Supplementary Table 1. PCR primers targetting the 16S rRNA gene hypervariable regions and their percent coverage to the RDP database (version 10.27).

Hypervariable	Primer	Sequence	E	Bacteria	Archa	aea	Reference
region		C) mismatch	2 mismatches	0 mismatch	2 mismat	ches
V3	341F	CCTACGGGAGGCAGCAG	94.44%	99.68%	0.00%	64.61%	Bartram et al., 2011
	518R	ATTACCGCGGCTGCTGG	88.52%	99.75%	0.30%	82.09%	(soil)
V5	784DEG	GGMTTAGATACCC	97.31%	99.87%	95.22%	99.75%	Lazarevic et al., 2009
	880RDEG	CRTACTHCHCAGGYG	95.81%	99.90%	83.00%	99.72%	(mouth)
	L-V6	CAACGCGARGAACCTTACC	66.46%	97.74%	0.00%	5.06%	Hummelen et al., 2010
	R-V6	ACAACACGAGCTGACGAC	4.67%	99.51%	0.00%	25.76%	(vagina)
	976F	CAACGCGAAGAACCTTACC	66.10%	89.10%	0.00%	0.00%	Sogin et al., 2006 (sea)
	1046R	CGACAGCCATGCANCACCT	42.80%	99.80%	0.00%	71.20%	
	970F	CGCGAAGAACCTTACC	67.30%	99.60%	0.00%	5.50%	Degnan & Ochman, 2011
	1050R	ACGACAGCCATGCANC	43.20%	99.88%	0.00%	92.20%	(feces)
V6	917F	GAATTGACGGGGRCCCGC	86.10%	99.60%	0.00%	0.04%	Keijser et al., 2008
	1061R	CACGRCACGAGCTGACGAC	92.10%	99.90%	1.40%	65.30%	(mouth)
	E1052-1072	TGCATGGYTGTCGTCAGCTCG	6 93.07%	n.a.	0.02%	n.a.	Wang & Qian, 2009 (<i>in silico</i>)
	U1052-1071	TGCATGGYYGYCGYCAGYTC	95.90%	n.a.	88.92%	n.a.	
	E949-964	ATGTGGTTTAATTCGA	71.36%	n.a.	0.00%	n.a.	
	E917F	GAATTGACGGGRCCC	86.29%	n.a.	0.00%	n.a.	Wang & Qian., 2009; Liu et al., 2007 (various)
	E939R	CTTGTGCGGGCCCCCGTCAATT	FC 54.28%	n.a.	0.00%	n.a.	Wang & Qian, 2009; Huws et al., 2007 (<i>in silico</i>)

Supplementary Table 2. Complete list of environmental parameters

Environmental parameters	Abbreviation
Soil physico-chemical composition: Edaphic factors	
Soil temperature at depth -5cm (°C)	ST
pH	pH
Electrical conductivity (µS/cm)	EC
Stable isotopic carbon ratio (per mL vs VPDB)	δ13C / C13
Stable isotopic nitrogen ratio (per mL vs. N2 in Air)	δ15N / N15
Bulk carbon content (wt %)	C
Bulk bydrogen content (wt %)	S H
Bulk nitrogen content (vt %)	N
C:N ratio	CN
Total phosphorus (mg/g)	P
Soluble phosphorus content (mgP/kg DW)	avP
Hydrogen index (mg HC/g TOC)	н
Oxygen index (mg CO./g TOC)	OL
Total organic carbon content (wt %)	TOC
Mineral carbon content (wt %)	MiC
Bulk soil gravimetric water content (40°C. %)	BSW
Sieved soil gravimetric water content (105°C. %)	GSW
Temperature of maximal pyrolytic yield (T-max, °C)	Tmx
Soil physico-chemical composition: Major elements	
SiQ (wt %)	ci
$\operatorname{Eig}_2(\operatorname{ut}(0))$	31
$HO_2(WI 90)$	Ti
Al ₂ O ₃ (wt %)	Al
Fe ₂ O ₃ (wt %)	Fe
MnO (wt %)	Mn
MaO (wt %)	Ma
CaO (wt %)	Ca
Na (wt %)	Na
K20	K
$F_{2}O_{5}(W(7))$	P20
Cr_2O_3 (wt %)	Cr
NiO (wt %)	Ni
Soil physico-chemical composition: Mineralogy	
Phyllosilicate (%)	PSi
Quartz (%)	Qua
Feldspath-K (%)	Feld
Plagioclase-Na (%)	Pla
Calcite (%)	Cal
Dolomite (%)	Dol
	Geo
	Ank
Organic matter content via loss of ignition (wt %)	IIId OM
Tonographic parameters	Sim
Longitude x (Swiss coordinates system)	Lon
Latitude v (Swiss coordinates system)	Lat
Elevation (m)	Alt
Terrain slope (°)	slope / slop
Direction that a slope faces (%)	asp25 / asp
Sine transformed asp25 (%)	aspval / aspv
Topographic position	topos / top
Climatic parameters	
Air temperature (°C)	N.A.
Annual degree days (day*deg)	ddeg0 / deg
Monthly moisture index ((1/10mm)/month)	mmind68 / min
Daily average of global potential shortwave radiation per month (kJ/day)	summradyy / srd
Monthly average temperature (°C*100)	taveyy / tav
Annual average site water balance accounting for soil properties (1/10mm / year)	swb
Topographic wetness index	twi25 / twi
Annual average number of frost days during the growing season (day*100)	sfroyy / sfro
Number of precipitation days per growing season (day)	pday / pda
Monthly mean precipitation sum (mm)	precyy / prc

Supplementary Table 3. Spearman correlations between Bacteroidetes groups and soil soluble phosphorus content.

Taxonomic group	rho	pval
Bacteroidetes Richness	0.3147742	0.0101
Bacteroidetes abundance	0.4127544	0.0006
Class Outonbagia richnoss	0 12/2056	0 2177
Class Cytophagia Incliness	-0.1240950	0.3177
	-0.10/1202	0.1324
Class Flavobacterila richness	-0.1545922	0.2152
	0.02717908	0.8285
	-0.1268913	0.3100
Class Saprospirae abundance	-0.1313642	0.2923
Class Sphingobacterila richness	-0.06126204	0.6251
Class Sphingobacterila abundance	-0.03473578	0.7819
Cytophagia; family undefined	0.4825635	< 0.0001
Cytophagia; family Amoebophilaceae	-0.1930786	0.1204
Cytophagia; family Cyclobacteriaceae	-0.1043033	0.4046
Cytophagia; family Cytophagaceae	0.4431108	0.0002
Cytophagia: family Flammeovirgaceae	0.3167463	0.0096
Flavobacterija: family undefined	0.09165792	0.4642
Flavobacterija: family Weeksellaceae	0.4547138	0.0001
Flavobacterija: family Cryomorphaceae	-0.09854788	0.4311
Flavobacterija: family Flavobacteriaceae	0.4905593	0.0000
Saprospirae: family undefined	0.02360067	0.8508
Saprospirae; family Chitinophagaceae	0.3442438	0.0049
Saprospirae; family Saprospiraceae	-0.06064085	0.6278
Sphingobacterija: family undefined	0 2176436	0.0792
Sphingobacteriia; family Sphingobacteriaceae	0.2901492	0.0181
OTH: in Destausidates of Dimedule		
Olus in Bacteroidetes-ave module	0 4400704	0.0004
c_Sphingobacterila; o_Sphingobacteriales; f_; g_; s_	0.4198781	0.0004
c_Sphingobacteria; o_Sphingobacteriales; t_; g_; s_	0.4296077	0.0003
c_Sphingobacteria; o_Sphingobacteriales; t_; g_; s_	0.6308022	< 0.0001
c_Sphingobacteria; o_Sphingobacteriales; t_; g_; s_	0.4253544	0.0004
c_Havobacteriia; o_Flavobacteriales; t_Flavobacteriaceae; g_; s_	0.3622746	0.0028
c_Flavobacteriia; o_Flavobacteriales; f_Flavobacteriaceae; g_Flavobacterium; s_	0.4188436	0.0005
c_Flavobacteriia; o_Flavobacteriales; f_Flavobacteriaceae; g_Flavobacterium; s_	0.4653918	< 0.0001

The significant coefficients are indicated in bold letters, while the non-significant p-values are italicised. Only the results from the four most abundant Bacteroidetes classes are shown. One Bacteroidetes family was omitted from the analysis because only a single rare OTU was present in the

dataset.

Supplementary Figure 1. Principal coordinate analysis ordination of the (A) unweighted and (B) weighted UniFrac distance matrices of the soil samples where the DNA was extracted from fresh samples (green) or from the dried samples (brown). The duplicate fresh (green) samples for each site are replicate sequencing runs from the same PCR product, used as a reference point in assessing the level of variation that is present within sequenced samples. The communities from freshly extracted soil samples which were not included in the treatment study are colored in gray. The environmental parameters that were available for this small-scale study are the following pH, GSW, deg, slop, min, srd, tav, top, asp, aspv, swb, twi, sfro, Alt, and prc. Those parameters that were significant drivers of the bacterial communities (p > 0.05) are shown in the ordination space.

Supplementary Figure 2. Distribution of the bacterial community diversity measures across the alpine landscape. The Simpson's diversity, Faith's phylogenetic diversity, Pielou's equitability, and Good's coverage indices were 0.992 (s.d. 0.003), 157.3 (s.d. 20.8), 0.758 (s.d. 0.025), and 0.991 (s.d. 0.001), respectively. Base maps reproduced by permission of swisstopo (BA16075).

Supplementary Figure 3. The Spearman's rank based correlation networks of the 56 environmental variables measured for the 100 sites. Positive correlations have red edges, while the negative have blue edges. Only those edges with coefficients greater than \pm 0.5 are shown, and the edge thickness displays the strength of the correlation. Refer to Supplementary Table 1 for the complete explanation of the environmental parameter abbreviations. Note how several parameters are directly or indirectly dependent, for example Alt (altitude) with deg (degree), etc.

Hydrogen index (mg HC / gram TOC)

Supplementary Figure 4. Diversity indices of the alpine soil bacteria as a function of the hydrogen index (mg hydrocarbon/g TOC). Note that the hydrogen index indicates the amount of fresh organic matter that is present in the soil. (A) OTU richness, (B) Simpson's diversity, (C) Faith's phylogenetic diversity, (D) Pielou's equitability, and (E) Good's coverage.

Supplementary Figure 5. Diversity indices of the alpine soil bacteria as a function of the annual average number of frost days during the growing season (sfroyy). (A) OTU richness, (B) Simpson's diversity, (C) Faith's phylogenetic diversity, (D) Pielou's equitability, and (E) Good's coverage.

Supplementary Figure 6. Relationship between elevation, pH, hydrogen index, and annual average number of frost days during the growing season. (A) The soil pH across the elevation gradient; (B) the annual average number of frost days as a function of the soil hydrogen index; (C) the soil hydrogen index as a function of soil pH; (D) the soil hydrogen index across the elevation gradient; (E) the annual average number of frost days as a function of pH and (F) across the elevation gradient.

Supplementary Figure 7. Relationship between soil bacterial diversity and elevation. (A) Pielou's equitability index, and (B) Good's coverage index. Points correspond to individual sites. Quadratic trendlines are shown, which were calculated using the lm() function in R. the adjusted R squared values indicate the 'goodness of fit' of the bacterial diversity to respective trendlines. p-values indicate the significance of the overall model.

Supplementary Figure 8. Between class analysis of the alpine soil bacterial community structure (NMDS of the weighted UniFrac matrix) as a function of (A) soil pH and (B) elevation. The colors and ellipses show the respective pH or elevation groups.

Supplementary Figure 9. pH trend across the major classes within the Acidobacteria, Actinobacteria, and Proteobacteria for the 2011 samples (A-C) and 2012 samples (D-F).

Β

С

Gemmatimonadetes_Richness

Ε

40 60 80

Gemmatimonadetes_Richness

J

L

Gammaprot_Richness

Supplementary figure 10. Relationships between relative abundance, OTU richness, and pH of the most abundant taxonomic groups. (A) Acidobacteria, (B) Actinobacteria, (C) Bacteroidetes, (D) Chloroflexi, (E) Firmicutes, (F) Gemmatimonadetes, (G) Nitrospirae, (H) Planctomycetes, (I) Verrucomicrobia, (J) WS3, (K) Alphaproteobacteria, (L) Betaproteobacteria, (M) Deltaproteobacteria, and (N) Gammaproteobacteria.

Supplementary Figure 11. Relationship between Verrucomicrobial relative abundance and (A) the soil mineral carbon content and (B) the soil total organic carbon content.

Supplementary Figure 12. Proportion of Verrucomicrobial classes across the alpine landscape. (A) Verrucomicrobial OTU richness and (B) relative abundance in the respective sites.

Supplementary Figure 13. Distribution of Verrucomicrobial class richness and abundance across ordination space, respectively of the (A-B) Methylacidophiliae, (C-D) Pedosphaerae, (E-F) Spartobacteria, (G-H) Opitutae, (I-J) Verruco 5, and (K-L) Verrucomicrobiae. The bubble size depicts the relative richness or abundance of a Verrucomicrobial class at each sampling site, while the red contours show the smooth response surface of the respective richness or relative abundance. Only the most relevant environmental variables are shown as envfit vectors.

Supplementary Figure 14. Abundance vs. occupancy plot for the alpine soil bacterial OTUs determined according to a similarity threshold of 97%.

Supplementary Figure 15. Correlation between the relative abundance of Acidobacteria and soil pH at the class and OTU levels. Global co-occurrence networks with nodes color-coded according to the different classes of Acidobacteria: Solibacteres (red), DA052 (pink), Acidobacteriia (green), Acidobacteria-6 (blue), Chloracidobacteria (cyan), and other bacteria (gray). Positive correlations are red edges and negative correlations are blue edges. (A) Yifan Hu Multilevel network of the less commonly found bacterial OTUs; (B) Force Atlas 2 network of the more commonly found bacterial OTUs from just the major cluster excluding the module with the spurious correlations; and (C) the relative abundance of the different acidobacterial classes as a function of pH.

Supplementary Figure 16. Proportion of Bacteroidetes classes across the alpine landscape. (A) The OTU richness and (B) the relative abundance in the respective sites.

References

1. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. 2011. Generation of Multimillion-Sequence 16S rRNA Gene Libraries from Complex Microbial Communities by Assembling Paired-End Illumina Reads. Appl Env Microbiol 77:3846–3852.

2. Degnan PH, Ochman H. 2012. Illumina-based analysis of microbial community diversity. ISME J 6:183–194.

3. Hummelen R, Fernandes AD, Macklaim JM, Dickson RJ, Changalucha J, Gloor GB, Reid G. 2010. Deep Sequencing of the Vaginal Microbiota of Women with HIV. PLoS ONE 5:e12078.

4. Huws SA, Edwards JE, Kim EJ, Scollan ND. 2007. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. Journal of Microbiological Methods **70**:565–569.

Keijser BJF, Zaura E, Huse SM, van der Vossen JMBM, Schuren FHJ, Montijn RC, ten Cate JM, Crielaard W. 2008. Pyrosequencing analysis of the Oral Microflora of healthy adults. Journal of Dental Research 87:1016–1020.
Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, Schrenzel J, François P. 2009. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. Journal of Microbiological Methods 79:266–271.

7. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. 2007. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl Acids Res 35:e120.

8. **Sogin ML**, **Morrison HG**, **Huber JA**, **Welch DM**, **Huse SM**, **Neal PR**, **Arrieta JM**, **Herndl GJ**. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere." Proceedings of the National Academy of Sciences 103:12115–12120.

9. **Wang Y**, **Qian P-Y**. 2009. Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE **4**:e7401.