Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis

Michaël R. Laurent,^{1,2} Geoffrey L. Hammond,³ Marco Blokland,⁴ Ferran Jardí,⁵ Leen Antonio,⁵ Vanessa Dubois,^{1,6} Rougin Khalil,⁵ Saskia S. Sterk,⁴ Evelien Gielen,² Brigitte Decallonne,⁵ Geert Carmeliet,⁵ Jean-Marc Kaufman,⁷ Tom Fiers,⁷ Ilpo T. Huhtaniemi,⁸ Dirk Vanderschueren,⁵ and Frank Claessens^{1*}

¹ Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium

² Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49 PO box 7003, Leuven, Belgium

³ Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, V6T 1Z3 Vancouver, B.C., Canada

⁴ RIKILT, European Union Reference Laboratory for Residues, Wageningen UR, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands

⁵ Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49 PO box 902, 3000 Leuven, Belgium

⁶ INSERM UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France

⁷ Laboratory for Hormonology and Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium

⁸ Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London,

Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom

Supplementary information

B Cholesterol

Α

A. Concentrations in serum (left from vertical dotted line) and urine (right from vertical dotted line) of selected steroid hormones in randomly cycling 24-week-old WT and SHBG-Tg female mice (n=5 per group). * = P < 0.05 vs. WT mice.

B. Simplified diagram showing the metabolism of selected steroid hormones (assessed by our steroid profile LC-MS/MS method) along with summary of differences (shown in red) in SHBG-Tg vs. WT mice.

Fig. S2. Additional phenotyping of SHBG-Tg mice.

A. Body mass evolution in both genders and genotypes at different ages. n=8-17 per group

B. Seminal vesicle (SV) weights at 9 weeks of age. n=7-10 per group. ** = P<0.01

C. Weights of intact SVs, fluid-emptied organs and SV fluid. n=4-6 per group. ** = P<0.01 by

Bonferroni's post-test after two-way ANOVA showing significant effect of fluid expression (P<0.0001),

genotype (P=0.03) and interaction (P=0.001).

D. Levator ani/bulbocavernosus complex (LA/BC) muscle weights at 9 weeks of age. n=7-10 per

group. ** = P<0.01

E. Anogenital distance evolution in both genders and genotypes at different ages across puberty. Note consistently higher levels in males, and decrease in males from age 6 weeks due to faster body weight gains than anogenital separation. Mean \pm SD shown, n=5-13 per group and timepoint.

F. Uterus weights of WT and SHBG-Tg mice at 24 weeks of age. n=11-14 per group.

Fig. S3. Normal body composition and glucose homeostasis in SHBG-Tg mice.

A-D. Lean body mass, fat mass, bone mineral density and total tissue mass by *in vivo* dual-energy X-ray absorptiometry (DXA) in 24-week-old male and female WT and SHBG-Tg mice. n=11-17 per group. * = P<0.05, ** = P<0.01, *** = P<0.001 compared to WT males.

E, F. Glycemic responses to an i.p. glucose or insulin tolerance test. n=7-8 (males) and n=4-6 (females) for each genotype.

Fig. S4. Lack of bone phenotype in 24-week-old SHBG-Tg mice.

A. Trabecular bone volume (BV/TV) in the distal femur. n=12 (males) and n=3-4 (females) for each genotype. *** = P<0.001 compared to WT males.

B. Trabecular bone volume (BV/TV) in the L5 vertebra. n=8-12 (males) and n=3-4 (females) for each genotype. ** = P<0.01, *** = P<0.001 compared to WT males.

C. Total cross-sectional bone area (an indicator of periosteal circumference) of the femoral midshaft.

n=12 (males) and n=3-4 (females) for each genotype. ** = P<0.01 compared to WT males.

D. Cortical bone thickness of the femoral midshaft. n=12 (males) and n=3-4 (females) for each genotype.

E. Mean polar moment of intertia of the femoral midshaft. n=12 (males) and n=3-4 (females) for each genotype. ** = P<0.01 compared to WT males.

F. Serum osteocalcin. n=12 (males) and n=4-7 (females) for each genotype.