Redox enzyme-mimicking activities of CeO² nanostructures: Intrinsic influence of exposed facets

Yushi Yang¹, Zhou Mao¹, Wenjie Huang¹, Lihua Liu², Junli Li², Jialiang Li³ & Qingzhi Wu¹

¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan 430070, China

²School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China. Correspondence and requests for materials should be addressed to Q.W. (email: wuqzh@whut.edu.cn.)

³School of Chemical Engineering, Shangdong University of Technology, Zibo 255000, China Correspondence and requests for materials should be addressed to Q.Z.W. (email: wuqzh@whut.edu.cn)

Michaelise-Menten constant calculations

For the peroxidase mimetic reaction, the Michaelis-Menten kinetic equation was selected to describe the relation between the initial velocities (V_{init}) and their relative substrate concentrations. The concentration of the product was calculated using equation:

$$
c = \frac{A}{\varepsilon \cdot \ell}
$$

Where, *c* is the concentration of TMB_{ox}, *A* is the absorbance measured by the spectrometer, ε is the extinction coefficient, and ℓ is the length of the light path. In our experiments, $\ell = 1$ cm and ε $= 3.9 \times 10^{-4}$ M⁻¹cm⁻¹ for TMB_{ox} at 652 nm¹. The initial velocity (*V_{init}*) was calculated using equation:

$$
V_{init} = \frac{\Delta c}{\Delta t}
$$

Where, V_{init} is the initial reaction velocity, c is the concentration of TMB_{ox}, and t is the reaction time. The kinetic parameters, K_m and V_{max} , was determined by fitting V_{init} against substrate concentrations according to the Michaelis-Menten equation. The data points were directly fitted with the equation using Levenberg–Marquardt algorithm.

Annealing of CeO² nanorods and their peroxidase mimetic activities

Fig. S1a and b show the TEM and HRTEM of $CeO₂$ nanorods with $\{110\}$ facets after annealing. It is clear that annealing treatment did not change the morphology and exposed facets of the $CeO₂$ nanorods. Fig. S1c shows the Williamson-Hall plots of CeO₂ nanorods before and after annealing. The fitted line of $CeO₂$ nanorods after annealing displayed a zero slope, suggesting that the microstrain existed in the CeO₂ nanorods disappeared after annealing.

Figure S1. a) TEM image shows uniform CeO² nanorods; b) HRTEM image shows the exposed {110} facets. The proposed 3D models were outlined in the image; c) Williamson-Hall plot of CeO² nanorods before and after annealing. The slope of the line indicates the microstrain (a larger slope represents a larger microstrain), and the intercept indicates the crystallite size (a large intercept means a smaller size).

Fig. S2 shows the peroxidase mimetic activity of $CeO₂$ nanorods with ${110}$ facets before and after annealing. It is obvious that annealing did not increase the enzyme activity of $CeO₂$ nanorods, suggesting that the peroxidase mimetic activity of $CeO₂$ nanorods was independent on the microstrain.

Figure S2. Peroxidase mimetic activity of CeO² nanorods before and after annealing. The changes in absorbance at 652 nm represents the conversion from TMB to oxidized TMB (TMB_{ox}).

SOD mimetic activities of the CeO² nanostructures

Fig. S3 shows the SOD mimetic activity of $CeO₂$ nanostructures. Compared with the peroxidaselike activities, $CeO₂$ nanorods with exposed {110} facets exhibited higher SOD mimetic activity than that of $CeO₂$ nanocubes with exposed {100} facets. The SOD activity of $CeO₂$ nanorods was 57.1 U/mg, which was 4 times higher than that of $CeO₂$ nanocubes. The SOD mimetic activity of CeO² nanorods was slightly decreased after annealing, but it was still significantly higher than that of $CeO₂$ nanocubes. These results indicate that the difference in SOD mimetic activity of $CeO₂$ nanostructures also originated from the exposed facets, instead of the microstrain.

Figure S3. SOD mimetic activity of CeO² nanocubes and CeO² nanorods (before and after annealing).

Reference

(1) Josephy, P. D., Eling, T. & Mason, R. P. The Horseradish Peroxidase-Catalyzed Oxidation of 3, 5, 3', 5'-Tetramethylbenzidine. *J. Biol. Chem.* **257**, 3669-3675 (1982).