analysis, and

although none replicated at the adjusted Bonferroni

multiple testing correction threshold, two interactions

did replicate with nominal significance (p < 0.05). One
an Journal of Human Genetics 99, 817–830, October 6, 2016 825



Table 2. Proportion of Interactions Consistent with Confounding Factors

Confounder

All Interactions (n ¼ 1,119) Bonferroni Replicating Interactions (n ¼ 90)

Total (%) Total (%)

Ceiling/floor Effect 48 (4.30) 11 (12.22)

Variants in probe 308 (27.52) 15 (16.68)

cis-eQTL 980 (87.58) 78 (86.68)

D0 haplotype 313 (27.97) 43 (47.78)

Population-specific effects 430 (38.43) 58 (64.44)

Missing genotypes 457 (40.84) 37 (41.11)

We counted the number of interactions consistent with each alternative explanation; interactions can be consistent with multiple confounders. We considered two
categories of interactions: all interactions identified (n ¼ 1,119) and the subset of those that replicated with p values exceeding the Bonferroni multiple testing
correction threshold for the entire replication analysis (n ¼ 90).
of these, the interaction between rs1549791 and

rs7115749 to regulate APIP, did not have a consistent

direction of effect between the discovery and replication

datasets (Figure S4) and thus was not considered

evidence for epistasis. The remaining interaction, between

rs1262808 and rs11615099 regulating the expression of

MYRFL, had concordant effects in both the discovery and

replication datasets (Figure 6). It did not pass the multiple

testing correction threshold in the initial replication anal-

ysis (p ¼ 2.03 3 10�3) though, so we further examined

additional datasets.

Replication Does Not Protect against Confounding

To determine whether the interaction between rs1262808

and rs11615099 regulating the expression of MYRFL was

robust, we examined it in several additional datasets,

some of which leveraged different technologies to assess

gene expression levels, used primary tissues rather than

cell lines, and were collected in different cellular contexts.

First, we examined the interaction in 283 individuals

from the Genotype-Tissue Expression (GTEx) Project

with RNA sequencing of gene expression in whole blood

and found a significant (p ¼ 6.96 3 10�4) and similar

pattern of effect (Figure 6). The same trend was also

observed in 370 European-descent individuals with gene

expression in both cerebellum (p ¼ 7.50 3 10�4) and tem-

poral cortex (p ¼ 1.23 3 10�11), illustrating that the inter-

action was found in very different cellular conditions and

was robust in four completely independent datasets

(Figure 6). Despite significant and consistent replication,

however, there was still the possibility that this inter-

action was attributable to confounding factors: the

conditional cis-eQTL analysis was conducted in the

multi-ethnic discovery dataset, meaning that popula-

tion-specific LD patterns could have obfuscated the signal

from a single variant enough to result in the residual

significance of the interaction term. To account for this,

we performed conditional cis-eQTL analyses in the addi-

tional replication datasets composed only of European-

descent individuals and found cis-eQTL that completely
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attenuated the significance of the interaction signal in

all cases. Although the cis-eQTL that most attenuates

the signal varies between datasets, all tag the same locus

(Figure 6). The same locus also attenuates the interaction

completely in a conditional analysis on the CEU subset of

the discovery dataset (Figure 6). Thus, despite consistent

replication in numerous datasets, this interaction can be

explained by confounding by cis-eQTL.
Discussion

In this study, we analyzedmore than 21million pairs of cis-

regulatory variants for epistatic interactions influencing

gene expression and found limited evidence for epistasis

within the cis-regulatory region of genes. Fewer than 2%

of genes tested (165 of 11,465) had significant interactions

between regulatory genetic variants that appeared to influ-

ence their expression in the tightly controlled context of

LCLs. Nonetheless, 90 of the 1,119 significant interactions

replicated in independent datasets. We then performed a

comprehensive investigation of known and novel poten-

tial confounding factors on the identified interactions

(haplotype effects, ceiling/floor effect, single variant

eQTL tagged through LD, missing genotype combinations,

population stratification, and others) and found that all

the interactions—even those that replicated—could be ex-

plained by at least one technical, statistical, or biological

confounder. Thus, our findings do not support a major

role for large effect interactions between common variants

within the cis-regulatory region influencing the regulation

of gene expression in LCLs.

Additionally, this study provides a trait-independent

framework for protecting future interaction studies from

confounding. Prior to performing any association testing,

there are two levels of quality control required for statisti-

cal studies of epistasis: those adopted in GWAS best

practices,35–38 which are aimed at ensuring that individual

genetic variants are called with high accuracy, and those

that check whether a given pair of genetic variants is
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Figure 6. Despite Consistent Replication, the Interaction Regulating MYRFL Is Attributable to cis-eQTL
(A–E) In each interaction plot, all individuals are categorized according to their two-locus genotype at rs1262808 and rs11615099. The
mean expression ofMYRFL for all individuals with each of the nine possible two-locus genotypes is shown here for the (A) discovery, (B)
replication, (C) Mayo, cerebellum, (D) Mayo, cortex, (E) GTEx, whole blood datasets. The interaction plot illustrates a consistent trend
across all datasets, this interaction is mediated by cis-eQTL.
(F) Conditional cis-eQTL analyses were conducted in the discovery (CEU only, yellow); GTEx (purple); Mayo, cerebellum (teal); and
Mayo, temporal cortex (orange). For each conditional analysis, the conditional LRT p value is plotted by the genomic position of the
cis-eQTL conditioned on. The p value peak observed in this region illustrates that cis-eQTL completely attenuate the interaction
when they are conditioned on.
appropriate for interaction testing (i.e., missing genotype

and the within-pair LD filters). Even when these quality-

control measures are applied prior to the discovery anal-

ysis, significant interactions need to be further examined

for evidence of confounding by single variants tagged

through LD and for population-specific effects. We

advise removing interactions consistent with these con-

founders prior to replication, as this reduced the

number of putative interactions carried forward substan-

tially, and consequently, the multiple testing penalty.

The ceiling/floor effect is a more complicated confounder,

as it is difficult to statistically disambiguate whether

consistent interactions are caused by technical limitations

or by biological epistasis. Consequently, we recommend

interactions consistent with the ceiling/floor effect be

flagged, rather than filtered out, and validated with an

alternative technology if possible. It is still critical to repli-

cate interactions to ensure they have robust, consistent

effects, despite replication being insufficient to protect

against confounding. Given how pervasive confounding

factors are, it is critical to explicitly account for them

through additional quality-control procedures and
The Americ
post hoc analyses in future studies to reduce spurious

results.

To strike a balance between maximizing the power to

detect effects and thoroughly investigating potentially in-

teracting loci, we performed a focused analysis of common

variants with significant marginal effects in the cis-regula-

tory region, which harbors the majority of known regula-

tory elements. We were moderately powered to detect

interactions between common variants in low LD with

one another with effects commensurate with the single-lo-

cus eQTL found in this dataset. Although additional statis-

tical interactions with either smaller effect sizes or between

less frequent genotype combinations would likely be iden-

tified with increased power, every example of a significant

interaction we did identify was consistent with at least

one confounding factor. Thus, we did not find compelling

evidence that cis-regulatory interactions contribute

strongly to the genetic architecture of gene expression;

however, there are several additional limitations to our

study. First, cell lines are a model system, and thus are

not perfectly representative of primary tissue. Second, we

analyzed multiple ethnicities simultaneously in an effort
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to increase sample size; however, doing so also increased

the heterogeneity of our sample, which may have obfus-

cated some interactions. Therefore, our findings do not

preclude the existence of epistasis within the cis-regulatory

region, and we recommend that future studies of regula-

tory epistasis consider potential interactions that (1) occur

within haplotypes (consistent with reports from Corradin

et al.33 and Lappalainen et al.32), (2) have smaller effect

sizes than those detected in similarly powered single-locus

eQTL studies, (3) occur among less frequent genotype com-

binations, including rare variants, (4) involve variants

without marginal eQTL effects (though evidence in model

organisms suggests that these are rare1), and/or (5) are

context dependent (e.g., inducible eQTL effects).

Observing statistical interactions in these contexts could

reconcile our findings with molecular studies, many of

which use mutagenesis to generate genetic variation that

would not be observed in population-based studies, that

illustrate that transcription factors (TF) interact with each

other to influence promoter and enhancer activity.39–41

Genetic interactions involving distant variants could

also be a mechanism through which epistasis influences

complex traits. However, we did not investigate interac-

tions involving variants outside of the cis-regulatory region

because evidence from eQTL studies in humans suggests

that trans-eQTL effects are less robust, less common, and

have smaller effect sizes.42,43 This, coupled with the sub-

stantial increases in the number of association tests

required to investigate trans interactions, would have

resulted in reduced power to detect such effects. Nonethe-

less, interactions between distant variants (i.e., gene-by-

gene interactions) may still be important to the biology

of disease in humans. Increases in the sample size of

eQTL datasets and the corresponding increases in stati-

stical power will enable future in-depth studies of trans

interactions that may help to illuminate the biological

mechanisms through which genetic variants are associated

with disease. However, trans interactions are not protected

frommany of the confounders influencing the study of cis

interactions,18 and thus studies of trans interactions will

need to explicitly account for these issues as well.

Our findings (along with prior reports)18 illustrate that

significant interaction effects can be due to a variety of

confounding factors. This demonstrates that significant

statistical interactions do not necessarily imply a biological

relationship with either the phenotype or between the var-

iants themselves. To account for this, some confounders

can be addressed as part of quality-control procedures prior

to performing any association tests (i.e., missing genotype

check, removing variants in probe binding sites, and LD

filtering), whereas others—such as confounding by single

variants with strong effects—will probably require specific

post hoc analyses after the initial association is identified.

Furthermore, replication—long held as the gold standard

for genetic association studies—does not safeguard against

these confounders, because they can be due to artifacts

that are consistent across multiple datasets. Given the
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pervasive nature of confounding, it must be considered

in all future studies of epistasis. The analytic approach

used in this study provides a trait-independent framework

for explicitly examining confounding factors in interac-

tion studies and avoiding reporting spurious results.
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Figure S1. Linkage disequilibrium between interacting variants.  We calculated LD between 

interacting variants using both r
2
 and D’ to determine if they were on the same haplotype. 

Interactions between variants in modest LD (r
2
 > 0.6) had been removed from all stages of the 

analysis, and hence are not shown here.  

 

 

 

 



 

 

Figure S2. Redundant SNP-pairs have very similar parameter estimates. We grouped 

together all pairs of interacting SNPs (n=5,439) identified as being redundant through LD 

measures. For each group, we identified all terms that were significant in at least one of the 

associated interactions (p < 0.05). We extracted the βs for these significant terms from all 

interactions within the group. We then calculated the standard deviation of the βs for each 

significant term within each group to determine how similar the parameter estimates were across 

all interactions in the same group. The distribution of these standard deviations, categorized by 

type of variable, is shown above. 

 

 



 

 

Figure S3. Investigation of population-specific cis-eQTL.   To investigate whether or not 

population-specific cis-eQTL were caused by reduced power to detect significant marginal 

effects in the stratified analysis, or by different marginal effects for the same variant, we 

performed pairwise comparisons of MAF, additive β (marginal), and p-value (of the cis-eQTL) 

by ethnicity. 



 

 

Figure S4. The interaction between rs1549791 and rs7115749 associated with the 

expression of APIP is not consistent between the discovery and replication datasets.   In the 



interaction plot, each individual is categorized according to their two-locus genotype at 

rs1549791 and rs7115749. This results in nine possible genotype combinations, and the mean 

expression of APIP for each combination is shown here for the (A) discovery and (B) replication 

datasets. There are markedly different patterns in gene expression by two-locus genotype 

between the two datasets, illustrating the putative interaction does not replicate with a consistent 

direction of effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Tables 

 

Low LD (r
2
 < 0.05) 

MAF Range Percentage Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.02 0.0 ± 0.0 3.3 ± 10.5 

0.1 <= MAF < 0.2 0.22 2.0 ± 2.1 5.5 ± 1.9 

0.2 <= MAF < 0.3 0.55 3.5 ± 1.1 9.5 ± 2.4 

0.3 <= MAF < 0.4 0.87 5.5 ± 1.5 12.4 ± 3.0 

0.4 <= MAF <= 0.5 1.11 4.3 ± 1.1 11.9 ± 1.6 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 1.04 5.7 ± 1.4 16.7 ± 3.2 

0.2 <= MAF < 0.3 5.30 10.8 ± 1.1 25.8 ± 0.6 

0.3 <= MAF < 0.4 6.79 14.9 ± 1.2 33.3 ± 1.1 

0.4 <= MAF <= 0.5 8.16 16.2 ± 1.0 36.2 ± 1.1 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 4.47 21.6 ± 1.4 44.3 ± 1.2 

0.3 <= MAF < 0.4 10.59 30.9 ± 0.6 57.6 ± 1.3 

0.4 <= MAF <= 0.5 11.01 35.8 ± 0.7 62.7 ± 1.0 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 5.23 44.3 ± 1.0 71.1 ± 0.9 

0.4 <= MAF <= 0.5 10.58 50.3 ± 0.6 75.5 ± 0.8 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 4.75 55.3 ± 1.9 78.9 ± 0.6 

 

Moderate LD (0.05 <= r
2
 < 0.3) 

MAF Range Percentage Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.04 0.0 ± 0.0 1.4 ± 4.5 

0.1 <= MAF < 0.2 0.32 2.4 ± 1.8 4.9 ± 2.7 

0.2 <= MAF < 0.3 0.21 2.7 ± 2.5 6.6 ± 2.8 

0.3 <= MAF < 0.4 0.04 1.4 ± 4.3 4.3 ± 9.6 

0.4 <= MAF <= 0.5 0.02 3.3 ± 10.0 0.0 ± 0.0 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 0.86 4.2 ± 1.8 10.4 ± 1.9 

0.2 <= MAF < 0.3 1.88 7.6 ± 1.5 19.8 ± 1.7 

0.3 <= MAF < 0.4 1.43 10.2 ± 1.2 24.6 ± 2.9 

0.4 <= MAF <= 0.5 0.86 11.9 ± 1.8 31.2 ± 2.9 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 1.62 14.6 ± 0.7 32.1 ± 2.0 

0.3 <= MAF < 0.4 3.40 20.4 ± 1.7 42.5 ± 1.7 

0.4 <= MAF <= 0.5 3.34 22.5 ± 1.7 46.2 ± 1.5 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 2.18 25.9 ± 1.5 52.5 ± 2.4 

0.4 <= MAF <= 0.5 5.24 31.0 ± 0.8 56.0 ± 1.1 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 2.85 35.2 ± 1.7 61.6 ± 2.2 

 



High LD (0.3 <= r
2
 < 0.6) 

MAF Range 

Percentage 

Effect Size 

Variant 1 Variant 2 Moderate Large 

0.05 <= MAF < 0.1 0.05 <= MAF < 0.1 0.01 0.0 ± 0.0 0.0 ± 0.0 

0.1 <= MAF < 0.2 0.03 2.0 ± 6.0 2.0 ± 6.3 

0.2 <= MAF < 0.3 0.00   -   - 

0.3 <= MAF < 0.4 0.00   -   - 

0.4 <= MAF <= 0.5 0.00   -   - 

0.1 <= MAF < 0.2 

 

0.1 <= MAF < 0.2 0.20 1.0 ± 1.2 2.5 ± 2.4 

0.2 <= MAF < 0.3 0.29 2.1 ± 1.5 7.1 ± 3.6 

0.3 <= MAF < 0.4 0.02 0.0 ± 0.0 0.0 ± 0.0 

0.4 <= MAF <= 0.5 0.00   -   - 

0.2 <= MAF < 0.3 

 

0.2 <= MAF < 0.3 0.65 3.1 ± 0.9 12.2 ± 2.4 

0.3 <= MAF < 0.4 0.67 6.0 ± 2.1 17.1 ± 2.1 

0.4 <= MAF <= 0.5 0.11 7.3 ± 4.2 18.6 ± 10.2 

0.3 <= MAF < 0.4 

 

0.3 <= MAF < 0.4 0.82 7.8 ± 2.1 17.4 ± 3.9 

0.4 <= MAF <= 0.5 1.11 10.1 ± 2.1 22.9 ± 3.5 

0.4 <= MAF <= 0.5 0.4 <= MAF <= 0.5 1.18 9.8 ± 1.7 24.9 ± 3.1 

 

Table S1. Power to detect interactions by MAF and LD. Power to detect interactions is 

contingent upon both the MAF of the two variants and the LD between the variants. To calculate 

power, we randomly selected 20,000 pairs of variants tested in this analysis and simulated gene 

expression values with interaction effects at a moderate (median β of cis-eQTLs; β = 0.771) and 

a large (75
th

 percentile β of cis-eQTLs; β = 0.908) effect size (Methods). We then binned 

interactions according to their MAF and LD, and calculated power as the number of significant 

interactions divided by the total number of interactions within each bin.  We repeated this 

process ten times, and computed the mean power and its standard deviation across all 10 runs for 

each bin, which is reported here. For each bin, we also report the percentage it accounted for of 

the 20,000 interactions. 

 



Table S2. Significant interactions identified in the discovery analysis. This file provides all 

5,439 interactions identified in the discovery analysis. When these interactions appeared to 

represent the same signal, due to LD, they were placed into groups (n = 1,119) and a 

representative interaction was chosen. We provide the group identifier for each of the 

interactions, and the group’s representative interaction.  

 

Table S3. Alternative explanations for significant interactions identified in the discovery 

analysis. We examined whether or not the 1,119 interactions could be explained by confounding 

factors. Here, we present which alternative explanations could account for each interaction. 

 

Confounder Interactions inconsistent with confounding 

Missing Genotype Combination 662 of 1,119 

High within-pair LD (r2 or D’ > 0.6) 565 of 662 

Population specific effects  409 of 565 

Single Variants tagged through LD 100 of 409 

Ceiling/Floor Effect 96 of 100 

Variants in probe binding site 86 of 96 

 

Table S4. Majority of ieQTL could have been filtered out due to confounding prior to the 

replication analysis. Of the 1,119 ieQTL identified as significant in the discovery analysis, we 

removed interactions consistent with confounding factors in the indicated order, which is in 

accordance with the trait-independent approach proposed in the discussion. In addition to these 

trait-independent filters, we additionally removed interactions influencing genes with variants in 

the probe’s binding site. Ultimately, 86 of the 1,119 ieQTL identified in the discovery analysis 

were inconsistent with confounding factors. 
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