Development of a Potent and Selective HDAC8 Inhibitor

Oscar J. Ingham, Ronald M. Paranal, William B. Smith, Randolph A. Escobar, Han Yueh, Tracy Snyder, John A. Porco, Jr., James E. Bradner, Aaron B. Beeler

General Information: ¹H NMR spectra were recorded at 500 MHz at ambient temperature with CDCl₃ as a solvent unless otherwise stated. ¹³C NMR spectra were recorded at 126 MHz at ambient temperature with CDCl₃ as a solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl₃ (¹H, δ 7.26; ¹³C, δ 77.0). Data for ¹H NMR are reported as follows: chemical shift, multiplicity, integration (app= apparent, par obsc= partially obscure, ovrlp= overlapping, s= singlet, d= doublet, t= triplet, q quartet, m= multiplet) and coupling constants are reported as values in hertz. All ¹³C NMR spectra were recorded with complete proton decoupling. High-resolution mass spectra were obtained on a Waters QTof API US. Flash chromatography was performed using Silicycle UltraPure silica gel (particle size 40-63µm).

I. Synthesis and Characterization Data

(S)-methyl 2-(5-iodo-4-phenyl-1H-1,2,3-triazol-1-yl)-3-phenylpropanoate (29).

(Iodoethynyl)benzene (2.78 g, 12.2 mmol, 1.5 eq.) (freshly-prepared according to the procedure Fokin and coworkers¹) was dissolved in 20 mL of anhydrous THF and transferred to a flame-dried flask containing 154 mg (0.81 mmol, 10 mol %) of Copper (I) lodide. A solution of (S)-methyl 2-azido-3-phenylpropanoate (1.67 g, 8.13 mmol, 1 eq.) in 20 mL of anhydrous THF was added to the flask via syringe. 2.27mL of triethylamine (16.26 mmol, 2 eq.) was added to the flask via syringe and the resulting solution was stirred overnight at room temperature. The yellow solution

was filtered through Celite and concentrated *in vacuo*. The crude material was purified by flash chromatography (SiO₂, 20% EtOAc/Hexanes) to afford 3.14 g (89%) of the desired iodide as a white solid. ¹H NMR (500 MHz, CDCl₃) 3.79 (5H, m), 5.49 (1H, dd, J = 6.4, 9.3 Hz), 7.10 (2H, dd, J = 1.7, 7.6 Hz), 7.19-7.24 (3H, m), 7.39 (1H, t, J = 7.3 Hz), 7.45 (2H, t, J = 6.8 Hz), 7.90 (2H, d, J = 6.8 Hz); ¹³C NMR (126 MHz, CDCl₃) 37.30, 53.14, 64.23, 78.78, 127.19, 127.40, 128.35, 128.49, 128.55, 128.95, 129.91, 135.53, 149.12, 167.73; HRMS calculated for C₁₈H₁₇IN₃O₂⁺ (M+H): 434.0360, found: 434.0378.

(S)-methyl 2-(5-(cyclopropylethynyl)-4-phenyl-1H-1,2,3-triazol-1-yl)-3-phenylpropanoate (30).

Into a flame-dried flask was added 288 mg (0.41 mmol, 10 mol %) of bis(triphenylphosphine)palladium(II) dichloride and 78 mg (0.41 mmol, 10 mol %) of copper (I) iodide To the flask was added 1.79 g (4.1 mmol, 1 eq.) of iodotriazole (**29**) and anhydrous toluene (40 mL, 0.1 M). Into the solution was added 1.74 mL of cyclopropylacetylene (20.5 mmol, 5 eq.) via syringe, followed by 1.14 mL of triethylamine (8.2 mmol, 2 eq.). The resulting yellow solution was stirred at 80 °C for 5 hours. The solution was filtered through Celite and

concentrated *in vacuo*. The black residue was suspended in ethyl acetate and extracted 3 times with water and brine. The organic layer was dried over sodium sulfate and concentrated *in vacuo*. The crude material was purified by flash chromatography (SiO₂, 17% EtOAc/Hexanes) to yield 1.20 g (79 %) of the desired alkyne as a yellow oil. ¹H NMR (500 MHz, CDCl₃) 0.85 (2H, m), 0.99 (2H, m), 1.55 (1H, m), 3.72 (2H, m), 3.78 (3H, s), 5.49 (1H, dd, J = 5.4, 9.8 Hz), 7.10 (2H, dd, J = 2.0, 7.8 Hz), 7.19 - 7.24 (3H, m), 7.35 (1H, t, J = 7.3 Hz), 7.42 (2H, t, J = 7.6 Hz), 8.10 (2H, dd, J = 1.0, 8.3 Hz); ¹³C NMR (106 MHz, CDCl₃) 0.42, 9.10, 36.89, 53.03, 61.43, 62.83, 108.08, 118.33, 125.90, 127.11, 128.32, 128.46, 128.56, 128.90, 130.22, 135.68, 146.90, 168.17; HRMS calculated for C₂₃H₂₂N₃O₂⁺ (M+H): 372.1707, found: 372.1712.

¹ Hein J. E., Tripp J. C., Krasnova L. B., Sharpless K. B., Fokin V. V. Angew. Chem. Int. Ed. **2009**, 48, 8018–8021.

(S)-3-phenyl-2-(4-phenyl-5-(phenylethynyl)-1H-1,2,3-triazol-1-yl)propanoic acid (11).

122 mg of ester (0.3 mmol, 1 eq.) was added to a glass vial equipped with a magnetic stir bar and 14 mg (0.6 mmol, 2 eq.) of LiOH was added. The mixture was dissolved in 3.0 mL (0.1 M) of THF/MeOH (4:1) and stirred for 1 hour at room temperature. The solution was acidified with 1N HCl to pH = 2 and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated *in vacuo*. The crude material was purified by flash chromatography (SiO₂, 5 % MeOH in DCM) to afford 110

mg (93%) of the desired compound as a white solid. ¹H NMR (500 MHz, CD₃OD) 3.78 (2H, m), 5.61 (1H, d, J = 9.3 Hz), 7.11 (5H, m), 7.37 (6H, m), 7.52 (2H, m), 8.00 (2H, d, J = 7.3 Hz); ¹³C NMR (126 MHz, CD₃OD) 38.53, 76.17, 103.69, 119.87, 122.50, 127.24, 127.99, 129.62, 129.94, 129.97, 130.02, 131.10, 131.26, 132.67, 138.56, 148.44, 173.31 (br, weak); HRMS calculated for C₂₅H₂₀N₃O₂⁺ (M+H): 394.1556, found: 394.1560.

S)-N-hydroxy-3-phenyl-2-(4-phenyl-5-(phenylethynyl)-1H-1,2,3-triazol-1-yl)propanamide (4).

Into a flask was added 7.4 mg (0.15 mmol, 0.5 eq.) of sodium cyanide and 1.5 mL of methanol. A solution of 122 mg of ester in 1.5 mL THF was added *via* syringe. Into the solution was added 184 μ L of 50% aqueous hydroxylamine and the yellow reaction was stirred 16 hours at room temperature. The solution was diluted with water and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated *in vacuo*. The resulting residue was purified by flash chromatography

(SiO₂, 5 % MeOH in DCM) to afford 76 mg (62 %) of the desired compound as a white solid. ¹H NMR (500 MHz, acetone-D₆) 2.96 (1H, br.), 3.73 - 3.79 (2H, m), 5.74 (1H, t, *J* = 7.5 Hz), 7.15 (1H, t, *J* = 7.1 Hz), 7.21 (2H, t, *J* = 7.3 Hz), 7.26 (2H, d, *J* = 7.3 Hz), 7.39 (1H, t, *J* = 7.3 Hz), 7.47 - 7.51 (5H, m), 7.68 (2H, d, *J* = 7.8 Hz), 8.16 (2H, d, *J* = 7.3 Hz); ¹³C NMR (126 MHz, acetone-D₆) 37.79, 63.40, 75.90, 103.71, 118.61, 122.27, 126.81, 127.84, 129.30, 129.51, 129.70, 130.14, 130.80, 131.34, 132.57, 137.29, 147.87, 164.97; HRMS calculated for $C_{25}H_{21}N_4O_2^+$ (M+H): 409.1665, found: 409.1657.

(S)-2-(5-(cyclopropylethynyl)-4-phenyl-1H-1,2,3-triazol-1-yl)-N-hydroxy-3-phenylpropanamide (11).

Into a flash was added 18.0 mg (0.36 mmol, 0.5 eq.) of sodium cyanide was and 3.5 mL of MeOH. A solution of 265 mg of the ester in 3.5 mL THF was then added via syringe. To the reaction was added 435 μ L of 50% aqueous hydroxylamine and the yellow solution was stirred 16 hours at room temperature. The solution was diluted with water and extracted with EtOAc. The organic layer dried over sodium sulfate and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (SiO₂ 5 % MeOH /

DCM) to afford 173 mg (65 %) of the desired compound as a white solid. ¹H NMR (500 MHz, d₄-MeOD) 0.80 (2H, m), 0.98 (2H, m), 1.47 (1H, m), 3.51 (1H, dd, *J* = 11.2, 14.2 Hz), 3.71 (1H, dd, *J* = 3.9, 14.2 Hz), 5.49

(1H, dd, J = 3.9, 11.2 Hz), 6.96 (2H, m), 7.17-7.20 (3H, m), 7.37 (1H, t, J = 7.3 Hz), 7.43 (2H, t, J = 7.3 Hz), 7.99 (2H, d, J = 8.8 Hz); ¹³C NMR (100 MHz, d₄-MeOD) 0.02, 8.55, 37.07, 60.83, 62.59, 109.09, 118.98, 125.9, 127.16, 128.55, 128.65, 128.71, 129.16, 130.07, 136.09, 147.10, 165.20; HRMS calculated for $C_{22}H_{21}N_4O_2^+$ (M+H): 373.1659, found: 373.1665.

HY-29-03_CARBON_03

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 Chemical Shift (ppm)

HY-29-04Ph-C_CARBON_01

- HDAC1 150 Normalized Activity HDAC2 OH HDAC3 N-1 N-HDAC4 100 HDAC5 HDAC6 50 HDAC7 HDAC8 HDAC9 0--10 -8 -12 -6 Log[Conc(M)] HDAC1 150-HDAC2 0 Normalized Activity HDAC3 ,OH HDAC4 100 HDAC5 N, N HDAC6 HDAC7 50 HDAC8 HDAC9 0 0--10 -12 -8 -6 Log[Conc(M)]
- III. HDAC Inhibition Procedure and Data

General Procedure for HDAC Inhibition Assay: HDAC assays were carried out as described previously^{2,3}

³ Bowers, A.; Greshock, T.; West, N.; Estiu, G.;Schreiber, S.; Wiest, O.; Williams, R.; Bradner, J. *J. Am. Chem. Soc.* **2009**, 131, 2900

² Bowers, A.; West, N.; Taunton, J.; Schreiber, S. L.; Bradner, J. E.; Williams, R. M. J. Am. Chem. Soc 2008, 130,11219

	HDAC1 (IC ₅₀ μM)	HDAC2 (IC ₅₀ μM)	HDAC3 (IC ₅₀ μM)	HDAC6 (IC ₅₀ μM)	HDAC8 (IC ₅₀ μM)
H _I C H _I C N	>20	>20	>20	1.5	0.5
H ₃ C H ₃ O H F	>20	>20	>20	2.5	2.6
H ₁ C H ₁ C	>20	>20	>20	3.3	2.4
H ₃ C H ₃ OH CH ₃ H ₃ C H ₃ OH CH ₃ H ₃ C H ₃	>20	>20	>20	>20	4.3
H ₃ C H ₃ C	>20	>20	>20	2.5	1.8
H ₃ C H ₃ C	>20	>20	>20	>20	>20
H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C H ₁ C	>20	>20	>20	>20	>20

>20

>20

>20

>20

3.5

3.6

17

3.7

0.04

0.43

0.01

11

CH ₃ CH ₃					
ũ	>20	>20	>20	10	5.5
>					

>20

>20

>20 >20 >20 5.7 1.7

6.9

2.1

2

	~20
O CHa	

сн,					
	>20	>20	>20	1.4	

>20 >20 >20 2

>20

4.5

0.31

>20	>20	>20	4.8	0.47

>20

>20

>20	>20	>20	11.5	15.7
>20	>20	>20	0.9	1.7
>20	>20	>20	2	0.33
NA	NA	NA	NA	0.353

>20

0.12

>20

>20

