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Increasing Generality and Power of Rare-Variant Tests
by Utilizing Extended Pedigrees

Jae Hoon Sul,1,2 Brian E. Cade,3 Michael H. Cho,4,5 Dandi Qiao,4 Edwin K. Silverman,4,5

Susan Redline,3,6 and Shamil Sunyaev1,7,*

Recently, multiple studies have performedwhole-exome or whole-genome sequencing to identify groups of rare variants associated with

complex traits and diseases. They have primarily utilized case-control study designs that often require thousands of individuals to reach

acceptable statistical power. Family-based studies can be more powerful because a rare variant can be enriched in an extended pedigree

and segregate with the phenotype. Althoughmanymethods have been proposed for using family data to discover rare variants involved

in a disease, a majority of them focus on a specific pedigree structure and are designed to analyze either binary or continuously measured

outcomes. In this article, we propose RareIBD, a general and powerful approach to identifying rare variants involved in disease suscep-

tibility. Our method can be applied to large extended families of arbitrary structure, including pedigrees with only affected individuals.

The method accommodates both binary and quantitative traits. A series of simulation experiments suggest that RareIBD is a powerful

test that outperforms existing approaches. In addition, our method accounts for individuals in top generations, which are not usually

genotyped in extended families. In contrast to available statistical tests, RareIBD generates accurate p values evenwhen genetic data from

these individuals are missing. We applied RareIBD, as well as other methods, to two extended family datasets generated by different gen-

otyping technologies and representing different ethnicities. The analysis of real data confirmed that RareIBD is the only method that

properly controls type I error.
Introduction

Human genetics rapidly adopts sequencing technology as

a method of choice in studies of complex traits.1,2

Sequencing studies uncover rare variants invisible to

genome-wide association studies (GWASs)3–5 that employ

microarray-based genotyping. Although the role of rare

variants in the unaccounted ‘‘missing’’ heritability remains

debatable,6,7 it is anticipated that rare-variant studies

would deliver functionally interpretable alleles of larger ef-

fect sizes amenable to the experimental manipulation.8–11

To identify rare variants associated with traits, several

statistical methods called ‘‘burden’’ or ‘‘collapsing’’ ap-

proaches have been proposed.12–15 Because it is statisti-

cally difficult to identify an effect of a single rare

variant, these approaches combine effects of multiple

rare variants in one gene or region to increase statistical

power. Several studies have recently applied burden ap-

proaches to sequencing and exome-chip data mostly

by utilizing case-control designs, similar to the GWAS

approach.16,17 However, they have had limited success

at identifying previously uncharacterized genes associ-

ated with traits. This could be mainly due to limited

statistical power given that several studies7,18–20 have

shown that using burden approaches to identify rare var-

iants associated with a disease requires tens of thousands

of individuals.
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An alternative approach to finding rare variants involved

in diseases is to use family-based studies, which offer

several advantages over case-control studies. First, genetic

variants that are rare in the general population could be en-

riched in certain extended families, which allows family-

based studies to achieve higher power to detect rare-variant

associations than case-control studies.21 Second, segrega-

tion of variants with the phenotype, even if imperfect,

provides an additional source of information. Third,

sequencing errors can be detected through violations of

Mendelian inheritance in families, and moreover, these

errors can be corrected by statistical approaches.22–24 This

reduces erroneous calls made by sequencing and hence

increases the power of rare-variant analysis by correctly

calling rare variants. Lastly, family-based studies can be de-

signed to be robust to population structure that could

introduce false findings in case-control studies.25

Several burden approaches have been proposed for using

family data to detect rare variants involved in a disease.

However, some methods can be applied to only small

families such as trios and nuclear families,26–28 some are

designed only for quantitative traits,29–31 and some

methods lack software implementation.32 Thus, very few

methods can be applied to extended families, to both bi-

nary and quantitative traits, and to affected-only pedi-

grees. As we also show, current methods for large extended

families21,33 have inflated false-positive rates (FPRs) when
ool, Boston, MA 02115, USA; 2Department of Psychiatry and Biobehavioral

Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital

f Network Medicine, Brigham and Women’s Hospital and Harvard Medical

icine, Brigham andWomen’s Hospital and Harvard Medical School, Boston,

h Israel Deaconess Medical Center and HarvardMedical School, Boston, MA

6, 2016

mailto:ssunyaev@rics.bwh.harvard.edu
http://dx.doi.org/10.1016/j.ajhg.2016.08.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2016.08.015&domain=pdf


founders are not genotyped, which happens frequently in

large families.

Here, we propose RareIBD for detecting rare variants

underlying the phenotype in extended families. Our

approach looks for a rare variant whose segregation

pattern among affected and unaffected individuals is

different from the predicted distributions based on Men-

delian inheritance and computes a statistic measuring

the difference. To increase statistical power, our statistic

combines variants per gene and across multiple families.

The method can be applied to any large pedigree,

including those that include only affected individuals,

and can incorporate both binary and quantitative traits.

Our method also considers the case where not all founders

are genotyped. Simulations suggest that the proposed

method achieves higher power than existing approaches

for the analysis of extended families. When founders are

not genotyped, our approach maintains a correct FPR

with greater power improvement over currently available

techniques.

In this study, we applied RareIBD to two extended family

datasets. One is a whole-exome sequencing dataset of fam-

ilies with members affected by severe, early-onset chronic

obstructive pulmonary disease (EOCOPD). This dataset

contains 347 individuals. The other dataset is from the

Cleveland Family Study (CFS), which collected a family-

based cohort to identify the genetic basis of sleep apnea

and related traits. The CFS consists of 632 individuals

with African American (AA) ancestry34 and 710 individuals

with European ancestry (EA) who were genotyped with

genome-wide SNP microarrays and exome chips. Both

family datasets consist of multiple extended families, and

not all founders were genotyped. We show that our

method generates p values that are closer to the expected

null distribution and are much more uniform than those

from other approaches in both datasets. This suggests

that our approach generates correct p values regardless of

pedigree structure and missing founders.
Material and Methods

RareIBD
The main idea of our approach is that causal rare alleles are en-

riched among affected individuals and depleted among unaffected

individuals. First, we assume that only one founder carries a rare

mutation in a family for a given rare variant. This is true for a ma-

jority of rare variants because it is very unlikely that two or more

founders have the same rare variant in a family. This means that

any non-founders in the same family who inherit this rare allele

share the allele identically by descent. We are interested in the

segregation of this allele in the family. We compute a statistic

that measures enrichment of this allele among affected pedigree

members and depletion among unaffected members. Lastly, we

adopt a burden-test approach that aggregates these statistics across

multiple rare variants and multiple families for a given gene and

tests whether rare variants in this gene are associated with a dis-

ease or a quantitative trait.
The Americ
We assume that we haveN families andM rare variants in gene g.

To determine whether a variant is rare or common, we utilize

allele-frequency information from both external sources, such as

1000 Genomes1 and the Exome Aggregation Consortium (ExAC)

Browser,2 and internal sources, such as allele frequency estimated

from only founders and/or all individuals in N families. We as-

sume for now that all individuals, including founders, are geno-

typed in a family. (We will discuss how our approach can be

extended to missing founders in the next section.) For each rare

variant, we check whether it is present only in one founder. For

variant i in family j, where only one founder carries this variant,

let a
ij
þ be the number of affected individuals with the variant

and uij� be the number of unaffected individuals without the

variant. Our statistic S
ij
RareIBD is defined as follows:

SijRareIBD ¼ aijþ þ uij
�: (Equation 1)

We are then interested in finding the value of S
ij
RareIBD under the

uniform distribution of inheritance vectors (IVs), which is similar

to the null distribution. An IV consists of 2n binary values, where n

is the number of non-founders.35 Each non-founder has two bi-

nary values (0 and 1) for two chromosomes such that each value

indicates a transmission of the grandpaternal or grandmaternal

allele. We enumerate all possible IVs to estimate the mean and

SD of our statistic under the uniform distribution of IVs. Let k be

the founder with the rare mutation, and let mk and sk be our statis-

tic’s mean and SD, respectively, estimated from enumerating all

IVs under the assumption that founder k has the mutation.

Then, we can estimate the Z score as follows:

ZOneF
ij ¼ SijRareIBD � mk

sk
: (Equation 2)

We call this Z score ‘‘OneF’’ because it is estimatedwith themean

and SD of one founder. Lastly, we take a weighted sum of Z scores

across all rare variants and all families in gene g:

ZOneF
g ¼

PM
i

PN
j wiZ

OneF
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
jw

2
i

q : (Equation 3)

wi is the weight of each rare variant, and this will be discussed in

detail in the next section. We can compute a p value of ZOneF
g from

the standard normal distribution or a gene-dropping approach,

which we will discuss in the next section.
Improvements in RareIBD
Missing Founders in Extended Families

Missing founders introduce two challenges in our approach.

First, we might not know whether only one founder carries the

variant, and it is not clear whether we should include this

variant in our statistic or not. To solve this problem, we check

to see whether at least one non-founder carries a mutation

because we are not interested in a variant for which no non-

founder has a mutation. If the minor allele frequency (MAF)

estimated from the external and internal sources indicates that

this is a rare variant, we assume that only one founder has a

mutation for this variant.

The other challenge is that we might not know which founder

mean (mk) and SD (sk) to use when estimating the Z score (Equa-

tion 2). To solve this problem, we estimate m and s for every

founder in each family. We can estimate m and s even though a

founder is not genotyped by assuming that only the founder in

the family has a mutation. We then compute a Z score for each
an Journal of Human Genetics 99, 846–859, October 6, 2016 847



founder and average the scores. Let Fj be the number of founders

in family j. Our new statistic is defined as follows:

ZAllF
ij ¼

 XFj
k

S
ij
RareIBD � mk

sk

!,
Fj (Equation 4)

ZAllF
g ¼

PM
i

PN
j wiZ

AllF
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
jw

2
i

q : (Equation 5)

We call this approach ‘‘AllF’’ because it uses the Z scores of all

founders. It is important to note that this approach is computa-

tionally efficient because we can independently compute m and

s for all founders in every family. We estimate mk and sk by

assuming that founder k has the mutation, and it needs to be esti-

mated only once as a pre-processing step.

Estimating the Mean and SD of RareIBD Statistics

When estimating m and s of our statistic for each founder, we need

to enumerate all IVs. The time complexity of this computation is

exponential (O(22n)) in the number of non-founders. For example,

the number of all possible IVs is about 1024 when the number of

non-founders is 40. To reduce the computational time to estimate

m and s, we decided to perform a fixed number of random IV sam-

plings. In each sampling, we randomly chose 0 or 1 for 2n chromo-

somes. In our simulation and real datasets, we performed 100,000

randomIVsamplings.We found thatmands fromthe100,000 sam-

plings were very similar to those from all 22n IVs (data not shown).

Estimating p Values

One approach to obtaining a p value from our Z score (ZAllF
ij and

ZOneF
ij ) is using the standard normal distribution. This approach

is very efficient and simple, but it is known to be inaccurate,35

and we found empirically that this approach often yields an overly

conservative p value (data not shown), which leads to a loss of po-

wer. Also, as will be discussed next, we estimate weights from data.

Then, the weighted sum of Z scores is no longer asymptotically

normal, and hence the standard normal approximation does not

hold.

To solve this problem, we adopt a gene-dropping approach to es-

timate a p value. Below are steps showing how a standard gene-

dropping approach is applied.

1. For each family, genotypes of founders are randomly gener-

ated according to the allele frequency of a variant.

2. Genes (or haplotypes) are randomly ‘‘dropped’’ to non-

founders.

3. A statistic of interest (e.g., S
ij0
RareIBD) is computed.

4. IVs are enumerated for estimating the mean and SD of the

statistic under the uniform distribution.

5. A Z score (e.g., ZAllF0
ij or ZOneF0

ij ) is computed.

6. Steps 1–5 are repeated for all families, and a weighted sum of

Z scores (e.g., ZAllF0
g or ZOneF0

g ) is computed.

7. Steps 1–6 are repeatedmany times, and a p value is a propor-

tion of ZAllF
g > ZAllF0

g .

This standard gene-dropping approach is computationally very

expensive because of step 4, which estimates the mean and SD by

enumerating IVs. Because we assume that only one founder has a

rare allele, we can simplify the gene-dropping approach and greatly

increase its efficiency with the following modifications. In step 1,

we consider only families with a rare variant because our statistic

is computed from only such families. For rare variant i in family j,

we assign amutation to one of the founders randomly. This implic-
848 The American Journal of Human Genetics 99, 846–859, October
itly assumes that there isno linkagedisequilibrium (LD) among rare

variants in each family because each rare variant is assigned to a

founder independently. This assumption is violated if a founder

hasmore than one rare variant in a haplotype. For example, let’s as-

sume that there are two rare variants, rv1 and rv2, in the samehaplo-

typeof a founder. This haplotypewill be inherited to the same set of

non-founders if we assume that there is no recombination in the

gene, which means that rv1 and rv2 are in perfect LD. rv2 can be

considered a duplicate variant of rv1, and rv2 does not provide addi-

tional information to our statistic. Hence, we consider only rv1 in

our statistic. In our method, if all individuals in a family have the

same genotypes across multiple variants, we consider them to be

duplicate variants and use only one from those variants. In step

4, because we already computed the mean and SD for all founders

independently in a pre-processing step, it is not necessary to

enumerate IVs, and we use pre-computed values. This gene-drop-

ping approach is computationally efficient, and we also use the

adaptive permutation approach, whereby we stop the gene drop-

ping once p values are clearly non-significant.

Weighting Rare Variants

Several approacheshave beenproposed for weighting rare variants.

One of them is to weight variants by allele frequency, whereby rare

variants are assigned higher weights than common variants.13,14

Another approach is to use estimated effect sizes and to weight var-

iantswith larger effectsmoreheavily.36 The third approach is to use

functional variant information that assigns higherweights tomore

deleterious variants.37 The functional information can be obtained

from several bioinformatics tools, such as PolyPhen-2 (PP2)38 and

SIFT.39 Our approach incorporates all three weighting schemes.

First, we use the estimated regression coefficient (EREC)

approach36 for the effect-size-based weight. We compute the

odds ratio (OR) for each rare variant from individuals in all families

by assuming that they are unrelated and add a constant to it: wi ¼
log(ORi) þ d in Equations 3 and 5. We use d ¼ 2 because we found

empirically that it yields the highest power (data not shown).

When estimating OR, we add a pseudocount of 1 to every term

in the two-by-two frequency table. Second, for the frequency-

based weight, we utilize the variable-threshold (VT) approach.13

Some rare-variant methods use a fixed-threshold approach that

sets the weight of a variant (wi) to 0 if the variant’s MAF is greater

than a certain threshold (e.g., 1%). The VT method varies this

threshold and finds the maximum Z score among all thresholds.

Let Ti denote the minor allele count (MAC) among founders in

all families for variant i. If founders are not genotyped, there are

two approaches. If there is an accurate estimation of MAF of a

variant, as in our simulations, we can compute the expected

MAC by using the MAF and the number of founders. Otherwise,

we use the MAC among non-founders, which is the approach

we use in real datasets. Let U be the sorted list of fT1;T2;.;TMg
and Ui be the i

th element in the list. Our new statistic is as follows:

ZAllF
g ðUiÞ ¼

PM
i

PN
j wiZ

AllF
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
jw

2
i

q ;

�
wi ¼ logðORiÞ þ 2 if Ti%Ui

wi ¼ 0 if Ti > Ui

(Equation 6)

ZAllF
g ¼ max

�
ZAllF
g ðU1Þ;ZAllF

g ðU2Þ;.;ZAllF
g ðUMÞ

�
(Equation 7)

It is important to note that the same weighting scheme needs

to be applied in the gene-dropping approach to ensure the validity

of the gene dropping. Lastly, as for the weights reflecting the func-

tional information, we utilize PP2 scores where a nonsense variant
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has aweight of 1, amissense variant has aweight equal to the prob-

ability that a variant is damaging according to PP2 (the minimum

weight is set to 0.3), and all other annotations have a weight of

0.1. This functional weight is multiplied by the original weight

(wi in Equation 6) and used only in the real-data analyses.

Extension to Affected-Only Families and Quantitative Traits

RareIBD can be extended to compute its statistic for families with

only affected individuals and quantitative traits. For affected-only

families, the uij� term in Equation 1, which is the number of unaf-

fected individuals without a mutation, is not considered. Hence,

our statistic ðSijRareIBDÞ consists of only aijþ, the number of affected in-

dividuals with amutation. In this case, we test whether a rare allele

is enriched among affected individuals. For a quantitative trait, we

want to test whether a rare allele increases or decreases the trait. To

test this, our statistic can be defined as S
ij
RareIBDq ¼ ðrijþ � rij�Þ2, where

r
ij
þ and rij� are the average trait values among individuals with amu-

tation andwithout amutation, respectively.We can enumerate IVs

to estimate themean and SD of this statistic and estimate a p value

by using the gene-dropping approach.
Simulation Framework
Tomeasure the FPRandpowerofRareIBDandother approaches,we

generate simulated data for extended families. We consider three

pedigree structures: wide, deep, and small families (Figure S1).

The number of individuals in wide, deep, and small families is 30,

36, and 12, respectively, and the number of families is 24, 20, and

60 for wide, deep, and small families, respectively, which means a

total of 720 individuals in all three family types. First,wecreatehap-

lotypes of unrelated individuals by using COSI software.40 We as-

sume EA ancestry, a gene length of 20,000 bp, and an exon length

of 5,000 bp. We generate 50,000 haplotypes by using COSI and es-

timate the MAF of each variant. Then, one million haplotypes are

generated with the estimated MAF. Those haplotypes are split

into two groups: rare haplotypes and non-rare haplotypes. Rare

haplotypes contain at least one rare variant, and non-rare haplo-

types do not. (Throughout the paper, a rare variant is defined as a

variant whose MAF is less than 1% unless otherwise specified.)

We randomly choose one haplotype from the rare haplotypes

and 2F� 1 haplotypes from the non-rare haplotypes (F is the num-

ber of founders).We assign the rare haplotype to one chromosome

among2F founder chromosomes, and the remaining founder chro-

mosomes are the 2F � 1 non-rare haplotypes. We then randomly

drop chromosomes from founders to non-founders. Once we

have haplotypes for all individuals in a family, we determine their

disease status. Let P(A ¼ 1) be the probability that individual A is

affected. In FPR simulation, P(A ¼ 1) ¼ 50%. In power simulation,

this probability is determined with the logistic regression model:

PðA ¼ 1Þ ¼ expðb0 þXTbÞ
1þ expðb0 þXTbÞ:

b0 ¼ logðW=ð1�WÞÞ, where W is the baseline prevalence,

b ¼ fb1; b2; ::; bMg, where bi ¼ logðORiÞ for ith variant, and X is

the genotype vector for M variants. Assuming that non-rare vari-

ants have a null effect, we use a baseline prevalence of 40% and

an OR of 2 for variants with a MAF < 1% and use an OR of 1 for

variants with a MAF R 1%. The baseline prevalence is the preva-

lence of a disease in a family; we assume high prevalence in simu-

lations because studies usually collect families with many affected

individuals. Each variant also has ci, which is the probability that

variant i is causal. We consider five different levels of ci: 10%, 20%,

30%, 40%, and 50%. Hence, not all rare variants are causal in the
The Americ
simulations. We limit the number of affected individuals per fam-

ily such that the minimum is one-third of the family size and the

maximum is two-thirds. We keep only families with the desired

number of affected individuals in our simulation and repeat this

procedure until we have the desired number of families. We

generate 10,000 replications for false-positive simulations and

2,000 for power simulations. We perform 10,000 gene-dropping

permutations to estimate p values in simulations. Once we have

phenotype and genotype information for all families, we test

two other approaches in addition to RareIBD: (1) family-based

functional principal-component analysis (FPCA), which includes

five methods: FPCA, ChiPerm, ChiMin, T2, and combined multi-

variate and collapsing (CMC);21 and (2) Pedgene, which includes

two methods: kernel and burden.33 They can both be applied to

any large extended family with binary traits.
EOCOPD Whole-Exome Sequencing Dataset
This dataset containshigh-coveragewhole-exome sequencing data

of 347 individuals in 49 extended families sequenced at theUniver-

sity of Washington Center for Mendelian Genetics for the Boston

EOCOPD Study. 41–43 The Genome Analysis Toolkit44 with multi-

sample calling was used to call variants. For initial quality control

(QC), individuals who were outliers according to sex concordance

and ethnicity were removed.We also checked expected relatedness

by using bp and removed five individuals whose bp values did not

match the pedigree structure. We removed variants with a missing

rate >1%, Hardy-Weinberg equilibrium (HWE) p value <10�8,

Mendelian transmission errors, and average sequence depth <12,

as well as monomorphic variants. Additional QC included setting

genotypes whose genotype-quality scores were %20 to missing

and removing variants whose missing rates were greater than 5%

andmonomorphic variants. To correct additionalMendelian errors

(MEs) and to imputemissing data (RareIBD requires that no data be

missing), we applied Polymutt,23 which uses pedigree structure to

refine and imputes genotypes. After Polymutt was applied, there

werenoMEsormissing genotypes.We considered115,361variants

in autosomes for our analysis. We estimated the MAF of each

variant by using the following sources: (1) all individuals, (2) unre-

lated individuals, (3) the NHLBI Exome Sequencing Project (ESP)

Exome Variant Server, (4) dbSNP,45 and (5) 1000 Genomes.1 If the

MAFwas less than1% in anyof the previous sources,we considered

thevariant to be rare. Inour analysis,we included12,092genes that

hadat least three rarevariants. IndividualswithGlobal Initiative for

Chronic Obstructive Lung Disease (GOLD) spirometry grades of 2

(moderate chronic obstructive pulmonary disease [COPD]), 3 (se-

vere COPD), and 4 (very severe COPD)were considered affected in-

dividuals, and individualswithnormal spirometrywere considered

unaffected. There were 155 affected, 148 unaffected, and 44 unas-

signed individuals according to these criteria. Table S3 describes

detailed information on the family structure of this dataset, such

as the average number of individuals in each family and the per-

centage of individuals who were sequenced. We obtained institu-

tional-review-board (IRB) approval and signed informed consent

for all participants.
CFS Microarray and Exome-Chip Dataset
The CFS is a family-based longitudinal study designed to examine

the genetic basis of sleep apnea inAA andEA individuals studied be-

tween 1990 and 2006. Index probandswith confirmed sleep apnea,

along with additional family members and neighborhood control

families, were recruited from sleep centers in northern Ohio.46
an Journal of Human Genetics 99, 846–859, October 6, 2016 849



Over four waves of data collection over 16 years, a total of 2,534 in-

dividuals from 356 families underwent measurements for sleep ap-

nea, anthropometry, andother relatedphenotypes. Sleepapneawas

assessed prior to 2000 with a type 3 home sleep-apnea test (Eden

Trace). In the last examination conducted between 2000 and

2006, sleep apnea was assessed by 14-channel overnight polysom-

nography (Compumedics E-Series) obtained in a clinical research

unit. Forboth studies, apneas andhypopneaswere scored on theba-

sis of reduction of airflow or chest-wall movement with an associ-

ated 3% more desaturation. Data used in the analysis were based

on 632 individuals with AA ancestry and 710 individuals with EA

ancestry who had both genotype data and sleep data. IRB approval

and signed informed consent were obtained for all participants.

Individuals with AA ethnicity were genotyped with the Affyme-

trix 6 and Illumina Exome chip, and those with EA ancestry were

genotypedwith the IlluminaOmniExpress andExome chip. Before

QC, therewere 632AA individualswith 1,127,887 SNPs and710EA

individuals with 963,502 SNPs. We performed the following QC.

First, we removed individuals with a missing rate > 5% and set all

MEs to missing. We then again removed individuals with a geno-

type missing rate > 5%, SNPs with a missing rate > 2%, SNPs

with a HWE p value < 0.001, and monomorphic SNPs. We

computed estimates of identity by descent (IBD, bp) between every

pair of individuals by using PLINK software47 and identified pairs

whose estimated bp values were not consistent with coefficients of

relationship.We removed the fewest number of individuals among

those pairs such that bp values of remaining pairs were consistent

with coefficients of relationship. Using EIGENSTRAT software,48

we performed principal-component analysis on founders with

1000 Genomes as a reference panel to identify population outliers.

We removed those outliers and their children. We applied ShapeIt

software49 to phase and impute missing genotypes because it can

incorporate family relationships for phasing. After applying

ShapeIt, we removed SNPs with at least one ME and removed fam-

ilieswithonlyone individual and familieswithonly founders.After

QC, the number of individuals was 563 and 665 in AA and EA

datasets in 119 and 114 families, respectively. The number of

SNPs in autosomeswas 874,622 and692,422 inAAandEAdatasets,

respectively. Table S3 describes detailed information on the family

structure of both datasets.

We focused on the primary clinical measure of sleep-apnea

severity, the apnea-hypopnea index (AHI), which is the average

number of breathing pauses (apnea plus hypopneas) per hour of

sleep. Given the strong age dependency of the AHI, we defined dis-

ease on thebasis of anage-specific cutoff for analysis of dichotomous

traits. Specifically, individuals were defined as having sleep apnea if

their AHI values were greater than or equal to 5, 10, 15, and 20 for

ages <21, 21–44, 45–64, and R65 years, respectively. There were

217 affected and 346 unaffected individuals in the AA dataset and

218 affected, 444 unaffected, and 3missing individuals in the EAda-

taset. We used four sources of MAF information: (1) all individuals,

(2) unrelated individuals, (3) the ExAC Browser,2 and (4) 1000 Ge-

nomes.1We includedgeneswithat least threerarevariants, andthere

were 7,267 and 6,110 such genes inAA and EAdatasets, respectively.
Results

Effect of Weighting Variants and AllF Approach on

Power of RareIBD

Our method, RareIBD, incorporates weighting schemes

and the AllF approach to include all founders (see Material
850 The American Journal of Human Genetics 99, 846–859, October
and Methods). We quantified the effect of these improve-

ments on statistical power. Our weighting scheme consists

of both frequency-based and effect-size-based weights. In

the OneF approach, our Z score is calculated with the

mean and SD of one founder who carries a mutation,

whereas in the AllF approach, it is calculated with the

mean and SD of all founders. We generated our simulated

data as discussed in the Material and Methods, and we

considered three pedigree structures: (1) wide, (2) deep,

and (3) small families (Figure S1). We assumed that all in-

dividuals are genotyped in this simulation and considered

three different versions of our approach: (1) weighted AllF,

(2) weighted OneF, and (3) unweighted OneF.

Results show that all three approaches have correct FPR

in all three types of families (Table S1). Results of our power

simulations show that weighting variants increases statisti-

cal power and that weighted OneF consistently has higher

power than unweighted OneF in all three families at all

ci values (the probability that a rare variant is causal)

(Figure S2). Surprisingly, the weighted AllF approach

achieves significantly higher power than the weighted

OneF approach even though all founders are genotyped

in this simulation (Figure S2). This could be because using

information from all founders provides more stable and ac-

curate estimation of Z scores, which is similar to model

averaging. The AllF approach also has another advantage

in that it can be applied to families with missing founders,

whereas the OneF approach cannot. Hence, we used the

weighted AllF approach in the rest of our simulations

and in the real datasets.

Comparison between RareIBD and Other Approaches

when Founders Are Genotyped

Here, we use simulations to compare the FPR and power of

RareIBD with those from two other methods: FPCA21 and

Pedgene.33 They are among the few methods that can be

applied to extended families with binary traits. All individ-

uals, including founders, are genotyped in this simulation,

and the same three pedigree structures are used for

measuring the FPR and power of each method. Results of

FPR simulation show that some methods provided by

FPCA software do not have correct FPRs; FPCA has an

overly conservative FPR, whereas ChiMin and T2 have

inflated FPRs (Table 1). Hence, these three methods are

excluded from the power simulation. All other approaches

including RareIBD have a correct FPR.

According to power simulations, RareIBD outperforms

all other approaches in the three types of families at every

ci level (Figures 1A, 1C, and 1E). The power improvement

of RareIBD over other approaches is substantial given

that our power is at least 9% higher than the second-best

approach—the burden approach from Pedgene when

ci R 30% in three families. For wide and deep families at

ci ¼ 50%, our method achieves 13%–14% higher power

than the burden approach. RareIBD gains higher power

in these two types of families because enrichment of a

causal rare allele among affected individuals and its
6, 2016



Table 1. Comparison of the FPR between RareIBD and Other Approaches for Three Different Pedigree Structures: Wide, Deep, and Small

Software Method

All Founders Genotyped Top Two Generations Missing

Wide Deep Small Wide Deep Small

RareIBD RareIBD 0.0475 0.0466 0.0517 0.0477 0.0435 0.0533

FPCA FPCA 1.00 3 10�4 0.0019 7.00 3 10�4 4.00 3 10�4 0.0015 9.00 3 10�4

ChiPerm 0.0544 0.0475 0.0366 0.0519 0.0494 0.0472

ChiMin 0.5375 0.2981 0.4395 0.5196 0.2569 0.1976

T2 0.0838 0.0643 0.1138 0.0922 0.0645 0.1906

CMC 0.056 0.0586 0.0459 0.0596 0.0553 0.0557

Pedgene kernel 0.0233 0.0345 0.0064 0.0263 0.0382 0.0158

burden 0.0449 0.0456 0.0472 0.0604 0.0566 0.0883

We tested FPCA and Pedgene software in addition to RareIBD. FPCA has five methods (FPCA, ChiPerm, ChiMin, T2, and CMC), and Pedgene has two methods
(kernel and burden). We also considered two simulation scenarios: (1) all individuals in a family are genotyped, and (2) individuals in the top two generations are
not genotyped, which simulates families with missing founders. The FPR was measured at a ¼ 0.05 from 10,000 replications of simulations. See Figure S1 for a
description of each pedigree type.
depletion among unaffected individuals are more promi-

nent in these larger families. Our method also has higher

power in relatively ‘‘small’’ families and can be applied to

any extended family.

Comparison between RareIBD and Other Approaches

when Founders Are Missing

The previous simulation framework, where all individuals

in a family are genotyped, is an ideal scenario in real data

but is often unlikely because of the inability to obtain

DNA from some individuals in top generations. To mimic

this scenario, we remove all individuals in the top two gen-

erations in all three family types and measure the FPR and

power. In RareIBD, we assume that we know whether a

variant is rare or common and hence know whether only

one founder carries a mutation for each variant because

it is not possible to know this information when some or

all founders aremissing. In real data, we useMAF estimated

from several sources to determine whether a variant is rare

or not.

RareIBD has a correct FPR when the top two generations

are missing (Table 1). However, the burden approach from

Pedgene and the CMC approach from FPCA, which had

a correct FPR when everyone was genotyped, now have

inflated FPRs. Results of the power simulation show that

RareIBD offers a substantial power improvement over

other approaches; our method achieves 20.9% and

16.2% higher power than the burden approach in wide

and deep families, respectively, when ci ¼ 50% (Figures

1B and 1D). It is important to note that the burden

approach has an inflated FPR, and its true power would

be lower than one reported in Figure 1, meaning that the

power improvement of our method would be higher.

Another important observation is that when we

compare the power across methods for situations when

all individuals are genotyped and when the top two gener-

ations are missing, power loss due to the missing individ-
The Americ
uals is much smaller in RareIBD than in other approaches

for wide and deep families. For example, for ci ¼ 50%,

RareIBD has 0.15% higher power in wide families and

2.6% lower power in deep families when the two genera-

tions are missing. However, power loss due to two missing

generations in the burden approach is 7.4% and 4.2% for

wide and deep families, respectively. This result is expected

because the top two generations do not provide much in-

formation on how a causal allele is inherited and shared

in extended families, which is the information that

RareIBD uses to detect rare variants involved in a disease.

Missing the top two generations, however, greatly reduces

the power of other association approaches whose power

depends on the overall number of individuals. In small

families, both RareIBD and the burden approach suffer

high power loss because removing the top two generations

could eliminate half of the individuals in a family.

FPR of RareIBDwhen Two Rare Variants Are Present in

a Family

One main assumption of our approach is that only one

founder in a family carries a rare variant in a given gene.

When all founders are genotyped, it is straightforward to

check this assumption. When some founders are missing,

we utilize MAF information estimated from several sources

and assume that only one founder has a mutation if it is a

rare variant according to the MAF information. However,

in larger families, this assumption could be violated. In

this simulation, we want to check FPRs of RareIBD when

two founders have the same rare variant. We assume that

the top two generations are missing, and each family has

a 30% probability that two founders have a mutation for

a rare variant. RareIBD knows which variants are rare but

assumes that only one founder has a mutation for all rare

variants.

Results show that our method has small inflation of test

statistics in deep and small families (Table S2). At the
an Journal of Human Genetics 99, 846–859, October 6, 2016 851



Figure 1. Power Comparison between
RareIBD and Other Approaches
Pedigree structures include wide families
(A and B), deep families (C and D), and
small families (E and F) (Figure S1).
ChiPerm and CMC are from FPCA,21 and
kernel and burden are from Pedgene.33

The x axis indicates the ci of a variant
(there are five levels) and the probability
that each rare variant is causal. We also
considered two simulation scenarios: (1)
all individuals in a family are genotyped
(A, C, and E), and (2) the individuals in
the top two generations are not genotyped,
which simulates families with missing
founders (B, D, and F). Power was
measured at a ¼ 0.05 from 2,000 replica-
tions of simulations.
a ¼ 0.05 level, the FPR of RareIBD is 0.0528, 0.0585, and

0.0631 for wide, deep, and small families, respectively.

The reason we have small inflation is because we estimate

a p value by using the gene-dropping approach, which as-

sumes that only one founder has a mutation. However, the

inflation of test statistics of RareIBD is smaller than that of

the burden approach, whose FPR is as high as 10% in small

families. It is also very unlikely that two founders will have

amutation for 30% of rare variants, and we expect that this

percentage is much lower in real data. Inflation of test sta-

tistics of RareIBD would then be small.

Comparison of Power for Protective Rare Variants

Previous simulations assumed that causal rare variants are

all deleterious; the OR of causal variants is 2. To measure

the power of RareIBD and other methods when protective

rare variants are present in a gene, we generate simulations

in which 40% of rare variants are protective with an OR of

0.25 and 60% of variants are deleterious with an OR of 4.

The top two generations are missing in this simulation. It

is known that the kernel approach from Pedgene, which

is similar to SKAT,15 achieves high power when a gene

has a mixture of deleterious and protective variants. Our

results confirm this phenomenon given that the kernel

approach has higher power than the burden approach in

wide and deep families (Figure 2). Our method still outper-

forms the kernel approach in all families, and its power

improvement over the kernel approach is substantial;

RareIBD has 10% and 18.1% higher power than the kernel

approach in wide and deep families, respectively. In small
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families, the kernel approach has

lower power than RareIBD and the

burden approach, most likely because

of the limited information related to

the small sample size in each family.

Application to EOCOPD and CFS

Family Datasets

We applied RareIBD to two family da-

tasets, EOCOPD and CFS, to analyze
the COPD and sleep-apnea dichotomous traits, respec-

tively. Whole-exome sequencing was performed on 347

individuals in extended families affected by EOCOPD,

and microarray and exome chip were used for genotyping

individuals in CFS families. The CFS includes two race

groups, which we analyzed separately. We performed

stringent QC and also used several methods to ensure

no MEs or missing genotypes (see Material and Methods).

After QC, both datasets contained no MEs and no missing

genotypes. We considered only rare variants, defined as

having a MAF less than 1% in any of several sources of

allele-frequency information (see Material and Methods).

Only genes with at least three rare variants were included

in our analysis, and there were 12,092, 7,267, and 6,110

such genes in the EOCOPD, CFS-AA, and CFS-EA datasets,

respectively. For RareIBD, to estimate p values of genes,

we performed 10,000 gene-dropping permutations for all

genes, one million permutations for genes with a p value

less than 0.05, and 100 million permutations for genes

with a p value less than 5 3 10�4. We also used PP238

to annotate variants and incorporate PP2 scores for

missense variants into our weight. We present results

with and without PP2 score weighting. Our frequency-

and effect-size-based weights were applied to both

approaches.

According to quantile-quantile (Q-Q) plots and inflation

factors (lGC), RareIBD had a uniform distribution of

p values in the EOCOPD dataset, although test statistics

were modestly deflated both with PP2 weighting (lGC ¼
0.81; Figure S3A) and without weighting (lGC ¼ 0.829;



Figure 2. Power Comparison between RareIBD and Other Ap-
proaches when Protective Variants Are Present
Pedigree structures includewide families (A), deep families (B), and
small families (C) (Figure S1). In this simulation, 40% of rare
variants are protective with an OR of 0.25, whereas 60% are dele-
terious with an OR of 4. We assume that individuals in the top two
generations are not genotyped. Power was measured at a ¼ 0.05
from 2,000 replications of simulations.
Figure 3A). This result is anticipated because of the rela-

tively small sample size of the EOCOPD dataset (n ¼ 303

after QC). However, other approaches had very severely in-

flated or deflated test statistics (Figure 4). For example, lGC

values of the ChiPerm and CMC approaches from FPCA

software were 1.537 and 0.238, respectively (Figures 4A

and 4B), whereas the kernel approach from Pedgene was

lGC ¼ 1.61 with a very non-uniform distribution of p

values according to its Q-Q plot (Figure 4C). The burden

approach generated more uniformly distributed p values

(Figure 4D), but its lGC was 1.19, which is somewhat

high given the small sample size. None of the methods,

including RareIBD, detected a significant gene in this data-

set, although there was one gene close to a genome-wide
The Americ
significance level in RareIBD without PP2 weighting (Fig-

ures 3B and 3C).

We then applied RareIBD to the CFS-AA dataset. p values

of RareIBD followed the expected null distribution both

with PP2 weighting (Figure 5) and without weighting

(Figure S4). RareIBD with PP2 weighting found one

chromosome 9 gene whose p value nearly reached the

genome-wide significance level (Figures 5B and 5C), and

this gene was also the top gene without PP2 weighting,

although its p value was not as significant as one with

weighting (Figures S4B and S4C). ChiPerm and CMC ap-

proaches had severely deflated test statistics (Figures S5A

and S5B). There was one genome-wide-significant gene

according to CMC, although this finding is most likely

spurious given the non-uniform distribution of p values.

The kernel approach from Pedgene had somewhat

high inflation of test statistics (Figure S5C), whereas the

burden approach generated uniformly distributed p values

without inflation (Figure S5D). RareIBD had a similar distri-

bution of p values and lGC values in the CFS-EA dataset

(Figures 6 and S6). As with the CFS-AA dataset, ChiPerm

and CMC showed deflation of test statistics in the CFS-

EA dataset (Figures S7A and S7B). The kernel and burden

approaches, however, had much higher lGC in the CFS-

EA dataset than in the CFS-AA dataset (Figures S7C and

S7D). Both approaches detected one gene whose p value

was very close to the genome-wide significance level,

but it could have been due to the highly inflated test

statistics.

Robustness to Population Structure

There are two main scenarios in which population stratifi-

cation can arise in families: the first is within families, and

the other is between families. The first scenario is when

founders in the same family are from different popula-

tions. For example, a majority of founders in a family

have EA ancestry, whereas one founder has AA ancestry.

In this scenario, the founder with AA ancestry could

have more rare variants than other founders. Founders

with multiple rare variants in a gene could violate the

assumption of our gene-dropping approach that rare vari-

ants are independent because multiple rare variants in the

same haplotype from the founder are inherited by the

same set of non-founders, which creates perfect LD. These

‘‘duplicate’’ variants do not contribute to the overall statis-

tic and could cause inflated test statistics. We avoid this

problem by removing variants that are in perfect LD with

another variant in a family and consider only one rare

variant from such variants (see Material and Methods).

This ensures the independence among rare variants in a

family and correctness of our gene-dropping approach.

To demonstrate the robustness of our approach to the

within-family population structure, we performed simula-

tions where we randomly selected one founder in each

family and assigned four times more rare variants to this

individual than other founders. We assumed that all indi-

viduals are genotyped and generated 10,000 replications
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Figure 3. Results of Applying RareIBD
without PP2 Weighting to Whole-Exome
Sequencing Data of Extended Families in
the EOCOPD Dataset
This dataset includes 347 individuals.
(A) Q-Q plot shows the distribution of
p values of 12,092 genes that contain at
least three rare variants, and it also indi-
cates lGC values.
(B) Top ten genes with the most significant
p values.
(C) Manhattan plot of p values along the
chromosomes.
for false-positive simulations. Results demonstrate that

RareIBD has a correct or slightly higher FPR in the three

pedigree structures (0.0502, 0.0557, and 0.0574 in the

wide, small, and deep families, respectively). This simula-

tion scenario, in which all families have one founder

with four times more rare variants than other founders,

is a somewhat extreme case. In real data, we expect that

only a fraction of families will consist of founders with

different ancestries and expect a smaller difference in the

number of rare variants among founders. RareIBD will

then have a more accurate FPR in small and deep families.

Hence, population structure caused by founders with

many more rare variants than other founders does not

cause inflation of our test statistics.

Another scenario of population stratification is struc-

ture between families: this occurs when families with

different ancestries are analyzed together. This, however,

does not inflate our test statistic because our method

can be thought of as a meta-analysis across many families.

We estimate the Z score of each family on each rare

variant and take a weighted sum of Z scores, similarly to

the fixed-effects model of meta-analysis.50 Because our

statistic ðSijRareIBDÞ is computed per family and not across

whole families, our method does not suffer from popula-

tion stratification across families. We demonstrated this

by merging CFS-AA and CFS-EA datasets and applying

RareIBD. Results show that our approach has a uniform

distribution of p values even when two very different pop-

ulations are merged and analyzed jointly (Figure S8).

Therefore, estimating a statistic for each family indepen-

dently, along with our LD-pruning procedure to remove

perfectly correlated variants in a family, makes RareIBD

robust to population structure both within and between

families.
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Discussion

We developed a general and powerful

approach called RareIBD to identify a

group of rare variants that influence

disease susceptibility by utilizing

extended families. Statistical power

to detect an association of rare vari-

ants could be higher in family-based
studies than in case-control studies because a causal rare

allele could be enriched in extended families, which in-

creases its allele frequency and hence the power to detect

its effect. However, many of the currently available rare-

variant methods for family-based analysis are not adequate

for large extended families with binary traits because they

are designed for small families or quantitative traits. We

have shown in simulations that even methods that sup-

port large families with binary traits do not have correct

FPRs when founders are missing. Also, to the best of our

knowledge, no association methods for binary traits can

be applied to extended families with only affected individ-

uals. RareIBD is a very general approach that does not have

any restrictions on how large families are, what types of

traits are collected, whether founders are genotyped, or

whether unaffected individuals are genotyped in families.

Another advantage of our approach is that it has accurate

FPRs and remains powerful for detecting an association of

rare variants even when some or many of the individuals

in top generations of families are missing, which happens

frequently in large extended families. In simulations where

individuals in the top two generations were not genotyped,

our method had a correct FPR, whereas other approaches

had inflated FPRs. More importantly, in the same simula-

tions, RareIBD did not suffer the large power loss that other

methods experienced. Our method also had higher power

than all other approaches when founders were genotyped.

Our method gained additional power with the weighting

schemes and the AllF approach. We weighted rare variants

on the basis of both allele frequency13 and effect size36

and used information from all founders to compute the

Z score. For the real-data analysis, we included the func-

tional information38 of variants in our weights to incorpo-

rate the deleteriousness of genetic variants.



Figure 4. Results of Applying FPCA and
Pedgene to Whole-Exome Sequencing
Data of Extended Families in the EOCOPD
Dataset
Q-Q plots fromChiPerm of FPCA (A), CMC
of FPCA (B), kernel approach of Pedgene
(C), and burden approach of Pedgene (D).
All Q-Q plots include lGC values.
We compared our method to two existing software

tools21,33 that include FPCA, CMC, burden, and kernel ap-

proaches for rare variants. Another approach to analyzing

a family dataset is the family-based association test (FBAT),

which computes its statistic by considering each offspring

separately and conditioning on parent genotypes. For an

extended pedigree, the FBAT splits a family into several

trios and computes its statistic from these trios. Our

method, however, considers a whole family in our statistic

and captures the inheritance pattern of a casual allele

among all affected and unaffected individuals in a family.

This means that our approach is likely to be more powerful

than the FBAT in a large family because RareIBD fully uti-

lizes information of an extended pedigree structure,

whereas the FBAT uses limited information captured in

trios. Also, the FBAT cannot be applied if parents are not

genotyped, and RareIBD does not have this restriction.

For example, the wide and small families in our simulation

do not have any parents genotyped if the top two genera-

tions are missing, and one cannot use the FBAT for these

families. Therefore, the fact that the FBAT requires parents

to be genotyped limits its applicability in an extended

pedigree.

We applied RareIBD to two family datasets. Although our

method did not find significant genes in either dataset, it

identified two genes very close to genome-wide signifi-

cance levels, which will require further validation. The
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lack of significance might be because

the sample size in the EOCOPD data-

set is small, and for the CFS dataset,

exome chip might not capture all

rare variants present in a family.

However, importantly, we observed

that similar to our simulations, our

method consistently generated uni-

formly distributed p values that fol-

lowed the expected null distribution,

whereas other methods had highly

inflated or deflated test statistics.

Our method is inspired by non-

parametric linkage (NPL) analysis,

which finds IBD sharing among

affected relative pairs (Spairs) or among

all affected relatives (Sall).
51 One ma-

jor difference between RareIBD and

NPL is that we assume that only one

founder has a rare minor allele, and
our method is interested in finding IBD sharing of this mi-

nor allele among affected relatives, whereas NPL is more

general such that it considers all founder alleles. NPL, how-

ever, requires computationally expensive operations to

estimate IBD sharing, and it is often not scalable to large

extended families. In contrast, when only one founder

has the rare allele, any non-founders who have this allele

share it identically by descent, which greatly simplifies

estimation of IBD sharing. This enables RareIBD to

compute its statistic efficiently and, moreover, to evaluate

the significance of its statistic by using the gene-dropping

approach, which generates very accurate p values. Because

the standard gene-dropping approach is prohibitively

computationally expensive, we took advantage of our

main assumption and considerably increased the ap-

proach’s efficiency. With this improvement, we were able

to apply RareIBD to the two family datasets on a

genome-wide scale without computational difficulty.

The main assumption in our approach is that only one

founder in a family has a mutation for a rare variant. It

is important to note that a family can have multiple rare

variants in a gene. For a specific rare variant, however, we

assume that the rare allele is inherited from only one

founder. This assumption might fail in rare circumstances.

Our simulations showed that RareIBD had slightly inflated

statistics when the assumption was violated for a subset

of rare variants. We note that test statistics of other
enetics 99, 846–859, October 6, 2016 855



Figure 5. Results of Applying RareIBD
with PP2 Weighting to Microarray and
Exome-Chip Data of CFS-AA Individuals
This dataset includes 632 individuals.
(A) Q-Q plot shows the distribution of
p values of 7,267 genes that contain at
least three rare variants, and it also indi-
cates lGC values.
(B) Top ten genes with the most significant
p values.
(C) Manhattan plot of p values along the
chromosomes.
approaches were more inflated than those of our method.

To protect against this issue, our software checks for

violations of our assumptions. For example, our software

checks whether any nonfounder carries two copies of a

rare allele. Also, we check whether any unrelated individ-

uals in a family share the rare allele. In these cases, there

must be more than one founder with the rare allele, and

hence this variant is not included in our analysis. In the

presence of consanguinity, a non-founder might have

two copies of a rare allele, although only one founder
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carries one copy of the allele. We re-

move this variant from analysis

because when founders are missing,

it is not known whether a non-

founder has two alleles as a result of

consanguinity or as a result of two

founders with a rare variant. Another

approach to ensuring that only one

founder carries a mutation is to

impute missing founders with family
imputation software such as GIGI.52 Although this

approach is not very accurate for individuals who are not

genotyped, it could provide additional information to

confirm whether our assumption holds.

Before our method is applied to real data, one important

requirement is that genotype data should contain no MEs

or missing genotypes. Although some MEs might be de

novo mutations, they are extremely rare, and most MEs

represent genotyping errors. These requirements allow

greater computational efficiency. Before performing the
Figure 6. Results of Applying RareIBD
with PP2 Weighting to Microarray and
Exome-Chip Data of CFS-EA Individuals
This dataset includes 710 individuals.
(A) Q-Q plot shows the distribution of
p values of 6,110 genes that contain at
least three rare variants, and it also indi-
cates lGC values.
(B) Top ten genes with the most significant
p values.
(C) Manhattan plot of p values along the
chromosomes.
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of our statistic for all founders. During this process, we as-

sume that genotyped individuals have no missing geno-

types. This requirement for no MEs or missing genotypes

can bemetwithout difficulty by one of several statistical ap-

proaches developed to refine genotypes on thebasis of pedi-

gree structure. For example, Polymutt23 can correct amajor-

ity of MEs and impute missing genotypes for sequencing

data. Formicroarraydata, ShapeIt49phases genotypesbyus-

ing family information and imputes missing genotypes.

This requirement also increases the quality of genotype

data and reduces the chance of detecting false associations.

We have designed several enhancements in RareIBD,

including applicability to families with only affected indi-

viduals. Some family studies53 focus mostly on affected

individuals because NPL statistics do not require genotypes

of unaffected individuals. Therefore, it is important that

a method for family-based studies can be applied to

affected-only families. We tested our method for affected-

only families by performing simulations inwhich everyone

was genotyped and found that it had correct FPRs in all

three families (Table S1). The power of the affected-only

approach is, however, lower than that of RareIBD, which

uses both affected and unaffected individuals (Figure S2).

This is expectedbecauseunaffected individuals alsoprovide

important information regarding IBD sharing. We tested

other approaches on affected-only families, but either

they failed to generate p values or they generated p values

that were not available, 1, or infinity. This result indicates

that our method can identify a gene with rare variants

involved in adisease fromaffected-only families in a sample

of sufficient size. In addition, our method is robust to

population structure. We have shown that population

structure both within and between families does not cause

inflation of test statistics.
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Figure S1. Three different pedigree structures used in the false positive rate and power simulations.

The first pedigree type is “wide” family that has 30 individuals in three generations. The second pedigree

type is “deep” family that has 36 individuals in four generations. The third type is “small” family that has

12 individuals in three generations.



Figure S2. Power comparison of RareIBD with different settings using three different pedigree struc-

tures (Figure S1): wide families (A), deep families (B), and small families (C). In this simulation, all in-

dividuals are genotyped. We consider 4 different versions of RareIBD. 1) Weighted AllF is RareIBD that

computes its statistic using mean and standard deviation (SD) of all founders (“AllF” ) with frequency-based

and effect size-based weights. 2) Weighted OneF is RareIBD that computes its statistic using mean and SD

of one founder who carries a mutation (“OneF”) with the weights. 3) Unweighted OneF is RareIBD with

OneF, but does not include frequency-based and effect size-based weights. 4) Affected Only is RareIBD

with weighted AllF, but uses only affected individuals when computing its statistic. Power is measured at

α = 0.05 from 2,000 replications of simulations.



Figure S3. Results of applying RareIBD with PolyPhen-2 weighting to whole-exome sequencing data

of extended families with EOCOPD. There are 347 individuals in this dataset. (A) is the QQ-plot showing

the distribution of p-values of 12,092 genes that contain at least 3 rare variants, and it also indicates λGC

values. (B) shows the top 10 genes with most significant p-values, and (C) is the Manhattan plot of p-values

along the chromosomes.



Figure S4. Results of applying RareIBD without PolyPhen-2 weighting to microarray and exome-chip

data of CFS African Americans (AA). There are 632 individuals in this dataset. (A) is the QQ-plot showing

the distribution of p-values of 7,267 genes that contain at least 3 rare variants, and it also indicates λGC

values. (B) shows the top 10 genes with most significant p-values, and (C) is the Manhattan plot of p-values

along the chromosomes.



Figure S5. Results of applying FPCA and Pedgene software to microarray and exome-chip data of

CFS African Americans (AA). These are QQ-plots from ChiPerm of FPCA (A), CMC of FPCA (B), kernel

approach of Pedgene (C), and burden approach of Pedgene (D). All QQ-plots include λGC values.



Figure S6. Results of applying RareIBD without PolyPhen-2 weighting to microarray and exome-chip

data of CFS Europeans (EA). There are 710 individuals in this dataset. (A) is the QQ-plot showing the

distribution of p-values of 6,110 genes that contain at least 3 rare variants, and it also indicates λGC values.

(B) shows the top 10 genes with most significant p-values, and (C) is the Manhattan plot of p-values along

the chromosomes.



Figure S7. Results of applying FPCA and Pedgene software to microarray and exome-chip data of CFS

Europeans (EU). These are QQ-plots from ChiPerm of FPCA (A), CMC of FPCA (B), kernel approach of

Pedgene (C), and burden approach of Pedgene (D). All QQ-plots include λGC values.



Figure S8. Results of applying RareIBD to the merged dataset of CFS-AA and CFS-EU with PolyPhen-

2 weighting (A) and without PolyPhen-2 weighting (B). Because the two datasets were genotyped in differ-

ent microarray platforms, we merged them by using only SNPs present in both datasets. We removed two

families in which both microarray platforms were used to genotype different individuals in those families to

remove batch effect within a family. The number of individuals is 1,216 and the number of SNPs is 226,489

after merging the two datasets. We estimated MAF of each variant separately for EU and AA, and used

the MAF of population to which a family belongs in determining whether each variant is rare or not for the

family (MAF<1%). Only genes with at least 3 rare variants are included in the analysis, and there are 2,680

such genes.



Method Wide Deep Small

Weighted AllF 0.0475 0.0466 0.0517

Weighted OneF 0.0503 0.0462 0.0514

Unweighted OneF 0.0487 0.0504 0.0484

Affected Only 0.0491 0.0471 0.0541

Table S1. Comparison of false positive rate of RareIBD with different improvements discussed in

Materials and Method using three different pedigree structures (Figure S1): wide, deep, and small families.

In this simulation, all individuals are genotyped. We consider 4 different versions of RareIBD. 1) Weighted

AllF is RareIBD that computes its statistic using mean and standard deviation (SD) of all founders (“AllF”

) with frequency-based and effect size-based weights. 2) Weighted OneF is RareIBD that computes its

statistic using mean and SD of one founder who carries a mutation (“OneF”) with the weights. 3)

Unweighted OneF is RareIBD with OneF, but does not include frequency-based and effect size-based

weights. 4) Affected Only is RareIBD with weighted AllF, but uses only affected individuals when

computing its statistic. False positive rate is measured at α = 0.05 from 10,000 replications of simulations.



Software Method Wide Deep Small

RareIBD RareIBD 0.0528 0.0585 0.0631

FPCA

FPCA 4.00E-04 1.70E-03 1.00E-04

ChiPerm 0.0473 0.0495 0.0455

ChiMin 0.5432 0.3136 0.2447

T2 0.0867 0.062 0.2043

CMC 0.0609 0.0565 0.0534

Pedgene
Kernel 0.0339 0.0394 0.0218

Burden 0.0666 0.0626 0.100

Table S2. Comparison of false positive rate (FPR) of RareIBD with those of other approaches when two

rare variants are present in a family. We measure FPR using three different pedigree structures (Figure S1):

wide, deep, and small families. Each family has 30% probability that two founders carry the same rare

variant. We assume that top two generations are missing in this simulation. False positive rate is measured

at α = 0.05 from 10,000 replications of simulations.



Statistic Summary EOCOPD CFS-AA CFS-EU

family size

minimum 6 3 4

maximum 23 56 28

mean 12.6 11.4 11.7

median 12 10 9.5

percentage of

genotyped

individuals

all individuals 56.0% 41.0% 50.0%

founders 6.2% 18.2% 31.4%

nonfounders 87.4% 59.2% 60.7%

family depth

minimum 2 2 2

maximum 5 5 5

mean 3.4 3.0 3.2

median 3 3 3

relationship

among affected

pairs

minimum 0.125 0.0625 0.0625

maximum 0.5 0.5 0.5

mean 0.42 0.39 0.41

median 0.5 0.5 0.5

Table S3. Detailed information on family structure of EOCOPD, CFS-AA, and CFS-EU datasets. The

“family size” is the number of individuals in a family including individuals who were not genotyped. The

“percentage of genotyped individuals” is calculated for all individuals, only founders, and only

nonfounders in a family. The “family depth” of 2 is parent-offspring relationship. The “relationship among

affected pairs” is the coefficients of relationship of affected pairs who are related in a family.
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