Supplementary Tables and Figures

Name	Forward primer	Reverse primer	Purpose
	ggggtaccCTGGGAGATTTCTTCT	cgggatccTCGAGTCCATGAGGC	
Ghd2-OE	GTTT	ATA	Overexpression
	ggggtaccCTGGGAGATTTCTTCT	cgggatccGGTGACGGCGCACGG	Overexpression
Ghd2-flag	GTTT	GGC	(3×flag)
	cgcggatccCTGGGAGATTTCTTCT	cgcggatccCTTGACGAACCGGC	Subcellular
Ghd2-sub	GTT	CCTT	localization
	ggcaATCCTCATCGTGCTTCAAG	aaacCCTTGAAGCACGATGAG	
Ghd2-grna	G	GAT	CRISPR
Ghd2-cas-P			PCR for
CR	TTTGTGCTGGGAGATTTCTT	GCCTCGTAGTTGAGCCTGA	sequencing
Ghd2-cas-s			
eq	TCGGTGGAGGAGGAGGCG		Sequencing
CAS9-PCR	GCATGAAGAGGATCGAGGAG	GATCTCTTGCTCGGACTTGG	CAS9 detection
HPT-PCR	TACACAGCCATCGGTCCAGA	TAGGAGGGCGTGGATATGTC	HPT detection
Ghd2-probe	ATGGTCGAAGCGCAA	ACAACCCCGAGTAATGG	Northern
1	cgcggatccCTGGGAGATTTCTTCT	ggggtaccGGTGACGGCGCACGG	
Ghd2-BiFC	GTT	GGC	
GF14b-BiF	cgggatccGGCATTTGTAGAGTTT	cgggatccCTGCCCTCGCTGGA	
С	TTAGAT	GT	
GF14c-BiF	cgggatccTAATCCCTTAATTGGT	cgggatccCTGGCCCTCGCAGGC	BiFC
С	CAAA	GT	
OsARID3-	cgggatccGCATCTGGATTTGAGC	cgggatccCATTAACTTTGACTGC	
BiFC	СТА	TCGAA	
	attB1TGAGCTGCAGCTCGGAGA	attB2-TCGAGTCCATGAGGCAT	
Ghd2-Y2H	A	ACG	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaCTCCTCCACCGACGC	
N1	AA	С	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaTGCGGCCGCCGCGT	
N2	АА	САТС	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaATCCGGGAGCTGCT	
N3	AA	GCAC	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaCAGCTCGTTGCTGTC	Y2H
N4	АА	GTC	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaGCTGTTGGAGGCAA	
N5	AA	CACC	
Ghd2-Y2H-	attB1-TGAGCTGCAGCTCGGAG	attB2-cctaCACCGTCATCATCCC	
N6	AA	CAC	
Ghd2-Y2H-	attB1-TGGGGATGATGACGGTG	attB2-TCGAGTCCATGAGGCAT	
C1	A	ACG	

Supplementary Table S1. Primers used in this study.

Ghd2-Y2H-		attB2-TCGAGTCCATGAGGCAT	
C2	attB1-GGGTATCTCTCCCATCAT	ACG	
Ghd2-Y2H-		attB2-TCGAGTCCATGAGGCAT	
C3	attB1-TGCAGGACTCGTTCTACA	ACG	
Ghd2-Y2H-		attB2-TCGAGTCCATGAGGCAT	
C4	attB1-GCTTTGTCAACTTCGAAC	ACG	
Ghd2-Y2H-		attB2-TCGAGTCCATGAGGCAT	
C5	attB1-CCTCATCGTGCTTCAAGG	ACG	
Ghd2-Y2H-	attB1-CGGCGGCGGCGGTGGGG	attB2-TCGAGTCCATGAGGCAT	
C6	А	ACG	
Ghd2-none	cgggatccCTGGGAGATTTCTTCT GTTT	<i>ggggtacc</i> TCGAGTCCATGAGGC ATA	
Ghd2-gal4	cgggatccAGCTGCAGCTCGGAGA	ggggtaccTCGAGTCCATGAGGC	
BD	AG	ATA	
	cccaagcttGAAACGAGAACTACG	gaagatctCACGCACTGTCAACG	
ICL-190	ACGAGC	ATGAG	
	cccaagctfTCTGTGAGACAGATAG	gaagatctGTGTGAGTAGAAAAT	
MS-190	GTGGA	GGGAGT	
OsPPDKB-	gaagatctCCGTGTTTCACTGTTTC	gaagatctCGATCTCCCCTCCAAC	LUC assay in
190	CCAATGTC	TCCAAGC	protoplasts
0 4 6 1 100	cccaagcttGACAAATACGCTGAA	gaagatctGCCGCGAGGATTACT	
<i>OsAS1</i> -190	TGCATA	ACC	
	cccaagcttCGCTCTCGTTCATCCT	gaagatctGCCTAACAACCAAAA	
OsSGR-190	GTT	CGACTC	
OsNYC3-19	cgggatccAATCGTAGACCTCAAA	cgggatccCAGGAAGAAAAAAA	
0	ACCC	GACATAGC	
OsPAO-19 cccaagcttGCCTGCACCAGGGTA		gaagatctGAAGAAGAGAGTAGG	
0	AAG	AAACGGA	
Ghd2-qRT	TTGCCTCCAACAGCAGGG	GCTTCGGATGAGCGCG	
ICL-qRT	GACAGGGCCTGGAAGTGAGA	CCTCTGAATAATCCTCATCAC ATCCT	
	ACTTCTCCGAGTACTTTGCTCA	TCTAGTGCAAACAAACAGGA	
MS-qRT	TACTT	ATTGT	
OsAS1-qRT	TGTGCCGTTCCTCGACAA	TTCCACTCAGGGTCCATGCT	
<i>OsSGR</i> -qR T	TTCGTTTGGTTGCCATGGTA	AGCACGCAGCGTCATTTG	qPCR
<i>OsNYC1-</i> q RT	GTCGTCTGCGCATTCATAATTC	GGGATCATGTGCCTGGAAGA	
<i>OsNYC3-</i> q RT	TGTGTGCTCCAAAGGGACAA	CCCTGCCTTTGGCACCTA	
Ubi-qRT	AACCAGCTGAGGCCCAAGA	ACGATTGATTTAACCAGTCCA	

Normal growth			Drought stress			
Name	Replicate	Replicate	Replicate	Replicate	Replicate	Replicate
	1	2	3	1	2	3
OsK	277.1	264.6	332.5	154.2	139.7	155.4
OsL	156.8	185.6	209.3	15.2	18.5	20.9
OsJ	828.5	780	1075	373	319.9	360

Supplementary Table S2. Public microarray results of *OsK*, *OsL*, and *OsJ* in response to drought stress treatment at 7-day-old seedling stage.

Supplementary Table S3. Public microarray results of *OsK* in response to drought stress treatment in three rice organs.

Organ	Drought-1		Drought-2		Drought-3	
	LogRatio	P-value	LogRatio	P-value	LogRatio	P-value
Flag leaf	-0.317	2.35E-02	-0.233	1.58E-01	-0.805	2.15E-02
Shoot	-0.242	2.79E-01	-0.016	8.49E-01	-0.975	1.10E-04
Panicle	N/A	N/A	N/A	N/A	-1.221	3.58E-02

GO Term		Count ^a	<i>P</i> -value			
Biological pro	cess					
GO:0003333	amino acid transmembrane transport	36	1.20E-06			
GO:0098656	anion transmembrane transport	65	3.10E-06			
GO:0006787	porphyrin-containing compound catabolic process	25	3.70E-06			
GO:0033015	tetrapyrrole catabolic process	25	3.70E-06			
GO:0051187	cofactor catabolic process	28	6.70E-06			
GO:0015849	organic acid transport	129	3.80E-05			
GO:0046942	carboxylic acid transport	129	3.80E-05			
GO:0015996	chlorophyll catabolic process	23	6.60E-05			
GO:0046149	pigment catabolic process	24	7.90E-05			
GO:0006865	amino acid transport	75	8.90E-05			
Molecular fun	ction					
GO:0015171	amino acid transmembrane transporter activity	71	6.60E-05			
GO:0005342	organic acid transmembrane transporter activity	105	7.50E-05			
GO:0046943	carboxylic acid transmembrane transporter activity	105	7.50E-05			
GO:0015293	symporter activity	126	0.00023			
GO:0008514	organic anion transmembrane transporter activity	131	0.0003			
GO:0015294	solute:cation symporter activity	37	0.00045			
GO:0016746	transferase activity, transferring acyl groups	344	0.00056			
GO:0008509	anion transmembrane transporter activity	200	0.00078			
GO:0016798	hydrolase activity, acting on glycosyl bonds	363	0.00087			
GO:0016747	transferase activity, transferring acyl groups other than amino-acyl groups	308	0.00089			
Cellular component						
GO:0000329	fungal-type vacuole membrane	14	0.00015			
GO:0000324	fungal-type vacuole	15	0.00019			
GO:0009570	chloroplast stroma	331	0.00024			
GO:0009532	plastid stroma	335	0.00026			
GO:0000322	storage vacuole	17	0.00028			
GO:0044434	chloroplast part	651	0.00151			
GO:0009536	plastid	1784	0.00202			
GO:0044435	plastid part	686	0.0024			
GO:0009507	chloroplast	1755	0.00349			
GO:0000323	lytic vacuole	88	0.00478			

Supplementary Table S4. GO analysis of up-regulated DEGs in the Ghd2-OE plants during drought stress treatment.

Note: The listed terms is top ten overrepresented GO terms according to the *P*-value.

^a The number of differential expressed genes fall in each GO in the *Ghd2*-overexpressing lines.

Supplementary Figure S1. Expression level and copy number detection by Northern and Southern blot respectively. Southern blot analysis used hygromycin resistance gene as a probe. (A) The *Ghd2*-OE lines were identified by Northern blot analysis. (B) Copy number of the *Ghd2*-OE lines detected by Southern blot analysis. (C) Copy number detection of the *Ghd2*-CRISPR lines by Southern blot analysis. Probes of (A) and (B) were radio-labeled, and probe for (C) was digoxigenin-labeled.

Supplementary Figure S2. Phenotypes of the *Ghd2*-OE plants with respect to grain number, plant height, and heading date. (A) Phenotypes of the *Ghd2*-OE and ZH11 plants on heading date. (B) Phenotypes of the *Ghd2*-OE and ZH11 plants on grain number per main panicle. (C) Plant height of the *Ghd2*-OE and ZH11 plants. Data represent the mean \pm SE (n=9). ****P*<0.005, *t*-test.

Supplementary Figure S3. Phenotypes of the *Ghd2*-OE plants at 60 DAG and the *Ghd2*-CRISPR plants at the seedling stage under drought stress treatment. (A) Phenotypes of the *Ghd2*-OE21 plants at 60 DAG under drought stress treatment in the field. (B) Phenotypes of the *Ghd2*-CRISPR plants at the seedling stage under drought stress treatment.

Supplementary Figure S4. Stomata and water loss rate in the *Ghd2*-OE and WT' plants. (A-B), SEM images of the *Ghd2*-OE (A) and WT' (B) plant leaves under drought stress. The open and closed stomata are indicated by white and black arrows respectively. (C-D), Stomata density (C) and percentage of open stomata (D) in the overexpression (Ghd2-OE (+)) and WT' control (Ghd2-OE (-)) plant leaves under drought stress. (E) Water loss rate in detached rice leaves of the *Ghd2*-OE and WT' control plants (n=3).

Figure S5. H_2O_2 content in the *Ghd2*-CRISPR and WT plants under the drought stress treatment. (A) DAB staining of leaves in the *Ghd2*-CRISPR and ZH11 plants during the drought stress. (B) H_2O_2 content measurement in the leaves of the *Ghd2*-CRISPR lines (C-8 and C-17) and ZH11 plants during the drought stress. ****P*<0.005, *t*-test. FW, Fresh Weight.

Supplementary Figure S6. Diurnal expression levels of *Ghd2*, *OsPURa*, *OsARID3*, and *14-3-3s* in rice leaves at different developmental stages. Numbers from 1 to 8 in the *x*-axis refer to "vegetative 1", "vegetative 2", "vegetative 3", "vegetative reproductive", "reproductive 1", "reproductive ripening", "ripening 1", "ripening 2", respectively (as named in the website), and the *y*-axis indicates time points of each gene from am10:00 to am 8:00. Original data was obtained from rice expression database (http://ricexpro.dna.affrc.go.jp/) and analyzed using Heatmap Illustrator.

Supplementary Figure S7. Ghd2 is located in the nucleus and functions as a transcriptional activator. (A) Nuclear localization of Ghd2 in rice protoplast. Nuclear localized CCT domain containing protein Ghd7 was used as a maker to show the nucleus. (B) The activation assay of a series of deletion mutants of Ghd2 in yeast to show the transactivation activity.