SUPPLEMENTARY FIGURE LEGENDS

Sup. Fig. 1. ER retention of ATP7B^{H1069Q} mutant does not require activation of MEK/ERK signaling pathway.

(A) HepG2 cells were infected with Ad-ATP7B^{WT}-GFP or Ad-ATP7B^{H1069Q}-GFP and prepared western blot to reveal levels of phosphorylated and total ERK (p-ERK and ERK respectively). Both p-ERK and ERK levels did not exhibit significant changes in cells expressing ATP7B^{H1069Q} mutant. (B) HepG2 cells were infected withAd-ATP7B^{H1069Q}-GFP and incubated for 2h with BCS. Specific inhibitors of MEK/ERK, PD318088 (5 μ M) or GSK1120212 (5 μ M), were added to the cells 24h before fixation (as indicated in corresponding panels). Fixed cells were than labeled for TGN46 and visualized under confocal microscope. Treatment with each inhibitor did not recover ATP7B^{H1069Q} from the ER to the TGN. Scale bar: 5 μ m (B).

Sup. Fig. 2. Characterization of the impact of p38 and JNK inhibitors on trafficking of ATP7B and its mutant.

(A) Hela cells were infected with Ad-ATP7B^{WT}-GFP incubated overnight exposure to 200 μ M BCS and fixed or incubated for additional 2h with 100 μ M CuSO₄ (as indicated on panels). ATP7B^{WT} moves from the Golgi (arrowheads) to PM and vesicles (arrows) in response to CuSO₄. p38 inhibitor SB202190 (5 μ M) or JNK inhibitor SP600125 (2 μ M) were added to the cells 24h before fixation (as indicated in corresponding panels). Both inhibitors did not affect ability of ATP7B^{WT} to traffic from the Golgi to PM and vesicles (arrows in bottom row) in response to increased Cu. (B) Hela cells were infected with Ad-ATP7B^{H1069Q}-GFP fo 2h with 100 μ M CuSO₄ (as indicated on panels). p38 inhibitor SB202190 or JNK inhibitor SP600125 were added to the cells 24h before fixation at different concentrations. Then the cells were stained for TGN46 and analyzed under confocal microscope. Percentage of the cells (average ± SD, n=10 fields) with ATP7B signal in the ER was calculated. Both p38 and JNK inhibitors reduced percentage of the

cells that exhibit ATP7B^{H1069Q} in the ER in concentration-dependent manner. Scale bar: 5 μ m (A).

Sup. Fig. 3. p38 inhibitor, JNK inhibitor or their mixture correct ATP7B^{H1069Q} localization with similar strength.

(A) HeLa cells were infected with Ad-ATP7B^{WT}-GFP or Ad-ATP7B^{H1069Q}-GFP, incubated for 2h with 200 µM BCS and fixed. p38 inhibitor SB202190 (5µM) or JNK inhibitor SP600125 (2µM) or mixture of both inhibitors were added to the cells 24h before fixation (as indicated in corresponding panels). Fixed cells were than labeled for TGN46 and visualized under confocal microscope. p38 and JNK inhibitors as well as their mixture corrected ATP7B^{H1069Q} from the ER to the Golgi with similar amplitude. (B) Fluorescence of ATP7B signal in the Golgi (average \pm SD, n=40 cells) was quantified and normalized to total cell fluorescence. p38 and JNK inhibitors (or their mixture) caused increase of ATP7B^{H1069Q} signal in the Golgi region. Exposure of the cells to the mixture of inhibitors does not significantly increase ATP7B^{H1069Q} signal in the Golgi when compared to each inhibitor alone. (C) The percentage of the cells (average \pm SD, n=10 fields) with an ATP7B signal in the ER, or Golgi was calculated. p38 and JNK inhibitors alone as well as their combination reduced the percentage of the cells exhibiting ATP7B^{H1069Q} in the ER and increases the number of cells in which the mutant was corrected to the Golgi. Single inhibitors and their mixture exhibit similar strength in correction of ATP7B^{H1069Q} intracellular phenotype. ***- p<0.001; **- p<0.01; *p < 0.05; ns – p > 0.05 (t-test). Scale bar: 5 μ m (A).

Sup. Fig. 4. Acute treatment with p38 or JNK inhibitor does not rescue ATP7B^{H1069Q} mutant from the ER.

(A) HeLa cells were infected with Ad-ATP7B^{H1069Q}-GFP and incubated for 2h with 100 μ M CuSO₄. p38 inhibitor or JNK inhibitor were added to the cells 1h before fixation (as indicated in corresponding panels). Fixed cells were than labeled for TGN46 and visualized under confocal microscope. Short-term treatment with either p38 orJNK inhibitor did not recover ATP7B^{H1069Q} from the ER. (B) Percentage of the cells (average \pm SD, n=10 fields) with ATP7B signal in the ER, was calculated. Both p38 and JNK

inhibitors did not reduce percentage of the cells that exhibit $ATP7B^{H1069Q}$ in the ER after 1h treatment. Scale bar: 5 µm (A).

Sup. Fig. 5. p38 and JNK inhibitors increase ATP7B^{H1069Q} amounts in plasma membrane subcellular fraction.

(A) HepG2 cells were infected with Ad-ATP7B^{WT}-GFP and incubated for 2h with 100 µM CuSO₄. The cells were then subjected to subcellular fractionation (see Methods) and isolated membrane fractions labeled with different markers. Western blot indicates that ATP7B^{WT} was enriched in fractions #5 and #10. However, fractions #2-5 were crosscontaminated with ER (PDI), Golgi (GM130) and at some extent with plasma membrane (Na/K-ATPase) indicating poor separation between corresponding organelles. In contrast, fraction #10 contained only Na/K-ATPase demonstrating significant enrichment in plasma membranes (PMs). Therefore, Na/K-ATPase positive PM fractions were used further for evaluation of $ATP7B^{WT}$ or $ATP7B^{H1069Q}$ delivery to the cell surface. (B) HepG2 cells were infected with Ad-ATP7B^{WT}-GFP or Ad-ATP7B^{H1069Q}-GFP and treated with CuSO₄ and subjected to fractionation as in panel A. p38 inhibitor or JNK inhibitor were added to the cells 24h before fractionation procedure. Light PM fractions (#10-12) were prepared for Western blot and labeled with antibodies against GFP and against Na/K-ATPase. Na/K-ATPase-positive PM fractions from the p38 inhibitor- or JNK inhibitor-treated cells exhibit higher amounts of ATP7B^{H1069Q} then the same fractions from untreated cells indicating that both inhibitors facilitate ATP7B^{H1069Q} delivery to the cell surface. (C) ATP7B signal in fractions #10 (shown in panel B) was quantified using ImageJ software and normalized for Na/K-ATPase signal in corresponding lanes. Plot shows that both p38 and JNK inhibitors increase quantities of ATP7B^{H1069Q} associated with PM fractions.

Sup. Fig. 6. Suppression of p38 and JNK allows ATP7B^{H1069Q} to reach canalicular surface of polarized HepG2 cells.

HepG2 cells were grown at the conditions that allow their full polarization (see Methods). Then the cells were infected with Ad-ATP7B^{WT}-GFP (A) or Ad-ATP7B^{H1069Q}-GFP (B-D) and incubated for 4h with 100 μ M CuSO₄. p38 (C) or JNK (D) inhibitors were added

to the cells 24h before fixation. Fixed cells were labeled for canalicular marker MRP2 and visualized under confocal microscope. Cu induces delivery of $ATP7B^{WT}$ to the canalicular domain (A, arrows) while the mutant remains retained within the ER and does not reach the canalicular srface (B, arrows). Both p38 and JNK inhibitors allows $ATP7B^{H1069Q}$ to de delivered to the canalicular domain (C, D; arrows) in polarized HepG2 cells. Scale bar: 4 µm (A-D).

Sup. Fig. 7. Inhibitors of p38 and JNK reduce copper levels in cells expressing ATP7B^{H1069Q} mutant.

HepG2 cells were infected with Ad-ATP7B^{WT}-GFP (A) or Ad-ATP7B^{H1069Q}-GFP (B-D), incubated for 2h with 100 μ M CuSO₄ and loaded with CS3 before fixation. p38 (C) or JNK (D) inhibitors was added to the cells 24h before fixation. (**A**, **B**) Cells expressing ATP7B^{H1069Q} exhibit higher CS3 signal (and hence Cu levels) than cells expressing ATP7B^{WT}. Arrows in B indicate ATP7B^{H1069Q} –negative cells, which display CS3 levels similar to those detected in the neighbor cell expressing the mutant. This indicates that expression of mutant does not allow cells to efflux Cu efficiently. (**C**, **D**) Both p38 and JNK inhibitors decrease CS3 fluorescence in ATP7B^{H1069Q}-expressing cells. Arrows in C and D show higher CS3 levels in cells expressing lower ATP7B^{H1069Q} amounts, indicating that capacity of p38/JNK-inhibitor treated cells to eliminate Cu correlates to amount of the expressed mutant. Scale bar: 10 µm (A-D).

Sup. Fig. 8. Inhibitors of p38 and JNK do not impact trafficking of VSVG.

(A) HeLa cells were transfected with DNA encoding temperature-sensitive version of VSVG-GFP, incubated overnight at 40°C to block the newly-synthetized protein in the ER and fixed directly (left column) or incubated at 32°C for additional time periods (to activate VSVG-GFP trafficking) as indicated in panels. p38 inhibitor (mid row) or JNK inhibitor (bottom row) were added to the cells 24h before fixation. Fixed cells were than analyzed using confocal microscopy. Both p38 and JNK inhibitors did not affect VSVG delivery from the ER to the Golgi (arrowheads) and further to the PM (arrows). (B) Percentage of the cells (average \pm SD, n=10 fields) with ATP7B signal in the ER, Golgi or PM was calculated. Cells exhibit similar dynamics of VSVG progression through the

secretory pathway in control cells and in cells treated with p38 or JNK inhibitor. Scale bar: $5.2 \ \mu m$ (A).

Sup. Fig. 9. p38 and JNK inhibitors does not affect interaction of ATP7B^{H1069Q} with COMMD1.

(A) HepG2 cells expressing COMMD1-GST were infected with Ad-ATP7B^{WT}-GFP or Ad-ATP7B^{H1069Q}-GFP, incubated for 2h with 100 μ M CuSO₄ and lysed. ATP7B^{WT} and ATP7B^{H1069Q} we pulled down from lysates using anti-GFP antibody. Both immuno-precipitates (IPs) and total cell lysates were subjected to Western blot to reveal ATP7B and COMMD1. Western blot shows higher levels of COMMD1 in ATP7B^{H1069Q} IP, indicating enhanced interaction of the mutant with COMMD1. (**B**) HepG2 cells expressing COMMD1-GST were infected with Ad-ATP7B^{H1069Q}-GFP, treated with Cu and prepared for IP and Western blot as described in panel A. p38 or JNK inhibitor was added to the cells 24h before they were lysed. Neither inhibitor reduced COMMD1 binding to ATP7B^{H1069Q}, indicating that this interaction is unlikely to be involved in mutant correction by p38 or JNK inhibitors.

Fig. S1. Chesi et al.

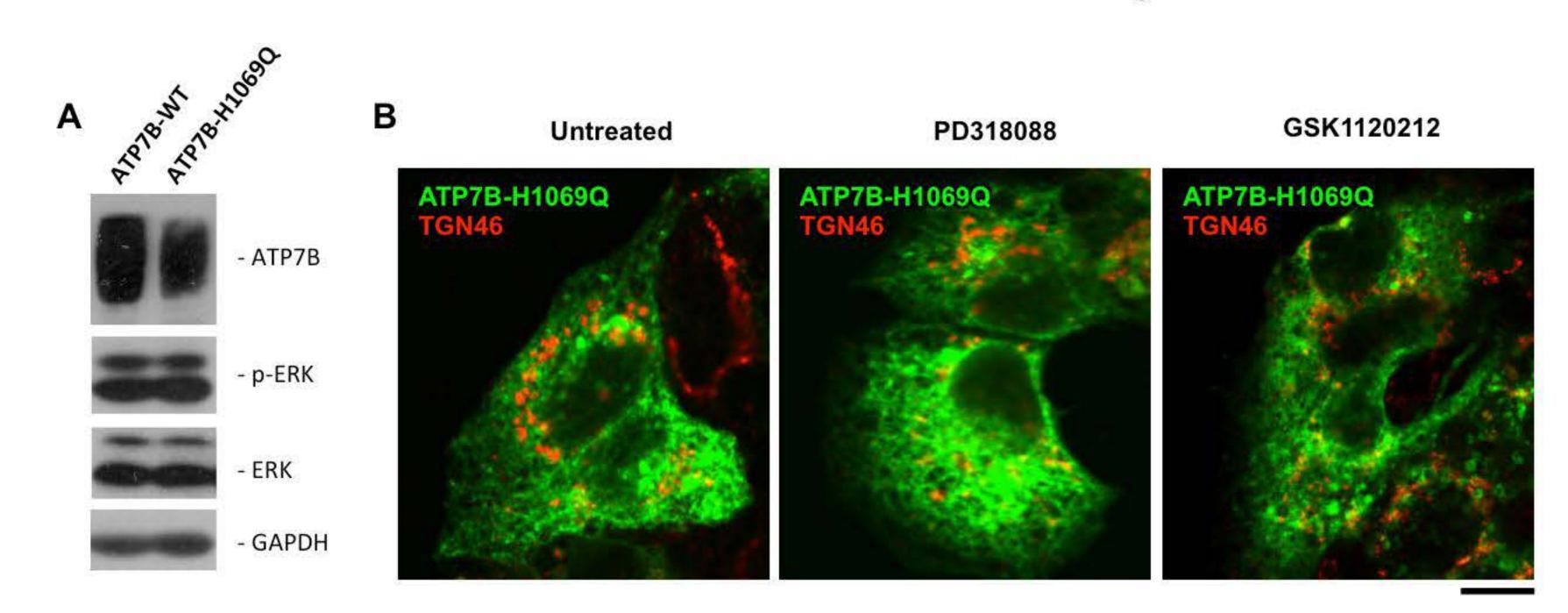
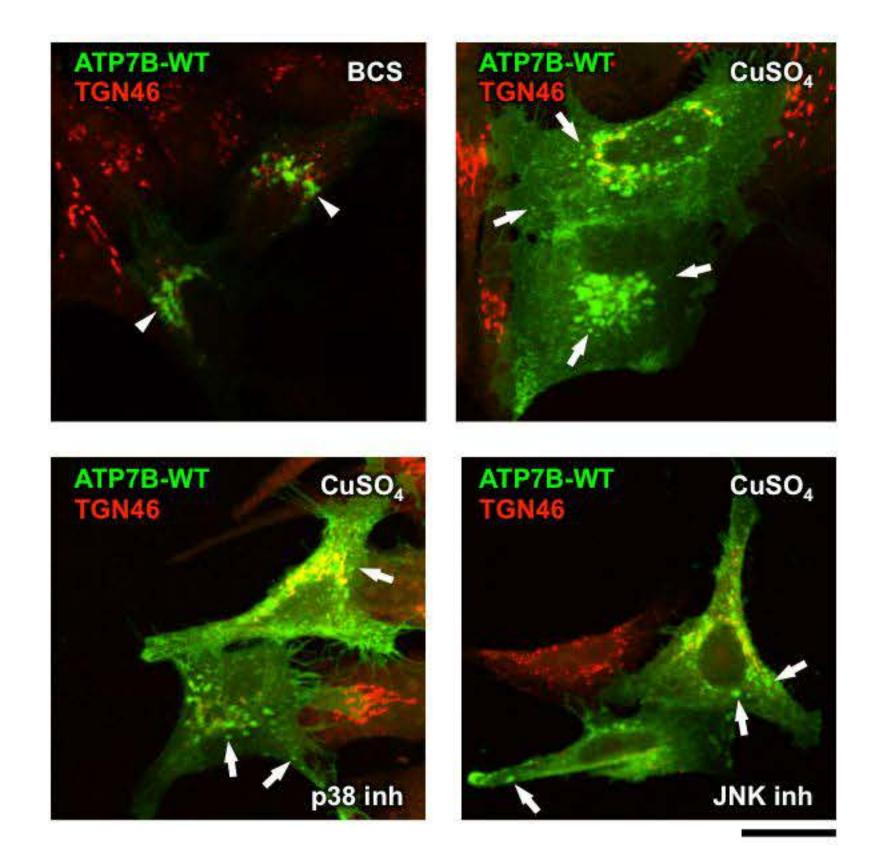



Fig. S2. Chesi et al.

Α

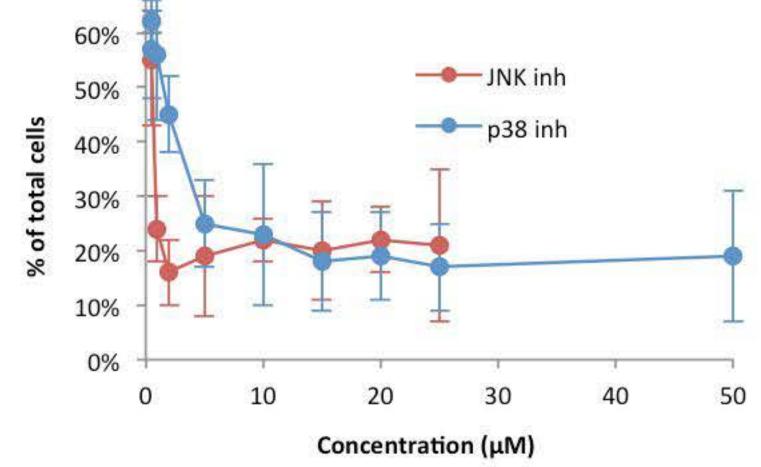
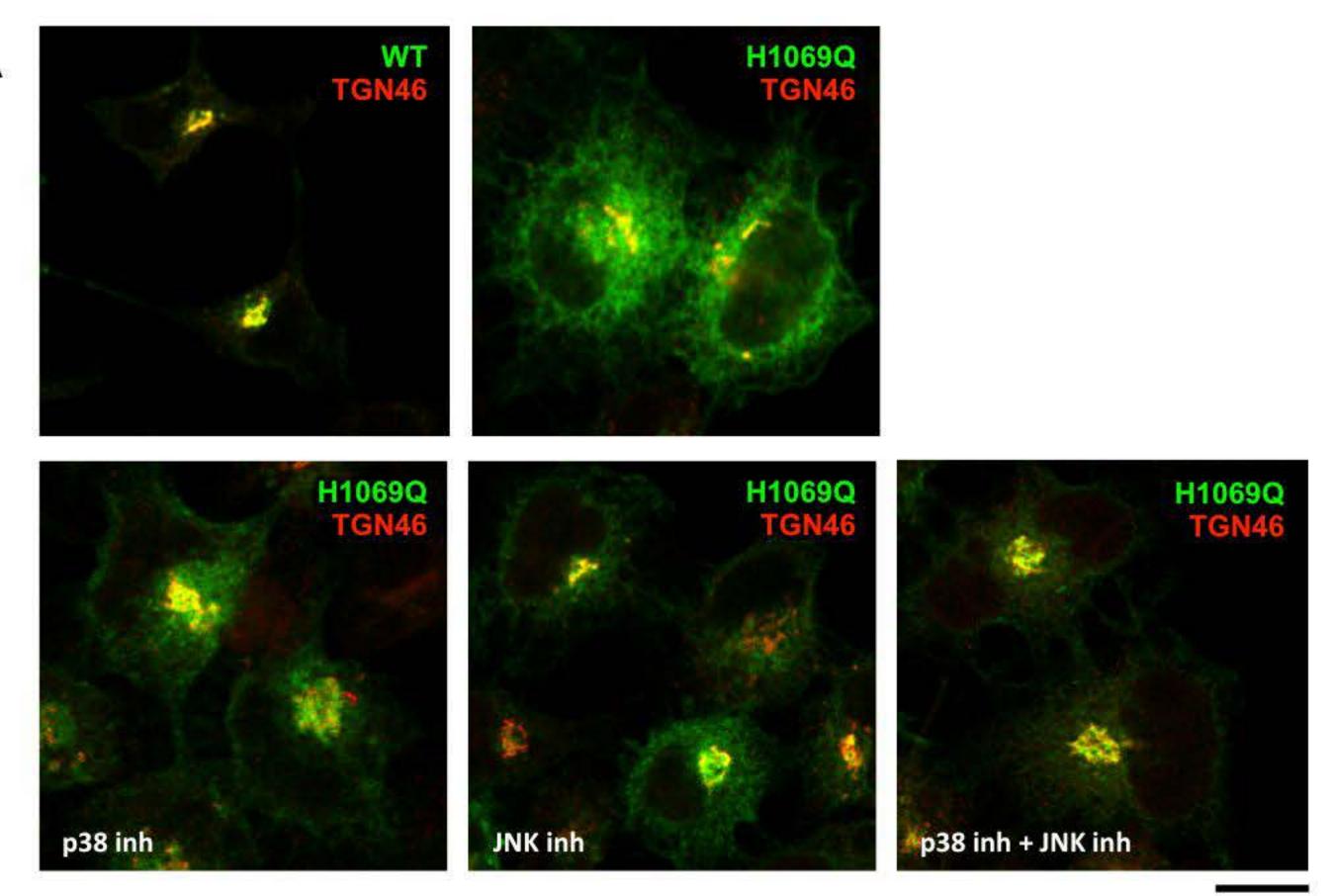
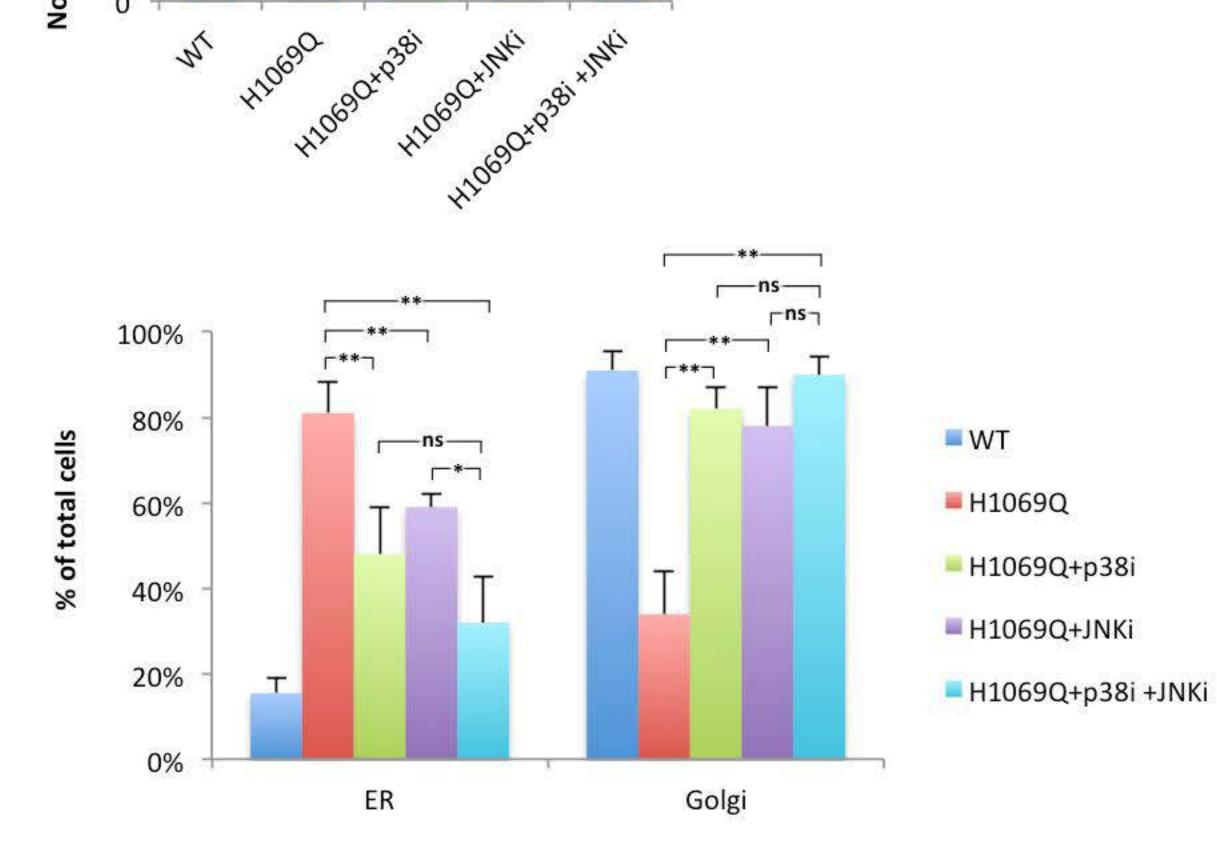



Fig. S3. Chesi et al.



-***

т

Α

-ns-

4

3

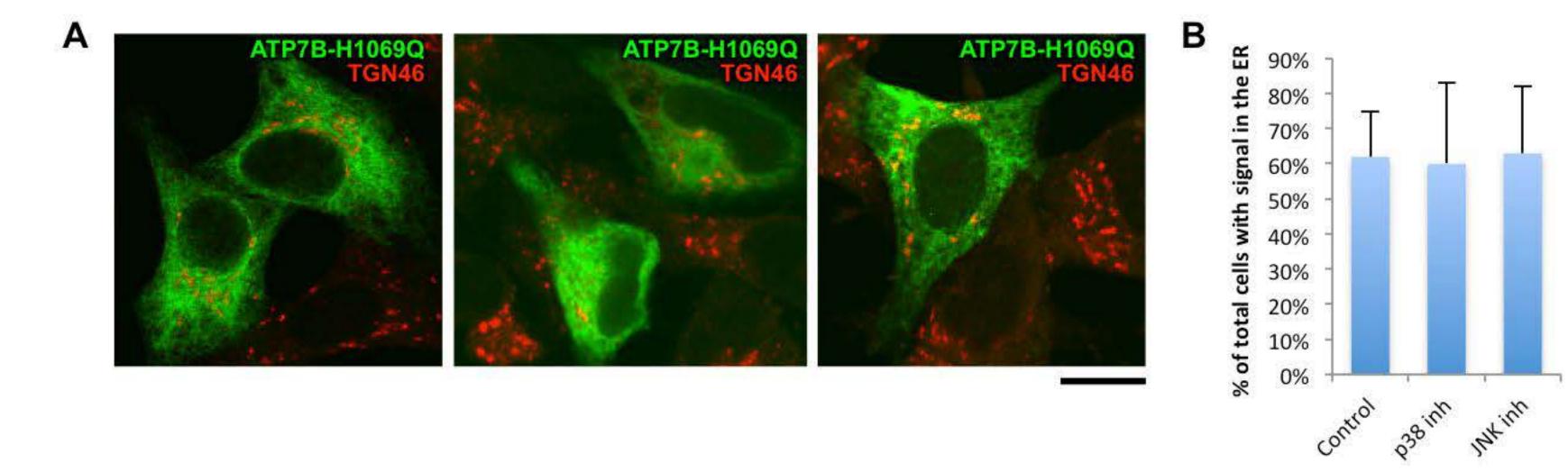
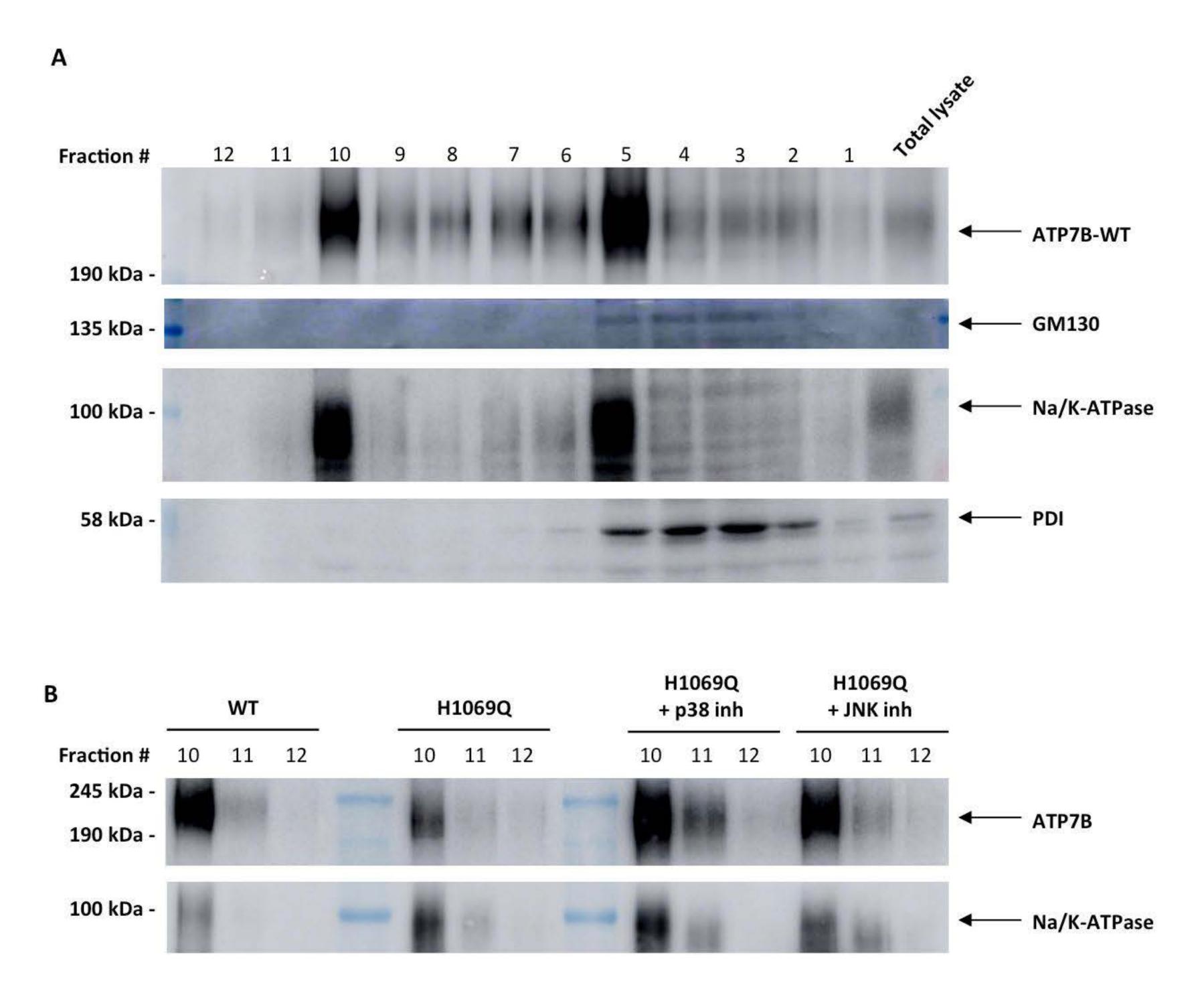
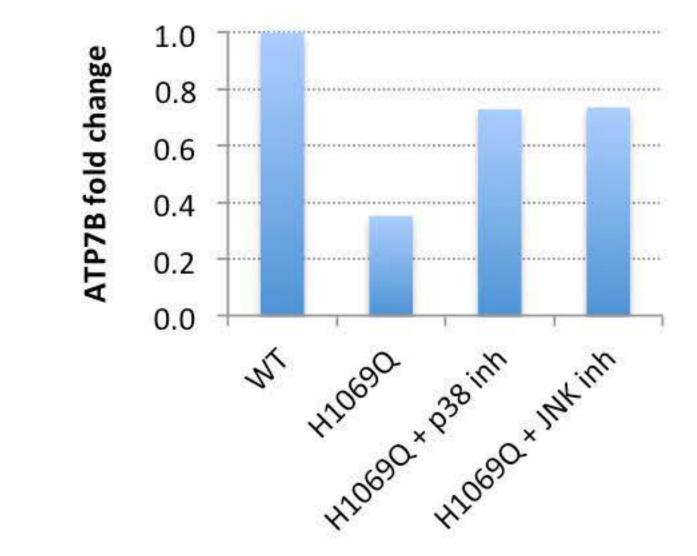
2

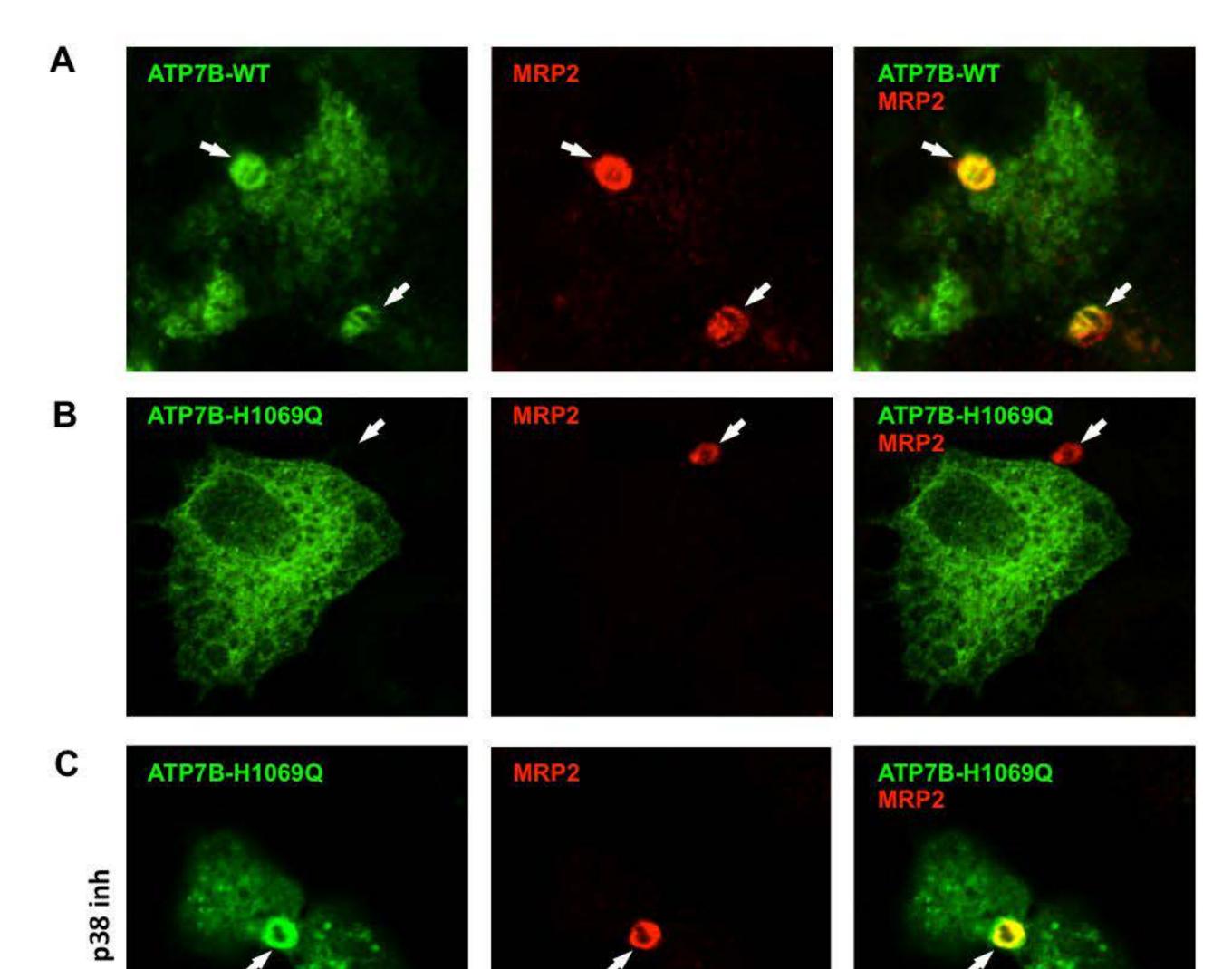
1

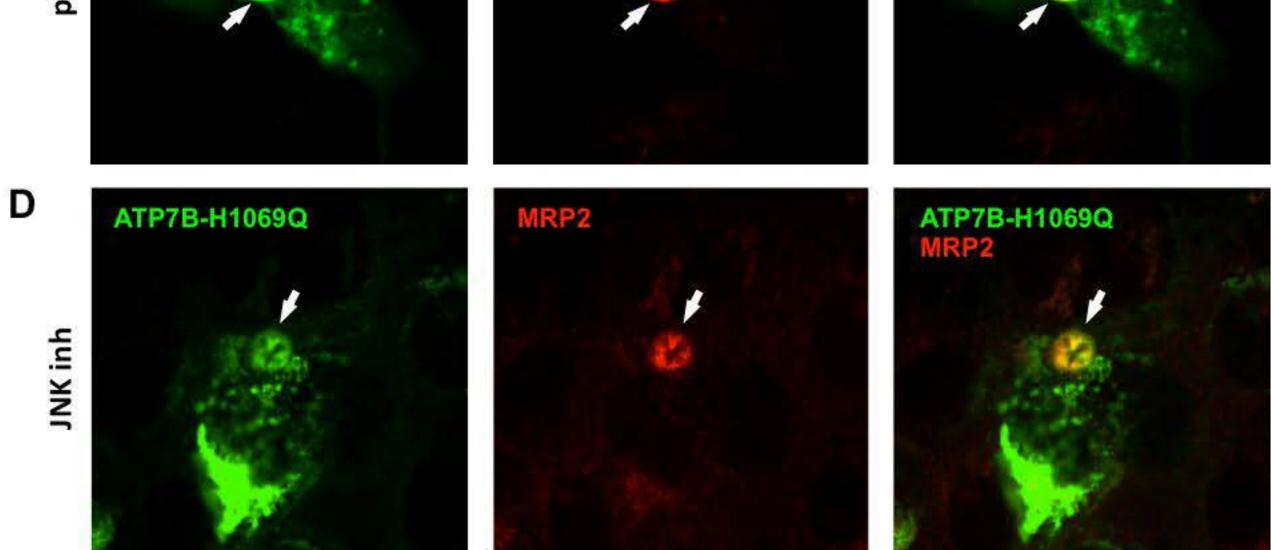
0

С

Fig. S4. Chesi et al.


Fig. S5. Chesi et al.



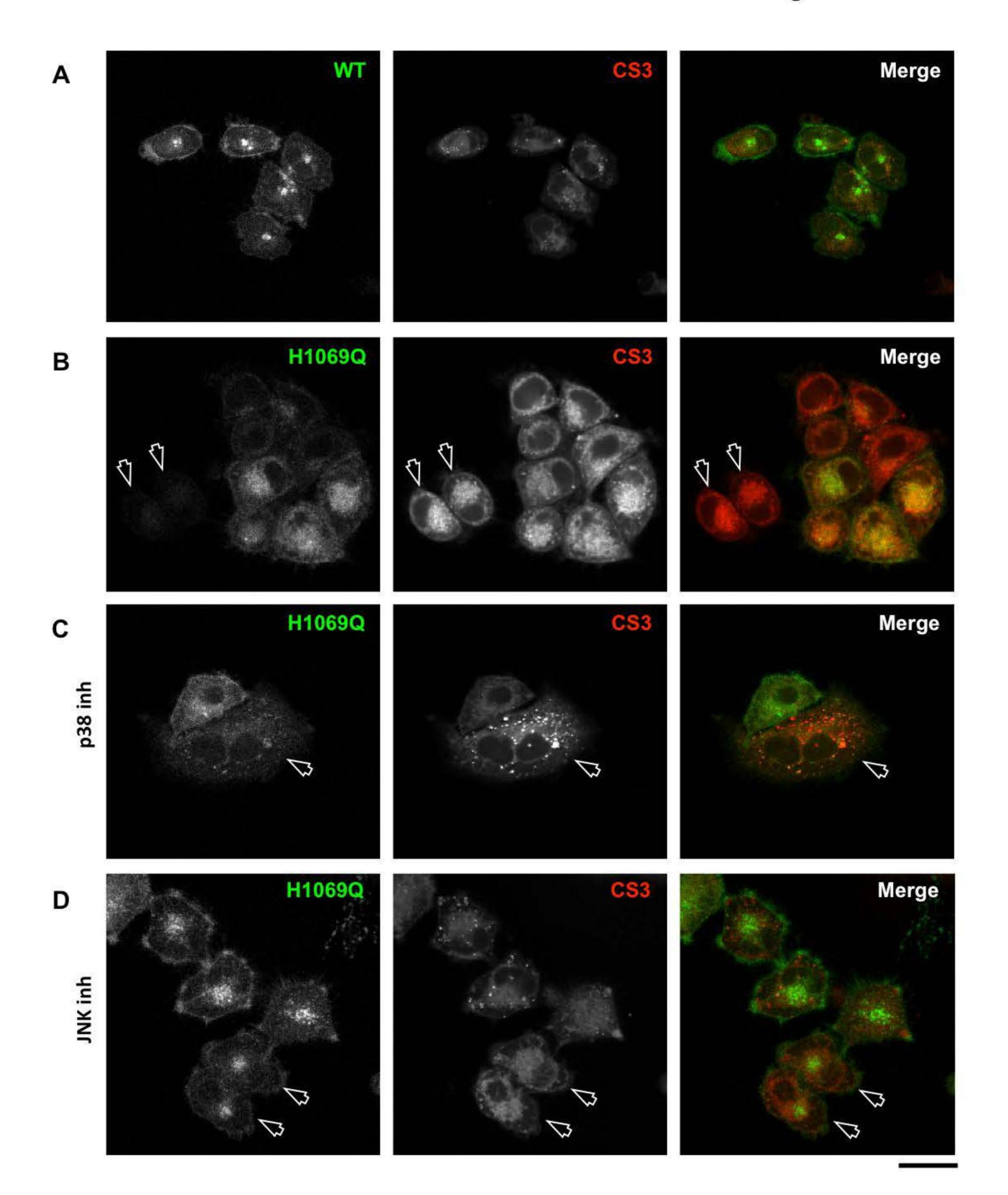

С

Fig. S6. Chesi et al.

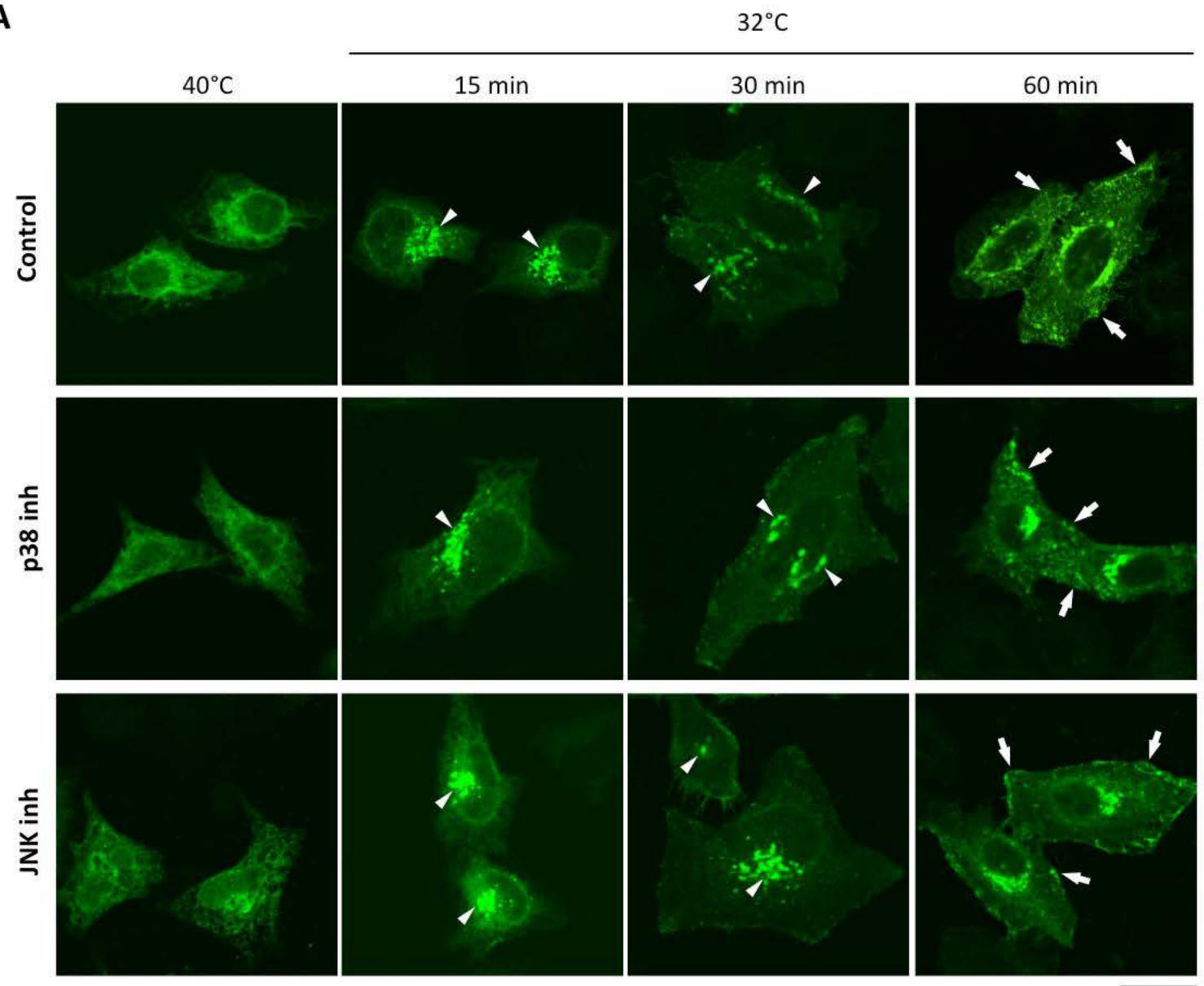
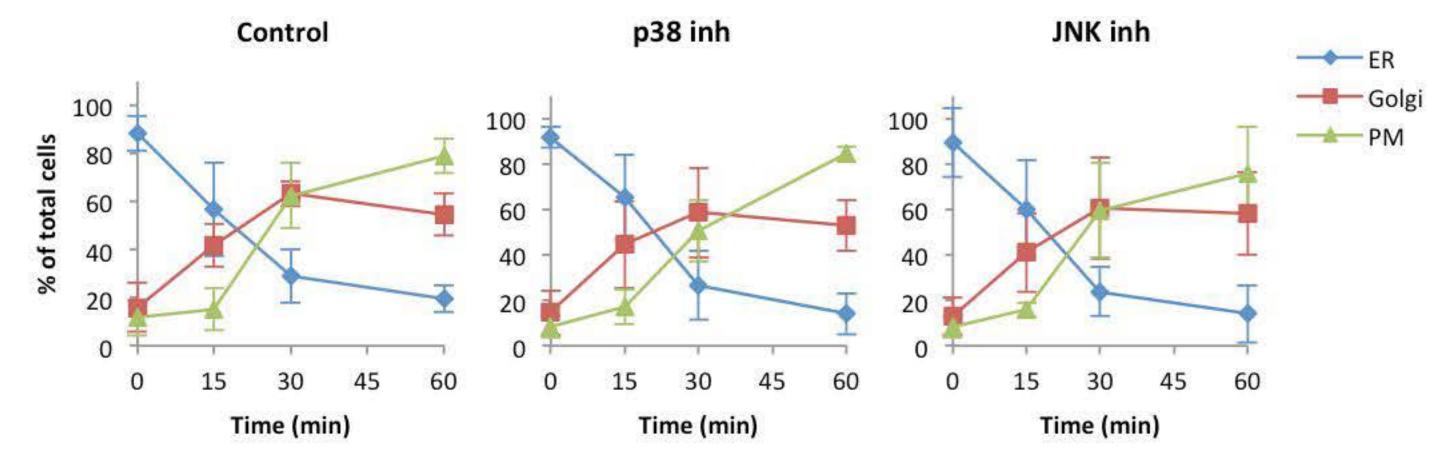


Fig. S7. Chesi et al.


Fig. S8. Chesi et al.

Α

В

SUPPLEMENTARY TABLE 1. Gene ontology (GO) categories of genes differentially expressed in ATP7B-H1069Q expressing cells versus ATP7B-WT expressing cells.

Gene Ontology (GO) Categories	Gene Ontology (GO) ID	Number of differentially expressed Genes with this GO category	Name of differentially expressed Genes with this GO category	Population Hits (PH)	Population Total (PT)	Fold Enrichment (FE)	False Discovery Rate (FDR)
regulation of apoptosis	GO:0042981	41	CADM1, MCL1, CLU, TAF9B, SOX4, CDH1, CHEK2, SFN, PTEN, MAGED1, TDGF3, NOD2, TP5313, CDKN2A, SOSTM1, CDKN2C, CDKN2D, AGT, TDGF1, PYCARD, FAIM, CAT, FAS, FOSL1, HELLS, MAP2K6, KNG1, TXNIP, DEPDC6, MSH6, LGALS1, ITGA1, SKP2, BIRC3, CDK5, SOD2, BNIP3L, AVEN, ID3, TNFAIP3, IGFBP3, IFI6	804	13528	2,41210034	5,78E-04
regulation of cell proliferation	GO:0042127	35	FGFR2, BLM, IFITM1, IL18, CLU, IFI30, SOX4, SFN, PTEN, TIMP1, TRIB1, MAGED1, CD47, WARS, TDGF3, CD9, CDKN2A, CDKN2C, CDKN2D, AGT, TDGF1, SERPINE1, FOSL1, TXNIP, STS, TESC, IL8, EGR4, SPARC, CDKN3, SOD2, CORO1A, CBLB, EREG, BTG3, IGFBP3	787	13528	2,10358891	0,092770639
response to drug	GO:0042493	15	TXNIP, NAT8B, NAT8, MFSD9, MAT2A, CDH1, PTEN, SOD2, SERPINA7, CA9, ENO3, GNAS, LOX, FOSL1, PDZK1, MAP2K6	216	13528	3,28477078	0,341239702
regulation of cell cycle	GO:0051726	19	BLM, NEK2, SKP2, NUSAP1, ANAPC10, CHEK2, SFN, OBFC2A, CDKN3, CDK5, PTEN, CDT1, CDKN2A, EREG, CDKN2C, CDKN2D, BTG3, ID3, FOSL1	331	13528	2,71514588	0,404894167
regulation of cellular component size	GO:0032535	16	FGFR2, DEPDC6, TAF9B, SFN, CSRP2, N6AMT1, LEFTY1, CORO1A, CDKN2A, NDRG4, CDKN2C, MAPT, CDKN2D, AGT, TMSB4X, TMSL3	271	13528	2,79266121	1,099341419
oxidation reduction	GO:0055114	27	CYP24A1, SORD, PYROXD1, IFI30, GLDC, GPX2, TP53I3, P4HA2, P4HA1, PLOD2, IDH2, HSD17B6, BDH2, LOX, CAT, HADH, GPD1, NOX3, MTHFD2L, SOD2, OGFOD1, G6PD, BLVRB, PCYOX1, DIO1, GLYR1, AOC3	639	13528	1,9986211	1,758146094
positive regulation of immune system process	GO:0002684	14	MICB, BLM, CADM1, IL18, F2RL1, CLU, AQP3, CD47, CBLB, NOD2, CORO1A, EREG, SPG21, CFD	238	13528	2,78239408	2,783907866
DNA replication	GO:0006260	12	POLD3, PRIM1, GINS2, RFC4, BLM, POLE2, DTL, MRE11A, CDKN2D, MCM10, CHAF1A, CDT1	190	13528	2,98741259	3,954136316
response to DNA damage stimulus	GO:0006974	18	EXO1, MSH6, NUDT1, BLM, DTL, MRE11A, SFN, CHEK2, OBFC2A, ATMIN, SOD2, POLD3, RFC4, POLE2, FANCI, CDKN2D, CHAF1A, MAP2K6	373	13528	2,28260747	4,081799187
regulation of cell adhesion	GO:0030155	10	KNG1, CD47, TDGF3, TESC, CDKN2A, IL8, IL18, TDGF1, SERPINI1, PTEN, DPP4	137	13528	3,45260579	4,180275525

Gene ontology descriptions of biological processes were assigned on the basis of the informations retrieved from DAVID (http://david.abcc.ncifcrf.gov/), considering a False Discovery Rate (FDR) less than 5; Population Hits (PH) corresponds to the number of genes of each GO category on the whole background list; Population Total (PT) corresponds to the total number of genes on the whole background list; Fold Enrichment (FE) estimates the enrichment degree of the corresponding GO category

SUPPLEMENTARY TABLE 2. List of ATP7B-WT-specific interactors.

Protein	CODE SP	GENE NAME	# Peptides	MW [kDa]	
Transferrin receptor protein 1	P02786	TFRC	4	85	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
LAVDEEENADNNTK LLNENSYVPR		53 18	2	1561.73 1204.81	22.5 250
SSGLPNIPVQTISR		28	2	1468.97	96
VEYHFLSPYVSPK		15	3	1566.08	183
Guanine nucleotide-binding protein subunit beta-2-like 1	P63244	GNB2L1	11	35	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	∆M [ppm]
IIVDELKQEVISTSSK		79	2	1789.27	155
VWQVTIGTR		47	2	1059.69	92.7
LWDLTTGTTTR		46	2	1264.85	158
YWLCAATGPSIK		46	2	1366.93	183
LWDLTTGTTTRR		36	3	1421.03	198
DETNYGIPQR		36	2	1192.63	61.6
LTRDETNYGIPQR		33	3	1562.96	111
VWNLANCK		32	2	1004.63	134
FSPNSSNPIIVSCGWDK		45	2	1907.94	29.9
IWDLEGK		26	2	860.61	188
60S ribosomal protein L7	P18124	RPL7	8	29	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
IVEPYIAWGYPNLK		81	2	1663.17	123
IALTDNALIAR		71	2	1170.81	195
SVNELIYKR		38	2	1121.69	54.8
ASINMLR		35	2	804.51	91
EVPAVPETLK		34	2	1082.65	40.3
QIFNGTFVK		33	2	1053.77	190
SVNELIYK		32	2	965.63	106
AGNFYVPAEPK		30	2	1192.75	128
ADP/ATP translocase 3	P12236	SLC25A6	7	33	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
DFLAGGIAAAISK	Modifications	99	2	1233.89	170
YFPTQALNFAFK		54	2	1446.97	160
LLLQVQHASK		39	2	1136.79	100
GNLANVIR		38	2	856.53	38.4
GAWSNVLR		35	2	902.61	75.9
AAYFGVYDTAK		32	2	1205.73	124
EQGVLSFWR		26	2	1205.75	178
Vesicle-associated membrane protein-associated protein B/C	095292	VAPB	3	27	178
· · · · · · · · · · · · · · · · · · ·				MH+ [Da]	AM [mmm]
Peptide Sequences	Modifications	IonScore	Charge		ΔM [ppm]
GPFTDVVTTNLK		66	2	1291.81	95.7
TVQSNSPISALAPTGK		51	2	1570.79	5.87
FRGPFTDVVTTNLK	750415	15	3	1595.24	243
Glutathione S-transferase omega-1	P78417	GSTO1	6	27	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
VPSLVGSFIR		51	2	1074.73	151
HEVININLK		46	2	1079.71	85.3
GSAPPGPVPEGSIR		32	2	1320.79	77.4
LLPDDPYEK		31	2	1089.65	135
FCPFAER		17	2	925.56	166
EFTKLEEVLTNK		17	3	1450.88	73.6
Ribonucleoside-diphosphate reductase subunit M2	P31350	RRM2	2	51	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
FSQEVQITEAR		67	2	1307.61	-35.41
IEQEFLTEALPVK		58	2	1516.95	83.8
14-3-3 protein eta	Q04917	YWHAH	2	28	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
AVTELNEPLSNEDR		82	2	1586.85	54.9
NSVVEASEAAYK		58	2	1267.65	28.6
LIM domain only protein 7	Q8WWI1	LMO7	4	158	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TSTTGVATTQSPTPR	wouncations	74	2	1504.79	21.6
		45	2	957.61	79.8
		38	2	1484.33	422
WIDATSGIYNSEK		35	3	1358.96	221
RGESLDNLDSPR	05/024		-	20	
RGESLDNLDSPR ATP-dependent Clp protease ATP-binding subunit clpX-like, mit	076031	CLPX	5	58	A. 1. 1. 1.
RGESLDNLDSPR ATP-dependent Clp protease ATP-binding subunit clpX-like, mit Peptide Sequences	O76031 Modifications	CLPX IonScore	Charge	MH+ [Da]	ΔM [ppm]
RGESLDNLDSPR ATP-dependent Clp protease ATP-binding subunit clpX-like, mit Peptide Sequences DVGGEGVQQGLLK		CLPX IonScore 68	Charge 2	MH+ [Da] 1299.67	-13.55
RGESLDNLDSPR ATP-dependent Clp protease ATP-binding subunit clpX-like, mit Peptide Sequences		CLPX IonScore	Charge	MH+ [Da]	

SIIKEPESAAEAVK		28	3	1472.33	364
TLLAOTLAK		28	2	958.75	167
Eukaryotic translation initiation factor 4 gamma 2	P78344	EIF4G2	2	102	10,
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TQTPPLGQTPQLGLK		68	2	1578.97	55.6
SYLAQFAAR		59	2	1026.67	133
Estradiol 17-beta-dehydrogenase 8	Q92506	HSD17B8	2	27	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SALALVTGAGSGIGR		91	2	1329.87	93.3
AGVIGLTQTAAR		55	2	1157.69	25
signal recognition particle receptor subunit beta	Q9Y5M8	SRPRB	5	30	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SAAPSTLDSSSTAPAQLGK		77	2	1788.97	42.1
GDVGSADIQDLEK		63	2	1346.81	126
VADGGGAGGTFQPYLDTLR		53	2	1894.98	33.4
SAAPSTLDSSSTAPAQLGKK LOFLER		24	3	1916.99 805.55	1.62
Cell cycle and apoptosis regulator protein 2	O8N163	DBC1	6	103	117
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TLAAEMQELR	wouncetions	56	2	1161.67	68.5
VQTLSNQPLLK		45	2	1240.87	118
FSATEVTNK		34	2	996.65	154
LTPLQLEIQR		28	2	1210.89	147
SPAPPLLHVAALGQK		27	3	1499.03	108
IQVSSEKEAAPDAGAEPITADSDPAYSSK		25	3	2934.28	-30.54
ATP synthase subunit gamma, mitochondrial	P36542	ATP5C1	3	33	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
IYGLGSLALYEK		51	2	1326.91	138
SEVATLTAAGK		44	2	1047.73	157
HLLIGVSSDR	7.460.70	41	2	1096.61	1.64
Large proline-rich protein BAG6	P46379	BAG6	3	114	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
AGSSESIAAFIOR		64	2	1336.85	110
LINLVGESLR LQEDPNYSPQRFPNAQR		36 24	2	1113.89 2060.17	207 92.8
Ubiquitin-associated protein 2	O5T6F2	UBAP2	3	117	72.0
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
DGSLANNPYPGDVTK	Woullications	63	2	1547.79	38.2
SQPEPSPVLSQLSQR		32	2	1652.93	43.9
AAPLVTSGK		28	2	843.53	46.6
Ran-specific GTPase-activating protein	P43487	RANBP1	2	23	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TLEEDEEELFK		55	2	1381.89	185
FASENDLPEWKER		44	3	1621.01	154
Cation-independent mannose-6-phosphate receptor	P11717	IGF2R	2	266	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
VPIDGPPIDIGR		48	2	1248.91	175
YDLSALVR		37	2	936.75	254
B-cell receptor-associated protein 31	P51572	BCAP31	2	28	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
LDVGNAEVKLEEENR		59	3	1715.09 1031.67	137
AENQVLAMR NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2	O43678	51 NDUFA2	2 2	1031.67 11	138
Peptide Sequences	Modifications	IonScore			AM [nnm]
ALENVLSGKA	woullications	45	Charge 2	MH+ [Da] 1001.64	ΔM [ppm] 90.1
YAFGQETNVPLNNFSADQVTR		55	3	2371.25	52.4
Inositol-3-phosphate synthase 1	O9NPH2	ISYNA1	3	61	52.4
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
VGPVAATYPMLNK		50	2	1360.93	150
ADNLIPGSR		27	2	942.71	226
VFVGGDDFK		21	2	983.69	213
EH domain-containing protein 1	Q9H4M9	EHD1	3	61	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
r epilde Sequences	M8(Oxidation)	61	2	1691.01	107
LLDTVDDmLANDIAR		10	2	1343.29	474
LLDTVDDmLANDIAR HLIEQDFPGMR		18			4/7.00
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR		10	3	1364.51	-167.09
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR 5'-3' exoribonuclease 2	Q9H0D6	10 XRN2	3 3	109	
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR 5'-3' exoribonuclease 2 Peptide Sequences	Q9H0D6 Modifications	10 XRN2 IonScore	3 3 Charge	109 MH+ [Da]	ΔM [ppm
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR 5'-3' exoribonuclease 2 Peptide Sequences NSLGGDVLFVGK	<u> </u>	10 XRN2 IonScore 53	3 3 Charge 2	109 MH+ [Da] 1205.88	ΔM [ppm 199
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR 5'-3' exoribonuclease 2 Peptide Sequences NSLGGDVLFVGK GVGAEPLLPWNR	<u> </u>	10 XRN2 IonScore 53 18	3 3 Charge 2 2	109 MH+ [Da] 1205.88 1308.9	ΔM [ppm] 199 158
LLDTVDDmLANDIAR HLIEQDFPGMR KLNAFGNAFLNR 5'-3' exoribonuclease 2 Peptide Sequences NSLGGDVLFVGK	<u> </u>	10 XRN2 IonScore 53	3 3 Charge 2	109 MH+ [Da] 1205.88	ΔM [ppm] 199

KEESEESDDDMGFGLFD		62	2	1949.9	78.7
AAGVNVEPFWPGLFAK		55	2	1703.03	80.8
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4	O95168	NDUFB4	3	15	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TLPETLDPAEYNISPETR		56	2	2045.96	-14.59
GLIENPALLR		53	2	1095.73	73.7
TINVYPNFRPTPK		20	2	1547.57	476
Conserved oligomeric Golgi complex subunit 5	Q9UP83	COG5,	2	91	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
NPPSSDELDGIIK		47	2	1384.67	-16.41
STMPTPGNTAALR		19	2	1316.95	220
Protein transport protein Sec24C	P53992	SEC24C	3	118	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SPVESTTEPPAVR		45	2	1369.77	56.2
GTEPFVTGVR		22	2	1062.69	127
YASFQVENDQER		11	2	1485.77	75.6
14-3-3 protein theta	P27348	YWHAQ	2	28	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
qTIDNSQGAYQEAFDISK	N-Term(GIn->pyro-Glu)	71	2	1997.9	2.02
QTIDNSQGAYQEAFDISKK		46	3	2143.09	35.1

Licensed MASCOT software (Matrix Science, UK) was used to unambiguously identify proteins from NCBInr sequence database. NanoLC-MS/MS data were searched using a mass tolerance value of 600 ppm for precursor ion and 0.6 Da for MS/MS fragments, trypsin as the proteolytic enzyme, a missed cleavages maximum value of 1, and Cys carbamidomethylation as fixed modification, and pyroglutamate (peptide N-terminal GIn), pyro-carbamidomethyl Cys (peptide N-terminal CAM-Cys) and Met oxidation as variable modifications. Possible charge states +2 and +3. Candidates with almost 2 assigned peptides with an individual MASCOT score > 44 (p<0.05) were considered significant. Protein gene names and UniProt codes were reported as well as the sequence and charge state of each peptide used for identification, the MH+ values, and the error expressed in ppm.

SUPPLEMENTARY TABLE 3. List of ATP7B-H1069Q-specific interactors.

PROTEIN	UNIPROT CODE	GENE NAME	# Peptides	MW [kDa]	
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	P19174	PLCG1	3	161	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SGDITYGQFAQLYR		81	2	1618.87	53.60
TmDLPFLEASTLR	M2(Oxidation)	56	2	1510.01	166.00
APLFPAPK	000000	27	2	840.75	280.00
Golgi apparatus protein 1	Q92896	GLG1	2	134	AM [
Peptide Sequences	Modifications	IonScore 59	Charge 3	MH+ [Da] 1504.01	ΔM [ppm] 205.00
VAELSSDDFHLDR IIIQESALDYR		59	2	1320.91	149.00
Integrin beta-1	P05556	ITGB1	4	88	147.00
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SAVTTVVNPK	mounioutions	67	2	1015.15	-419.41
IGFGSFVEK		37	2	983.67	156.00
LKPEDITQIQPQQLVLR		31	3	2019.52	186.00
SGEPQTFTLK		19	2	1107.65	76.50
T-complex protein 1 subunit beta	P78371	CCT2	8	57	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	∆M [ppm]
EALLSSAVDHGSDEVK		70	2	1656.77	-21.01
GATQQILDEAER		61	2		9.79
HGINCFINR		48	2		107.00
QDLmNIAGTTLSSK VLVDMSR	M4(Oxidation)	38	2		97.70 163.00
AAHSEGNTTAGLDMR		15	3		51.60
ILIANTGMDTDKIK		44	3	1532.92	65.40
NIGVDNPAAK		21	2	57 MH+ [Da] 1656.77 1330.67 1130.67 1494.89 819.57 1530.77	66.40
60S ribosomal protein L18	Q07020	RPL18	5	18	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	∆M [ppm]
ILTFDQLALDSPK		58	2	1461.01	187.00
TAVVVGTITDDVR		75	2	1345.89	-14.49
GCGTVLLSGPR		52	2		152.00
TNSTFNQVVLK		44	2		47.00
SQDIYLR	O06323	17 PSME1	2 8		72.50
Proteasome activator complex subunit 1 Peptide Sequences	Modifications	IonScore	o Charge	1	ΔM [ppm]
TENLLGSYFPK	woullications	61	2		206.00
IEDGNNFGVAVQEK		77	2		101.00
qLVHELDEAEYR	N-Term(GIn->pyro-Glu)	48	2		88.40
APLDIPVPDPVKEK		40	3	1518.47	407.00
LmVMEIR	M2(Oxidation)	39	2	907.67	219.00
IVVLLQR		22	2	840.75	222.00
qPHVGDYR	N-Term(GIn->pyro-Glu)	19	2	954.61	178.00
qLVHELDEAEYRDIR	N-Term(Gln->pyro-Glu)	28	3	1869.28	204.00
CALNEXIN	P27824	CANX	7	71	
Peptide Sequences IVDDWANDGWGLK	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
APVPTGEVYFADSFDR		77 67	2	1488.87 1770.83	108.00 -0.36
GTLSGWILSK		53	2	1061.73	126.00
IVDDWANDGWGLKK		46	3	1617.02	135.00
TPYTImFGPDK	M6(Oxidation)	46	2	1285.77	124.00
LPGDKGLVLmSR	M10(Oxidation)	28	3	1301.87	116.00
IPDPEAVKPDDWDEDAPAK		43	3	2108.02	25.40
Aldehyde dehydrogenase X, mitochondrial	P30837	ALDH1B1	4	57	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
LAPALATGNTVVMK		63	2	1385.95	123.00
IAKEEIFGPVQPLFK		43	3	1716.35	223.00
VAEQTPLSALYLASLIK		86	2	1817.30	149.00
VTLELGGK	P48643	31	2	816.51	37.00
		CCT5	6	59.43073302	AM []
T-complex protein 1 subunit epsilon		lonScore	Charge		ΔM [ppm]
T-complex protein 1 subunit epsilon Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	75 20
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR	Modifications N-Term(Gln->pyro-Glu); M9(Oxidation)	78	2	1273.75	75.30
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTCPFEPPKPK	Modifications N-Term(Gln->pyro-Glu); M9(Oxidation) C6(Carbamidomethyl)	78 55	2 3	1273.75 1611.47	359.00
T-complex protein 1 subunit epsilon Peptide Sequences qOISLATQmVR IAILTCPFEPPKPK GVIVDKDFSHPQmPK	Modifications N-Term(Gln->pyro-Glu); M9(Oxidation)	78 55 47	2 3 3	1273.75 1611.47 1714.85	359.00 579.00
T-complex protein 1 subunit epsilon Peptide Sequences qOISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPQmPK TSLGPDGLDK	Modifications N-Term(Gln->pyro-Glu); M9(Oxidation) C6(Carbamidomethyl)	78 55 47 16	2 3 3 2	1273.75 1611.47 1714.85 1002.54	359.00 579.00 42.40
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPQmPK TSLGPDGLDK LMGLEALK	Modifications N-Term(Gin->pyro-Glu); M9(Oxidation) C6(Carbamidomethyl) M13(Oxidation)	78 55 47 16 31	2 3 3 2 2	1273.75 1611.47 1714.85 1002.54 874.67	359.00 579.00 42.40 190.00
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPQmPK TSLGPDGLDK LMGLEALK MLVIEQcK	Modifications N-Term(Gin->pyro-Giu); M9(Oxidation) C6(Carbamidomethyl) M13(Oxidation) C7(Carbamidomethyl)	78 55 47 16 31 28	2 3 3 2 2 2 2	1273.75 1611.47 1714.85 1002.54 874.67 1020.51	359.00 579.00 42.40
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPQmPK TSLGPDGLDK LMGLEALK MLVIEQcK 40S ribosomal protein S21	Modifications N-Term(Gin->pyro-Giu); M9(Oxidation) C6(Carbamidomethyl) M13(Oxidation) C7(Carbamidomethyl) P63220	78 55 47 16 31 28 RPS21	2 3 3 2 2 2 2 4	1273.75 1611.47 1714.85 1002.54 874.67 1020.51 8	359.00 579.00 42.40 190.00 -8.74
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPOmPK TSLGPDGLDK LMGLEALK MLVIEQcK 40S ribosomal protein S21 Peptide Sequences	Modifications N-Term(Gin->pyro-Giu); M9(Oxidation) C6(Carbamidomethyl) M13(Oxidation) C7(Carbamidomethyl)	78 55 47 16 31 28	2 3 3 2 2 2 2	1273.75 1611.47 1714.85 1002.54 874.67 1020.51	359.00 579.00 42.40 190.00
T-complex protein 1 subunit epsilon Peptide Sequences qQISLATQmVR IAILTcPFEPPKPK GVIVDKDFSHPQmPK TSLGPDGLDK LMGLEALK MLVIEQcK 40S ribosomal protein S21	Modifications N-Term(Gin->pyro-Giu); M9(Oxidation) C6(Carbamidomethyl) M13(Oxidation) C7(Carbamidomethyl) P63220	78 55 47 16 31 28 RPS21 IonScore	2 3 3 2 2 2 2 4 Charge	1273.75 1611.47 1714.85 1002.54 874.67 1020.51 8 MH+ [Da]	359.00 579.00 42.40 190.00 -8.74 ΔΜ [ppm]

DHASIQmNVAEVDKVTGR	M7(Oxidation)	50	3	1987	526.00
6-phosphogluconate dehydrogenase, decarboxylating	P52209	PGD	6	50	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GILFVGSGVSGGEEGAR		88	2	1591.87	41.00
VDDFLANEAK		53	2	1121.67	112.00
TVSKVDDFLANEAK		44	2	1536.87	53.60
AGQAVDDFIEK TIFQGIAAK		41 28	2	1192.61 948.67	23.70 128.00
SFLEDIRK		17	2	1007.07	-476.16
DNA replication licensing factor MCM3	P25205	MCM3	6	91	in dirite
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
TPmENIGLQDSLLSR	M3(Oxidation)	93	2	1689.69	-91.70
GDINILLIGDPSVAK	. ,	62	2	1524.31	-361.22
GSSGVGLTAAVTTDQETGER		91	2	1935.92	3.77
VALLDVFR		33	2	932.73	189.00
TLETLIR		33	2	845.69	217.00
LIVNVNDLRR		21	3	1211.9	152.00
40S ribosomal protein S27	P42677	RPS27	2	10	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
LVQSPNSYFmDVK	M10(Oxidation)	72	2	1543.79	30.20
LTEGcSFR	C5(Carbamidomethyl)	31	2	969.51	69.10
Interleukin enhancer-binding factor 3	Q12906	ILF3	7	75	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
AYAALAALEK		57	2	1020.69	118.00
EDITQSAQHALR VLQDMGLPTGAEGR		52 50	2	1368.57 1443.85	-83.26 87.80
LEPDTPLALDANK		38	2	1443.65	10.70
VLGMDPLPSK		37	2	1056.75	168.00
LNQLKPGLQYK		27	3	1301.63	160.00
LAAFGQLHK		21	2	984.65	91.70
Peptidyl-prolyl cis-trans isomerase FKBP1A	P62942	FKBP1A	3	12	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GVQVETISPGDGR		62	2	1314.75	66.90
GWEEGVAQMSVGQR		57	2	1533.73	13.90
GVQVETISPGDGRTFPK		45	3	1788.11	105.00
Heat shock 70 kDa protein 4L	<u>O95757</u>	HSPA4L	2	97	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
DISTTLNADEAVAR		85	2	1475.73	-0.60
VLATTFDPYLGGR	014525	64	2	1409.95	149.00
Programmed cell death protein 5	O14737	PDCD5	3 Channa	13	414 [
Peptide Sequences	Modifications	IonScore	Charge 2	MH+ [Da] 1414.93	ΔM [ppm] 119.00
NSILAQVLDQSAR	M9(Oxidation)	64	2	1323.43	-181.29
AVENYLIQmAR LSNLALVKPEK	(Oxidation)	18	3	1211.93	165.00
tRNA-splicing ligase RtcB homolog	O9Y3I 0	HSPC117	4	55	100100
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
qIGNVAALPGIVHR	N-Term(Gin->pyro-Glu)	59	2	1428.01	141.00
SYNDELQFLEK	·····(=	56	2		
IASPEGQDYLK		30	Z	1385.79	97.10
INGI LOQUILIN		42	2	1385.79	97.10
SSmTFLTR	M3(Oxidation)				
	M3(Oxidation) Q9UL46	42	2	1220.79	145.00
SSmTFLTR		42 29	2	1220.79 958.53	145.00
SSmTFLTR Proteasome activator complex subunit 2	Q9UL46	42 29 PSME2 IonScore 68	2 2 5 Charge 2	1220.79 958.53 27 MH+ [Da] 1534.89	145.00 69.40 ΔM [ppm] 101.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR	Q9UL46	42 29 PSME2 IonScore 68 55	2 2 5 Charge 2 3	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01	145.00 69.40 ΔM [ppm] 101.00 86.30
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK	Q9UL46 Modifications	42 29 PSME2 IonScore 68 55 33	2 2 5 Charge 2 3 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK	C1(Carbamidomethyl)	42 29 PSME2 lonScore 68 55 33 29	2 2 5 Charge 2 3 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR TKVEAFQTTISK cGFLPGNEK AmVLDLR	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation)	42 29 PSME2 IonScore 68 55 33 33 29 28	2 2 5 Charge 2 3 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR TKVEAFQTTISK cGFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9	42 29 PSME2 IonScore 68 55 33 33 29 28 COX5B	2 2 5 Charge 2 3 2 2 2 2 3	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR TKVEAFQTTISK cGFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation)	42 29 PSME2 IonScore 68 55 33 29 28 COX5B IonScore	2 2 5 Charge 2 3 2 2 2 2 2 3 Charge	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da]	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔМ [ppm]
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK GGFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9	42 29 PSME2 IonScore 68 55 33 29 28 COX5B IonScore 56	2 2 5 Charge 2 3 2 2 2 2 2 2 3 Charge 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69	145.00 69.40 ΔΜ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔΜ [ppm] 38.90
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9	42 29 PSME2 IonScore 68 55 33 29 28 29 28 COX5B IonScore 56 47	2 2 5 Charge 2 3 2 2 2 2 2 3 Charge 2 3	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH	Q9UL46 Modifications C1(Carbamidomethyl) M2(0xidation) Q6FHJ9 Modifications	42 29 PSME2 lonScore 68 55 33 29 28 COX5B lonScore 56 47 19	2 2 5 Charge 2 3 2 2 2 2 3 Charge 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53	145.00 69.40 ΔΜ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔΜ [ppm] 38.90
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial	Q9UL46 Modifications C1(Carbamidomethyl) M2(0xidation) Q6FHJ9 Modifications P20674	42 29 PSME2 IonScore 68 55 33 29 28 COX5B IonScore 56 47 19 COX5A	2 2 5 Charge 2 3 2 2 2 2 2 3 Charge 2 3 2 3 2 4	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR CKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences	Q9UL46 Modifications C1(Carbamidomethyl) M2(0xidation) Q6FHJ9 Modifications	42 29 PSME2 lonScore 68 55 33 29 28 COX5B lonScore 56 47 19	2 2 5 Charge 2 3 2 2 2 2 3 Charge 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 905.53 17 MH+ [Da]	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications	42 29 PSME2 lonScore 68 55 33 29 28 COX5B lonScore 56 47 19 COX5A lonScore	2 2 5 2 3 2 2 2 2 2 3 Charge 2 3 3 2 2 4 Charge	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔМ [ppm] 38.90 254.00 13.70
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CGFLPGNEK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications	42 29 PSME2 lonScore 68 55 33 29 28 COX5B lonScore 56 47 19 COX5A lonScore 55	2 2 5 Charge 2 3 2 2 2 2 2 3 Charge 2 3 2 2 4 Charge 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 2 2 2 3 3 3 2 2 2 2 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 2 3 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 3 2 2 2 2 2 2 3 3 2 2 2 2 3 2 2 3 2 2 2 2 3 2 2 2 3 3 2 2 2 2 3 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 905.53 17 MH+ [Da] 1692.91	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CKCAPPANEA CSFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation)	42 29 PSME2 IonScore 68 55 33 29 28 COX58 IonScore 56 47 19 COX5A IonScore 55 47 34 28	2 2 5 Charge 2 2 2 2 2 2 2 2 3 3 2 Charge 2 3 2 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30 64.80
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CcFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR ILEVVKDK	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications	42 29 PSME2 IonScore 68 55 33 29 28 COX5B IonScore 56 47 19 COX5A 19 COX5A 19 COX5A 19 S5 47 34	2 2 5 Charge 2 2 2 2 2 2 2 3 Charge 2 3 2 4 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔМ [ppm] 38.90 254.00 13.70 36.30 64.80 96.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIQEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR cytochrome c oxidase subunit 5B, mitochondrial precursor GLDPYNVLAPK CUPQOLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GLDPYNVLAPK LVPQOLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LUDFASTVR ILEVVKDK RLNDFASTVR	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation)	42 29 PSME2 IonScore 68 55 33 29 28 COX58 IonScore 56 47 19 COX5A IonScore 55 47 34 28	2 2 5 Charge 2 2 2 2 2 2 2 2 3 3 2 Charge 2 3 2 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔМ [ppm] 38.90 254.00 13.70 36.30 64.80 96.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CGFLPGNEK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQOLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR ILEVVKDK RELONGATOR Peptide Sequences Peptide Sequences Peptide Sequences SPAGLQVLNDYLADK	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation) P24534	42 29 PSME2 68 55 33 29 28 COX5B 10nScore 56 47 19 COX5A 10nScore 55 47 34 28 EEF1B2 10nScore 88	2 2 5 Charge 2 2 2 2 2 2 3 2 2 3 2 2 4 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13	145.00 69.40 ΔМ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔΜ [ppm] 38.90 254.00 13.70 ΔΜ [ppm] 36.30 64.80 96.00 191.00 ΔΜ [ppm] 187.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CYTOCHTOME C oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR IELVKDK RLNDFASTVR Elongation factor 1-beta Peptide Sequences SPAGLQVLNDVLADK SIQADGLVWGSSK	Q9UL46 Modifications C1(Carbamidomethyl) M2(0xidation) Q6FHJ9 Modifications P20674 Modifications M10(0xidation) P24534 Modifications	42 29 PSME2 68 55 33 29 28 COX5B 10nScore 56 47 19 COX5A 10nScore 55 47 34 28 EEF1B2 10nScore 88	2 2 5 Charge 2 2 2 2 2 3 Charge 2 3 2 2 4 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13 1347.77	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30 64.80 96.00 191.00
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CYtOChrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR LEVVKDK RLNDFASTVR ELongation factor 1-beta Peptide Sequences SPAGLQVLNDVLADK SIQADGLWWGSSK ATP synthase subunit e, mitochondrial	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation) P24534 Modifications P56385	42 29 PSME2 1onScore 68 55 33 29 28 COX5B 1onScore 56 47 19 COX5A 10nScore 55 47 34 28 EEF1B2 1onScore 88 57 47 55	2 2 5 Charge 2 2 2 2 2 3 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13 1347.77 8	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30 64.80 96.00 191.00 ΔM [ppm] 187.00 61.20
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK KGLDPYNVLAPK LVPQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR LNDFASTVR ELongation factor 1-beta Peptide Sequences SPAGLQVLNDVLADK SIQADGLVWGSSK ATP synthase subunit e, mitochondrial Peptide Sequences	Q9UL46 Modifications C1(Carbamidomethyl) M2(0xidation) Q6FHJ9 Modifications P20674 Modifications M10(0xidation) P24534 Modifications	42 29 PSME2 1onScore 68 55 33 29 28 COX5B 1onScore 56 47 19 COX5A 10nScore 55 47 34 28 EEF1B2 1onScore 88 57 ATP51 1onScore	2 2 5 Charge 2 2 2 2 2 3 Charge 2 2 4 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13 1347.77 8 MH+ [Da]	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30 64.80 96.00 191.00 ΔM [ppm] 187.00 61.20
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR TKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK KGLDPYNVLAPK LVPQQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR LNDFASTVR ELongation factor 1-beta Peptide Sequences SPAGLQVLNDYLADK SIQADGLWWGSSK ATP synthase subunit e, mitochondrial Peptide Sequences	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation) P24534 Modifications P56385	42 29 PSME2 1onScore 68 55 33 29 28 COX5B 1onScore 56 47 19 COX5A 19 COX5A 19 COX5A 19 COX5A 19 COX5A 19 COX5A 19 COX5A 10 Score 55 47 19 COX5A 10 Score 55 47 19 COX5A 10 Score 55 47 19 COX5A 10 Score 55 47 19 COX5A 10 Score 55 47 19 COX5A 10 Score 55 47 10 Score 55 47 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 10 Score 55 57 47 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 47 28 COX5B 10 Score 55 57 57 57 57 57 57 57 57 57 57 57 57	2 2 3 3 2 2 2 2 2 2 3 3 2 2 3 2 2 4 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13 1347.77 8 MH+ [Da] 1488.21	145.00 69.40 ΔΜ [ppm] 101.00 86.30 81.90 93.70 166.00 ΔΜ [ppm] 38.90 254.00 13.70 ΔΜ [ppm] 36.30 64.80 96.00 191.00 ΔΜ [ppm] 187.00 61.20 ΔΜ [ppm] -384.33
SSmTFLTR Proteasome activator complex subunit 2 Peptide Sequences IEDGNDFGVAIOEK ALVHERDEAAYGELR ALVHERDEAAYGELR CKVEAFQTTISK CGFLPGNEK AmVLDLR Cytochrome c oxidase subunit 5B, mitochondrial precursor Peptide Sequences GLDPYNVLAPK KGLDPYNVLAPK KGLDPYNVLAPK LVPQLAH Cytochrome c oxidase subunit 5A, mitochondrial Peptide Sequences GINTLVTYDmVPEPK LNDFASTVR LNDFASTVR ELongation factor 1-beta Peptide Sequences SPAGLQVLNDVLADK SIQADGLVWGSSK ATP synthase subunit e, mitochondrial Peptide Sequences	Q9UL46 Modifications C1(Carbamidomethyl) M2(Oxidation) Q6FHJ9 Modifications P20674 Modifications M10(Oxidation) P24534 Modifications P56385	42 29 PSME2 1onScore 68 55 33 29 28 COX5B 1onScore 56 47 19 COX5A 10nScore 55 47 34 28 EEF1B2 1onScore 88 57 ATP51 1onScore	2 2 5 Charge 2 2 2 2 2 3 Charge 2 2 4 Charge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220.79 958.53 27 MH+ [Da] 1534.89 1729.01 1352.85 1021.57 833.59 14 MH+ [Da] 1186.69 1315.06 905.53 17 MH+ [Da] 1692.91 1022.59 943.67 1178.85 25 MH+ [Da] 1604.13 1347.77 8 MH+ [Da]	145.00 69.40 ΔM [ppm] 101.00 86.30 81.90 93.70 166.00 ΔM [ppm] 38.90 254.00 13.70 ΔM [ppm] 36.30 64.80 96.00 191.00 ΔM [ppm] 187.00 61.20

Thioredoxin domain-containing protein 5	Q8NBS9	TXNDC5	5	44	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GYPTLLWFR		46	2	1152.83	185.00
GYPTLLLFR		45	2	1079.79	156.00
FVLSQAKDEL		39	2	1149.85	207.00
EFPGLAGVK		29	2	917.65	157.00
TLAPTWEELSK Dihydrolipoyllysine-residue acetyltransferase component of pyruvate		18	2	1274.75	70.70
dehydrogenase complex, mitochondrial	P10515	DLAT	3	69	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da] 1516.97	ΔM [ppm]
GVETIANDVVSLATK GIDLTQVK		99 39	2	873.47	99.60 -35.86
ILVPEGTR		17	2	884.59	82.30
28S ribosomal protein S28, mitochondrial	Q9Y2Q9	MRPS28	2	20	02.00
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
NVESFASmLR	M8(Oxidation)	53	2	1169.75	163.00
LLDLELTSR		52	2	1059.832723	216.00
Ubiquitin thioesterase OTUB1	Q96FW1	OTUB1	2	46	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
IQQEIAVQNPLVSER		68	2	1723.93	-0.57
LLTSGYLQR		41	2	1050.33	-249.13
EH domain-containing protein 4	Q9H223	EHD4	3	61	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
AGGADAVQTVTGGLR		63	2	1372.77	39.90
SISVIDSPGILSGEK		44	2	1502.25	294.00
EYQISAGDFPEVK	CORRUP1	30		1482.89	123.00
Acetyl-CoA acetyltransferase, cytosolic	Q9BWD1	ACAT2	6 Charge	41	AN4 []
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GLIEVKTDEFPR VAVLSQNR		78 40	3	1404.02 886.79	173.00 319.00
ILVTLLHTLER		31	3	1308.14	261.00
VNIEGGAIALGHPLGASGCR		58	3	1949.17	94.1
ELGLNPEK		18	2	899.55	77.30
APHLAYLR		18	2	940.43	-110.22
Fibrinogen gamma chain	P02679	FGG	5	49	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
YLQEIYNSNNQK		60	2	1513.95	148.00
TSTADYAmFK	M8(Oxidation)	38	2	1150.57	55.90
qSGLYFIKPLK	N-Term(GIn->pyro-Glu)	30	2	1276.89	128.00
VELEDWNGR		21 61	2	1117.73 2536.21	184.00 -13.59
AIQLTYNPDESSKPNmIDAATLK Alpha-aminoadipic semialdehyde dehydrogenase	M16(Oxidation) P49419	ALDH7A1	4 3	54	-13.54
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
VNLLSFTGSTQVGK		59	2	1451.15	250.00
QGLSSSIFTK		46	2	1067.67	93.40
MIGGPILPSER		33	2	1169.79	135.00
VGNPWDPNVLYGPLHTK		40	3	1907.41	233.00
26S proteasome non-ATPase regulatory subunit 2	Q13200	PSMD2	3	94	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
VGQAVDVVGQAGKPK		57	3	1453.06	178.00
ELDIMEPKVPDDIYK	M1(Oxidation)	34 58	3	1805.2	173.00
mLVTFDEELRPLPVSVR 26S proteasome non-ATPase regulatory subunit 7	P51665	PSMD7	3 2	2018.26 28	2.37
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
DIKDTTVGTLSQR	wouncations	63	2	1433.75	-4.70
SVVALHNLINNK		57	2	1321.87	86.40
E3 UFM1-protein ligase 1 [Homo sapiens]	O94874	UFL1	5	89	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
FFADDTQAALTK		49	2	1327.17	-361.92
AVFVPDIYSR		32	2	1166.77	131.00
SVFMSSTTSASGTGR		31	2	1475.73	36.10
LAADFQR		22	2	820.47	50.70
TYLEVVR		17	2	879.69	227.00
Protein transport protein Sec61 subunit beta	P60468	SEC61B	2	10	4415
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
		49	2	1124.49	-20.12
TTSAGTGGMWR				1156.65	17.90
FYTEDSPGLK	OQUNIMA	33 PSMD13			
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13	Q9UNM6 Modifications	PSMD13	5	35	AM [nom]
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences	Q9UNM6 Modifications	PSMD13 IonScore	5 Charge	35 MH+ [Da]	ΔM [ppm]
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences VLDLOQIK		PSMD13 IonScore 48	5 Charge 2	35 MH+ [Da] 956.67	99.70
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences VLDLQQIK LNIGDLQVTK		PSMD13 IonScore 48 44	5 Charge	35 MH+ [Da] 956.67 1100.69	
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences VLDLOQIK		PSMD13 IonScore 48	5 Charge 2 2	35 MH+ [Da] 956.67	99.70 56.10
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences VLDLQQIK LNIGDLQVTK QLTFEEIAK	Modifications	PSMD13 IonScore 48 44 40	5 Charge 2 2 2 2	35 MH+ [Da] 956.67 1100.69 1078.79	99.70 56.10 199.00
FYTEDSPGLK 26S proteasome non-ATPase regulatory subunit 13 Peptide Sequences VLDLQQIK LNIGDLQVTK QLTFEEIAK QmTDPNVALTFLEK	Modifications	PSMD13 IonScore 48 44 40 22	5 Charge 2 2 2 2 2 2 2	35 MH+ [Da] 956.67 1100.69 1078.79 1623.05	99.70 56.10 199.00 150.00

	M2(Oxidation)	53	2	1345.89	94.20
VmVQPINLIFR ImLKGDNITLLQSVSN	M2(Oxidation)	38	2	1761.95	6.38
GDNITLLQSVSN	m2(oxidation)	33	2	1260.79	119.00
Nuclear migration protein nudC	O9Y266	NUDC	2	38	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GQPAIIDGELYNEVK		54	2	1645.81	-18.50
LVSSDPEINTK		45	2	1202.75	105.00
Ubiquitin carboxyl-terminal hydrolase isozyme L3	P15374	UCHL3	2	22	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
FLEESVSMSPEER		52	2	1539.69	-4.42
YLENYDAIR		47	2	1156.79	199.00
Ubiquitin conjugation factor E4 A	Q14139	UBE4A	2	120	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SYSPTLFAQTVR		58	2	1369.85	104.00
VFVEYIQPK		37	2	1122.87	226.00
Lymphokine-activated killer T-cell-originated protein kinase	Q96KB5	PBK	2	36	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
ASQDPFPAAIILK		57	2	1370.91	106.00
SLNDLIEER		44	2	1088.65	86.90
Cystatin-B	P04080	CSTB	2	11	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
SQVVAGTNYFIK		60	2	1326.83	96.20
AKHDELTYF		21	2	1123.65	98.80
Mitogen-activated protein kinase 14	O16539	MAPK14	2	41	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
NYIQSLTQmPK	M9(Oxidation)	48	2	1338.53	-104.26
ILDFGLAR		38	2	904.67	163.00
AsparaginetRNA ligase, cytoplasmic	O43776	NARS	3	63	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
IFDSEEILAGYKR		45	3	1540.97	114.00
SPAGSIVHELNPNFQPPK		36	3	1931.15	-436.01
IGALEGYR		31	2	878.67	228.00
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit	Detaga	DID			
DAD1	P61803	DAD1	2	12	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
FLEEYLSSTPQR		48	2	1469.79	44.70
SASVVSVISR		28	2	1005.03	458.00
Nucleophosmin	P06748	NPM1	2	25	
Peptide Sequences	Modifications	IonScore	Charge	MH+ [Da]	ΔM [ppm]
GPSSVEDIK		47	2	931.55	85.60
LLSISGKR				731.33	05.00
6 nh conh of motol in a strengt to the strengt		11	2	873.47	-90.40
6-phosphofructokinase, liver type	P17858	11 PFKL	2 3		
6-phosphofructokinase, liver type Peptide Sequences	P17858 Modifications			873.47	
Peptide Sequences		PFKL	3	873.47 90	-90.40
	Modifications	PFKL IonScore	3 Charge	873.47 90 MH+ [Da]	-90.40 ΔM [ppm]
Peptide Sequences VFANAPDSAcVIGLK	Modifications C10(Carbamidomethyl)	PFKL IonScore 45	3 Charge 2	873.47 90 MH+ [Da] 1561.95	-90.40 ΔM [ppm] 95.10
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR	Modifications C10(Carbamidomethyl)	PFKL IonScore 45 82	3 Charge 2 2	873.47 90 MH+ [Da] 1561.95 1803.92	-90.40 ΔM [ppm] 95.10 17.20
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR	Modifications C10(Carbamidomethyl) M14(Oxidation)	PFKL IonScore 45 82 47	3 Charge 2 2 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35	-90.40 ΔM [ppm] 95.10 17.20
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108	PFKL IonScore 45 82 47 DBI	3 Charge 2 2 3 2 2	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10	-90.40 ΔM [ppm] 95.10 17.20 199.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications	PFKL lonScore 45 82 47 DBI lonScore 41 48	3 Charge 2 2 3 2 2 Charge	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da]	-90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm]
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications	PFKL lonScore 45 82 47 DBI lonScore 41	3 Charge 2 3 2 Charge 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24	-90.40 ΔΜ [ppm] 95.10 17.20 199.00 ΔΜ [ppm] 17.30
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation)	PFKL lonScore 45 82 47 DBI lonScore 41 48	3 Charge 2 2 3 2 Charge 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96	-90.40 ΔΜ [ppm] 95.10 17.20 199.00 ΔΜ [ppm] 17.30
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP	3 Charge 2 2 3 2 Charge 3 3 3 2	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore	3 Charge 2 3 2 Charge 3 3 2 Charge 3 3 3 3 3 3 3 3 3 3 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da]	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm]
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGIIGGTGLDDPEILEGRTEK Hsp90 co-chaperone Cdc37	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 46 CDC37	3 Charge 2 3 Charge 3 3 2 Charge 3 3 2 Charge 3 3 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALLLGK IGHIGGTGLDPFLEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 base CDC37 lonScore	3 Charge 2 2 3 Charge 3 3 Charge 3 3 Charge 3 3 Charge	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da]	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 174.00 174.00 ΔM [ppm]
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGIGGTGLDDPEILEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences Acyl-Chaperone Cdc37 Peptide Sequences	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 46 CDC37 lonScore 51	3 Charge 2 2 3 Charge 3 3 Charge 3 3 Charge 3 3 Charge 3 3 3 3 3 3 3 3 3 3 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 2195.3	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00 10.00 ΔM [ppm] 555.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGIIGGTGLDDPFLEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences ASEAKEGEEAGPGDPLLEAVPK EGEEAGPGDPLLEAVPK	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 55 6 CDC37 lonScore 51 28	3 Charge 2 2 3 Charge 3 3 Charge 3 3 Charge 3 3 Charge 3 3 2 Charge 3 2 2 2 2 2 2 2 2 2 2 2 2 2	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 2195.3 1708.04	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 174.00 174.00 174.00 174.00 174.00 174.00 175.50 ΔM [ppm]
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGIIGGTGLDDPFLEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences ASEAKEGEEAGPGDPLLEAVPK EGEEAGPGDPLLEAVPK LQAEAQQLR	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543 Modifications	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 6 CDC37 lonScore 51 28 16	3 Charge 2 2 3 Charge 3 3 Charge 3 3 Charge 3 Charge 3 2 Charge 3 2 2 2 2 2 2 2 2 2 2 2 2 2	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 1795.3 1708.04 1056.74	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00 10.00 ΔM [ppm] 555.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGHIGGTGLDDPFILEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences ASEAKEGEEAGPGDPLLEAVPK EGEEAGPGDPLLEAVPK LQAEAQOLR Alanine aminotransferase 2	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543 Modifications Q8TD30	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 46 CDC37 lonScore 51 28 16 GPT2	3 Charge 2 2 3 Charge 3 3 2 Charge 3 3 3 Charge 3 3 2 Charge 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 2195.3 1708.04 1056.74 58	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00 ΔM [ppm] 555.00 123.00 164.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YUDTPFGKPSDALILGK IGIIGGTGLDDPFILEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences ASEAKEGEEAGPGDPLLEAVPK EGEEAGPGDPLLEAVPK LQAEAQQLR Alanine aminotransferase 2 Peptide Sequences	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543 Modifications	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 46 CDC37 lonScore 51 28 16 GPT2 lonScore	3 Charge 2 3 2 Charge 3 3 Charge 3 3 Charge 3 2 Charge 3 2 2 2 2 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 3 Charge 2 Charge	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 2195.3 1708.04 1056.74 58 MH+ [Da]	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00 ΔM [ppm] 555.00 123.00 123.00 123.00 123.00 123.00
Peptide Sequences VFANAPDSAcVIGLK AIGVLTSGGDAQGmNAAVR IMEVIDAITTTAQSHQR Acyl-CoA-binding protein Peptide Sequences TKPSDEEmLFIYGHYK QATVGDINTERPGMLDFTGK S-methyl-5'-thioadenosine phosphorylase Peptide Sequences YVDTPFGKPSDALILGK IGHIGGTGLDDPFILEGRTEK Hsp90 co-chaperone Cdc37 Peptide Sequences ASEAKEGEEAGPGDPLLEAVPK EGEEAGPGDPLLEAVPK LQAEAQOLR Alanine aminotransferase 2	Modifications C10(Carbamidomethyl) M14(Oxidation) P07108 Modifications M8(Oxidation) Q13126 Modifications Q16543 Modifications Q8TD30	PFKL lonScore 45 82 47 DBI lonScore 41 48 MTAP lonScore 47 46 CDC37 lonScore 51 28 16 GPT2	3 Charge 2 2 3 Charge 3 3 2 Charge 3 3 3 Charge 3 3 2 Charge 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	873.47 90 MH+ [Da] 1561.95 1803.92 1914.35 10 MH+ [Da] 1973.96 2150.24 32 MH+ [Da] 1821.29 2183.39 44 MH+ [Da] 2195.3 1708.04 1056.74 58	90.40 ΔM [ppm] 95.10 17.20 199.00 ΔM [ppm] 17.30 88.80 ΔM [ppm] 174.00 110.00 ΔM [ppm] 555.00 123.00 164.00

Licensed MASCOT software (Matrix Science, UK) was used to unambiguously identify proteins from NCBInr sequence database. NanoLC-MS/MS data were searched using a mass tolerance value of 600 ppm for precursor ion and 0.6 Da for MS/MS fragments, trypsin as the proteolytic enzyme, a missed cleavages maximum value of 1, and Cys carbamidomethylation as fixed modification, and pyroglutamate (peptide N-terminal GIn), pyro-carbamidomethyl Cys (peptide N-terminal CAM-Cys) and Met oxidation as variable modifications. Possible charge states +2 and +3. Candidates with almost 2 assigned peptides with an individual MASCOT score > 44 (p<0.05) were considered significant. Protein gene names and UniProt codes were reported as well as the sequence and charge state of each peptide used for identification, the MH+ values, and the error expressed in ppm.

SUPPLEMENTARY MATERIALS AND METHODS

Antibodies, Reagents, DNAs and Adenoviruses

The following antibodies were used. Anti-α-tubulin was from Sigma-Aldrich (St. Louis, USA), anti-TGN46 from AbD Serotec (Oxford, UK), anti-MRP2 from Enzo Life Sciences (Lausen, Switzerland), anti-GM130, anti-giantin and anti-GFP from Abcam (Cambridge, UK), phospho-p38, phospho-JNK, phosphor-ERK, p38, JNK and ERK (Cell Signaling Techology, Beverly MA USA) anti- secondary Alexa Fluor 488, 568, 633, 647conjugated antibodies were from Invitrogen-Life Technologies (Grand Island, USA), secondary peroxidase conjugate antibodies were from Calbiochem (Darmstadt, Germany). GoldEnhanceTM EM kit and 1.4nm gold-conjugated Fab' fragment of antirabbit IgGs were from Nanoprobes (Yaphank, NY 11980-9710, USA). The DNAs of GFP-tagged ATP7B and ATP7B^{H1069Q} were provided by Svetlana Lutsenko (John Hopkins Medical School, Baltimore, MD, USA) and by Dominik Huster (University of Leipzig, Leipzig, Germany). The cDNAs of transcription-based luciferase reporter (pGL3-E1b-TATA-4MRE) as well as DNAs of ATP7A and its mutants were reported before (13). DNAs of flag-tagged MKK3, 4, 6 and 7 were obtained from Addgene (Cambridge MA, USA). To obtain the R778L, D765N, L776V, A874V and L1083F mutants of ATP7B, the pEGFPC1-ATP7B construct was used as a template, and sitedirect mutagenesis was performed according to the manufacturer instructions for sitedirected mutagenesis using the QuickChange kit (Stratagene, La Jolla, CA, USA). Recombinant adenoviruses containing ATP7B-GFP or ATP7B^{H1069Q}-GFP were reported before (14).

Cell culture and Treatments

HeLa, HepG2 cells and primary mouse hepatocytes were grown in Dulbecco's Modified Eagle's medium (DMEM) supplemented with FCS 10% (decomplemented for HepG2 cells), L-glutamine and Penicillin/Streptomycin. HeLa, HepG2 cells and primary

hepatocytes were treated with 200 μ M Cu-chelating agent BCS overnight or with 100-200 μ M CuSO₄ in culture medium at 37°C for 2 or 8 h. To inhibit p38 or JNK specific inhibitors SB202190 (Sigma Aldrich, USA) or SP600125 (Sigma Aldrich, USA) were used respectively. To inhibit protein biosynthesis Cycloheximide (Sigma Aldrich, USA) 100 μ g/mL was used at 2,4 and 6 hours. To inhibit the proteasome MG132 (Sigma) 20 μ M for 4 hours was used.

Adenoviral Infection, DNA Transfection, RNA interference, RNA Preparation and Q-PCR

HeLa and HepG2 cells were infected with first generation adenovirus containing ATP7B-GFP or ATP7B^{H1069Q}-GFP respectively with a <u>m</u>ultiplicity <u>of</u> infection (MOI) of 50 and 200 virus particles per cell respectively. HepG2 or HeLa cells were transiently transfected with jetPEI TM-Hepatocyte or Trans IT LT1 Transfection transfection reagents (Polyplus transfection, New York NY USA) respectively. siRNAs targeting MAPK8, MAPK9, MAPK10, MAPK11, MAPK12, MAPK13, MAPK14, MAP3K11 were purchased from Sigma-Aldrich and transfected using Oligofectamine (Invitrogen, Carlsbad USA). Total RNAs from control cells and silenced HeLa cells were purified with the using QIA shredder and extracted with RNeasy Protect Mini Kit. Total RNA was converted into cDNA with QuantiTect Reverse Transcription kit. Q-PCR experiments were performed using Light Cycler 480 Syber Green MasterMix for cDNA amplification and in LightCycler 480 II for signal detection. Q-PCR results were analyzed using the comparative Ct method normalized against housekeeping gene β -Actin.

VSVG trafficking assay.

To evaluate the impact of p38 and JNK inhibitors on overall membrane trafficking thermo-sensitive form of vesicular stomatitis virus glycoprotein fused with GFP (VSVG-GFP) was transfected into HeLa cells. Control and inhibitor-treated cells were incubated at 40°C to accumulate VSVG in the ER. Then the temperature was shifted to 32°C to activate VSVG-GFP trafficking. Cells were fixed at different time intervals after the temperature shift and analyzed using confocal microscopy.

Immunofluorescence

Cells were fixed for 10 min with 4% paraformaldehyde (PFA) in 0.2 M HEPES followed by incubation with blocking/permeabilizing solution: 0.5% bovine serum albumin (BSA), 0.1% saponin, 50 mM NH₄Cl in PBS for 20-30 min. Primary and secondary antibodies were diluted in blocking/permeabilizing solution and added to the cells for 1h/overnight or 45 min respectively. Samples were examined with a ZEISS LSM 700 or LSM 710 confocal microscopes equipped with a 63X 1.4 NA oil objective.

For fluorescent Cu detection with CS3 cells were incubated with 5 μ M CS3 (kindly provided by Christopher Chang, Berkeley USA) for 15 min at 37°C. CS3 was excited with 561 nm laser of LSM710 and its emission was collected from 565 to 650 nm. Co-localization module of ZEISS ZEN 2008 software was used to measure co-localization of ATP7B with different intracellular markers. ATP7B fluorescent signal inside canalicular domains and CS3 cytosolic and canalicular surface signals were measured using ZEISS ZEN 2008 software and reported in arbitrary units (au).

Fluorescent recovery after photobleaching (FRAP)

Time-lapse sequences from control and inhibitor-treated HeLa cells expressing ATP7B^{H1069Q}-GFP were taken at ZEISS LSM 700 or LSM 710 confocal stages at 37°C. Digital images were collected at 3-second intervals. Selective photobleaching of GFP in the Golgi regions was carried out using 100 consecutive scans with a 488 nm laser line at full power. Average fluorescence intensities and $t_{1/2}$ of the recovery in the Golgi regions were quantified using FRAP module of ZEISS ZEN 2008 software.

Western blot analysis

Cells were then solubilized in RIPA buffer. The protein concentration in each sample was evaluated using Bradford Protein Assay. Proteins were eluted with SDS sample buffer and analyzed by immunoblot analysis. Antibodies against GFP, tubulin, phospho-p38, phospho-JNK, p38 and JNK were used.

Immunoprecipitation and mass spectrometry analysis

To identify the effects of ATP7B^{H1069Q} overexpression on the proteome of liver cell line, proteomics analysis was performed. For the analysis of the hepatocytes overexpressing ATP7B^{H1069Q}-GFP or ATP7B^{WT}-GFP, cell lysates were incubated with the anti-GFP antibody. Then protein G sepharose beads (Sigma, St Louis, MO, USA) were added to each specimen and immune complexes were collected by centrifugation. The beads were then washed and immunoprecipitated proteins were eluted. The eluted proteins were precipitated in methanol/chloroform and then separated by SDS-PAGE. The gel was stained with Coomassie blue. Protein bands were excised from the gel, and digested with trypsin. Peptide mixtures extracted from the gel were analyzed by nano-chromatography tandem mass spectrometry (nanoLC-MS/MS) on a CHIP MS Ion Trap XCT Ultra equipped with a capillary 1100 HPLC system and a chip cube (Agilent Technologies, Palo Alto, CA). Peptide analysis was performed using data-dependent acquisition of one MS scan (mass range from 400 to 2000 m/z) followed by MS/MS scans of the three most abundant ions in each MS scan. Raw data from nanoLC-MS/MS analyses were employed to query a nonredundant protein database using in house MASCOT software (Matrix Science, Boston, USA).

Subcellular fractionation

To determine the amount of ATP7B protein in in different cellular compartments HepG2 expressing ATP7B^{WT}-GFP or ATP7B^{H1069Q}-GFP (control and treated with p38 or JNK inhibitors) were subjected to subcellular fractionation as described in Balch et al (1984). Cells homogenates were separated using discontinuous sucrose density gradient centrifugation. Fractions were collected at in 1.5 ml tubes by aspiration from the bottom, through a capillary tube attached to a polyethylene tube connected to a peristaltic pump and a fraction collector (total of 14 fractions – ~850 μ l each). GM130 was used as marker of the Golgi, PDI of the ER and Sodium/Potassium ATPase of plasma membrane. Amonts of GM130, PDI, Na/K-ATPase and ATP7B were revealed in each fractions by Western blot. Briefly, 90 μ l of each fraction was mixed with reducing buffer and boiled for 5 min. Samples were loaded in 10% BIS-TRIS gels and run under denaturing conditions. Gels were transferred to nitrocellulose membranes blocked with 1% BSA and

icubated with antibodies against GM130, GFP, PDI or Na/K-ATPase. Anti-rabbit and anti-mouse HRP-conjugated antibodies were used to reveal primary antibodies.

Copper detection by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

To determine intracellular Cu concentrations, cell pellets were lysed. The protein concentration in each sample was evaluated using Bradford Protein Assay (BioRad, Segrate, Italy). Cu concentration in the cell lysates was analyzed by ICP-MS. An aliquot of each sample was diluted 1:10 v/v with 5% HNO₃ and analyzed with an Agilent 7700 ICP-MS (Agilent Technologies, Santa Clara, CA, USA) All values of Cu concentration were normalized for protein content in corresponding cell lysates.

Microarray Analysis

To identify the effects of ATP7B^{H1069Q} expression on the transcriptome, total RNA was extracted from HepG2 cells (expressing either ATP7B^{H1069Q}-GFP or ATP7B^{WT}-GFP) and hybridized on Affymetrix GeneChips. All of the raw microarray data was formatted for 'Gene Expression Omnibus' (GEO) (http://www.ncbi.mln.nih.gov/geo) to comply with Minimum Information About a Microarray Experiment (MIAME) and Microarray Gene Expression Database (MGED) group standards (GEO number GSE51818). The genes differentially expressed in ATP7B^{H1069Q} expressing cells are listed in Supplementary Table 1. Microarray analyses were carried out with R, a free software environment (available at http://www.r-project.org). After quantification of gene expression with robust multi-array normalization (using the **BioConductor** package affy http://www.bioconductor.org) the significance of the differential gene expression was determined by computing moderated t-statistic s and false discovery rates with the Limma package. Annotation was based on the genome version from the National Center for Biotechnology Information. The p values obtained were corrected for multiple testing by calculating the estimated false discovery rates using the method of Benjamini-Hochberg. Basal and luminal genes that passed all of the described filtering criteria (including the fold-change cut-off) were entered into the Gene Functional Annotation Tool that is available at the Database for Annotation Visualization and Integrated Discovery (DAVID) website (http://david.abcc.ncifcrf.gov) using their official gene

symbols. The gene ontology options GOTERM_BP_ALL and GOTERM_MF_ALL were selected and a functional annotation chart was generated. A maximum p value of 0.05 was chosen to select only the significant categories.

Luciferase Assay

HeLa cells were plated in a 12-well plate and transfected with pGL3-E1b-TATA-4MRE reporter, empty vector (pEGFP-C1), ATP7B^{WT}-GFP or ATP7B^{H1069Q}-GFP. After 24 hours, cells were treated with 200 μ M CuSO₄ for 24 hours. Cells were subsequently harvested in a Passive Lysis Buffer (Promega) according to the manufacturer's instructions. Firefly luciferase and *Renilla* luciferase activities were measured with a Dual-Luciferase® reporter assay system (Promega) on a GloMax® 96 Microplate Luminometer (Promega) according to the manufacturer's instructions. Relative Light Units were calculated by dividing firefly measurements by *Renilla* measurements. All values were normalized to the ATP7B expression levels in the respective specimens and an empty vector was used as a control.

Immuno-electron microscopy.

For pre-embedding immuno-electron cells microscopy were fixed with mixture of 4%PFA and 0.05% glutaraldehyde in 0.2 M HEPES for 15 min and with 4%PFA alone for 30 min, followed by incubation with blocking/permeabilizing solution: 0.5% bovine serum albumin (BSA), 0.1% saponin, 50 mM NH₄Cl in PBS for 20-30 min. Primary anti-GFP antibody and 1.4nm gold-conjugated Fab' fragment of anti-rabbit IgGs were diluted in blocking/permeabilizing solution and added to the cells overnight or for 2h respectively. GoldEnhance[™] EM kit was used to enhance ultrasmall gold particles. Then cells were scraped, pelleted, post-fixed in OsO₄ and uranyl acetate and embedded in Epon. For cryo immuno-electron microscopy HepG2 cells or small 1 mm³ pieces of liver tissue from sacrificed mice were rapidly washed in PBS 1X and fixed immediately with a mixture of 2% freshly prepared paraformaldehyde and 0.2% glutaraldehyde in 0.1 M phosphate buffer for 2 h at room temperature. Before freezing in liquid nitrogen cell and tissue gelatin blocks were immersed in 2.3 M sucrose. From each sample, thin plastic or cryo sections were cut using Leica EM UC7 or Leica EM FC7 ultramicrotomes

respectively (Leica Mycrosystems, Vienna, Austria). Cryo sections were double labeled with antibodies against LAMP1 and GFP. EM images were acquired from thin sections using a FEI Tecnai-12 electron microscope (FEI, Eindhoven, Netherlands) equipped with a VELETTA CCD digital camera (Soft Imaging Systems GmbH, Munster, Germany). Morphometric analysis of lysosomal size, distance between lysosomes and PM, distribution of ATP7B among different intacellular compartments was performed using iTEM software (Olympus SYS, Germany).

Statistical analyses

Data were expressed as mean values \pm standard deviation. Statistical significance (t-test) was computed using GraphPad Prism6 software. A p-value <0.05 was considered statistically significant. In all figures * means p-value <0.05, ** p-value <0.01, *** p-value <0.001.