

## *New Phytologist* Supporting Information Figs S1–S4, Tables S1–S3 and Methods S1–S3

Article title: Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia

Authors: Steven B. Janssens, Filip Vandelook, Edmond De Langhe, Brecht Verstraete, Erik Smets, Ines Vandenhouwe and Rony Swennen

Article acceptance date: 7 December 2015

The following Supporting Information is available for this article:

Fig. S1 BEAST Maximum clade credibility tree of Zingiberales.

Fig. S2 Bayesian consensus phylogram of plastid and nuclear dataset.

Fig. S3 BEAST phylogram of the combined plastid and nuclear dataset of Musaceae.

**Table S1** Accession numbers, voucher data and origin of plant material for taxa

 included in the combined DNA analyses of Zingiberales-Musaceae

**Table S2** Dispersal probabilities between the different Southeast Asian (and African)

 areas

Table S3 Sequence characteristics

Table S4 Model fit of area-dependent diversification

Methods S1 Taxon sampling.

Methods S2 Molecular protocols and sequence analyses.

Methods S3 BEAST detail methods, parameters and settings.



**Table S1** Accession numbers, voucher data and origin of plant material for taxa included in the combined DNA analyses of Zingiberales-Musaceae. *Musa* taxa marked with a circle, asterisk or dash represent species that were used to infer diversification patterns. °, northern Indo-Burmese species; \*, Malesian species; -, southern Indo-Burmese or East Asian species.

| Family    | Species                  | Voucher          | atpB-rbcL | ITS      | rps16    | trnL-F   |
|-----------|--------------------------|------------------|-----------|----------|----------|----------|
| Cannaceae | Canna indica             | 19981130-03 (BR) | KU215245  | KU215028 | KU214891 | KU215151 |
|           | Canna paniculata         | -                | -         | AY673069 | AY656159 | AY140423 |
| Costaceae | Chamaecostus cuspidatus  | 19381338 (BR)    | -         | KU215041 | -        | KU215165 |
|           | Chamaecostus subsessilis | -                | -         | AY994717 | KJ011420 | AY994555 |
|           | Cheilocostus speciosus   | -                | -         | KC878573 | -        | AY994557 |
|           | Costus allenii           | 19730144 (BR)    | KU215248  | KU215031 | KU214894 | KU215154 |
|           | Costus amazonicus        | -                | -         | AY041032 | KJ011354 | AY994586 |
|           | Costus arabicus          | 19730142 (BR)    | KU215251  | KU215034 | KU214897 | KU215156 |
|           | Costus barbatus          | -                | -         | AY041031 | KJ011357 | AY994585 |
|           | Costus chartaceus        | -                | -         | AY972911 | KJ011360 | AY994559 |
|           | Costus claviger          | -                | -         | AY972882 | KJ011361 | AY994584 |
|           | Costus deistelii         | 19615174 (BR)    | KU215255  | KU215038 | KU214901 | -        |
|           | Costus dinklagei         | -                | -         | AY994750 | KJ011366 | AY994596 |
|           | Costus dubius            | 19594350 (BR)    | KU215257  | KU215040 | KU214903 | KU215161 |
|           | Costus erythrocoryne     | -                | -         | AY972886 | -        | AY994579 |
|           | Costus erythrophyllus    | 19730145 (BR)    | KU215247  | KU215030 | KU214893 | KU215153 |
|           | Costus gabonensis        | -                | -         | AY994747 | KJ011371 | AY994593 |
|           | Costus guanaiensis       | -                | -         | AY972883 | KJ011374 | AY994577 |
|           | Costus laevis            | -                | -         | AY041035 | KJ011377 | AY994575 |
|           | Costus lateriflorus      | -                | -         | AY994734 | KJ011379 | AY994574 |
|           | Costus letestui          | -                | -         | AY972939 | KJ011380 | AY994573 |
|           | Costus lucanusianus      | 19620189 (BR)    | KU215256  | KU215039 | KU214902 | KU215160 |
|           | Costus maculatus         | -                | -         | AY994731 | -        | AY994571 |
|           | Costus malortieanus      | 10005061 (BR)    | KU215246  | KU215029 | KU214892 | KU215152 |
|           | Costus montanus          | 19726433 (BR)    | KU215249  | KU215032 | KU214895 | -        |
|           | Costus mosaicus          | -                | -         | AY994728 | -        | AY994568 |
|           | Costus phaeotrichus      | -                | -         | AY994721 | KJ011396 | AY994561 |
|           | Costus pictus            | 10005272 (BR)    | KU215250  | KU215033 | KU214896 | KU215155 |
|           | Costus plicatus          | -                | -         | AY041030 | KJ011400 | AY994565 |
|           | Costus pulverulentus     | -                | -         | AY041029 | AY656160 | AY994563 |
|           | Costus scaber            | 19812689 (BR)    | KU215252  | KU215035 | KU214898 | KU215157 |
|           | Costus spectabilis       | -                | -         | AY994718 | KJ011406 | AY994556 |
|           | Costus stenophyllus      | -                | -         | AY994720 | KJ011408 | AY994560 |
|           | Costus talbotii          | -                | -         | AY994716 | KJ011412 | AY994554 |
|           | Costus tappenbeckianus   | -                | -         | AY994715 | -        | AY994553 |
|           | Costus vargasii          | 19860011 (BR)    | KU215254  | KU215037 | KU214900 | KU215159 |
|           | Costus varzearum         | -                | -         | AY994714 | KJ011413 | AY994551 |



|               | Costus villosissimus                     | -                              | -             | AY994713 | KJ011414      | AY994550      |
|---------------|------------------------------------------|--------------------------------|---------------|----------|---------------|---------------|
|               | Costus zingiberoides                     | 19860010 (BR)                  | KU215253      | KU215036 | KU214899      | KU215158      |
|               | Dimerocostus strobilaceus                | 19726435 (BR)                  | KU215258      | -        | KU214904      | KU215162      |
|               | Monocostus uniflora                      | 19750179 (BR)                  | KU215259      | -        | KU214905      | KU215163      |
|               | Tapeinochilos ananasae                   | 19610260 (BR)                  | KU215260      | -        | KU214906      | KU215164      |
| Heliconiaceae | Heliconia acuminata                      | 19830761 (BR)                  | KU215261      | -        | -             | KU215166      |
|               | Heliconia angusta                        | 19750486 (BR)                  | -             | -        | KU214909      | -             |
|               | Heliconia caribaea                       | -                              | FJ428018      | FJ428106 | FJ428109      | FJ428179      |
|               | Heliconia densiflora                     | 19880067 (BR)                  | KU215263      | -        | -             | -             |
|               | Heliconia hirsuta                        | Van Caeckenberghe s.n. (BR)    | KU215267      | -        | KU214912      | -             |
|               | Heliconia humilis                        | 19861386 (BR)                  | KU215265      | -        | KU214910      | KU215168      |
|               | Heliconia illustris                      | 10005273 (BR)                  | KU215262      | -        | KU214907      | -             |
|               | Heliconia indica                         | 19730253 (BR)                  | KU215264      | -        | KU214908      | KU215167      |
|               | Heliconia psittacorum                    | -                              | FJ428016      | FJ428105 | FJ428108      | FJ428180      |
|               | Heliconia rickardiana                    | 19940052-53 (BR)               | KU215268      | -        | KU214913      | -             |
|               | Heliconia rostrata                       | 19822412 (BR)                  | KU215266      | KU215042 | KU214907      | KU215169      |
| Lowiaceae     | Orchidantha chinensis                    | -                              | FJ428061      | FJ428181 | FJ428153      | FJ428181      |
|               | Orchidantha fimbriata                    | -                              | -             | AF434879 | AF430098      | FJ621300      |
|               | Orchidantha maxillarioides               | 19074031 (BR)                  | KU215269      | -        | KU214914      | KU215170      |
|               | Orchidantha siamensis                    | -                              | -             | AF434887 | AF430106      | AF431622      |
| Marantaceae   | Afrocalathea rhizantha                   | _                              | -             | EU605908 | EF382847      | EU647816      |
|               | Ajroculumed mizamma                      | -                              | -             | JO341268 | AF141025      | JN413119      |
|               | Calathea aanitata                        | -                              | -             | JO341271 | AF141026      | JO341219      |
|               | Calathea makoyana                        | 19073768 (BR)                  | KU215274      | KU215049 | KU214921      | KU215175      |
|               | Calathea maiestica                       | 19700532 (BR)                  | KU215276      | KU215051 | KU214923      | KU215177      |
|               | Calathea marantifolia                    | 19760485 (BR)                  | KU215270      | KU215043 | KU214915      | KU215171      |
|               | Calathog motalling                       | -                              |               | AY673046 | AF141030      | AY140354      |
|               | Calathea melallica                       | _                              | -             | JO341289 | AF141031      | JN413140      |
|               | Calathea micans<br>Calathea microcephala | 19700740 (BR)                  | KU215281      | -        | KU214932      | -             |
|               |                                          | 19700537 (BR)                  | -             | KU215045 | KU214917      | KU215173      |
|               | Calathea mirabilis                       | -                              | _             | 10341294 | AF141032      | 10341237      |
|               | Calathea petersenti                      | Van Caeckenberghe s.n. (BR)    | _             | KU215055 | KU214928      | -             |
|               | Calathea picturata                       | -                              | -             | AY673048 | AF141035      | AY140360      |
|               | Calathea rufibarba<br>Calathea undulata  | Van Caeckenberghe s.n. (BR)    | KU215273      | KU215048 | KU21/020      | -             |
|               | Calathea varienata                       | 19820964 (BR)                  | KU215275      | KU215040 | KU214920      |               |
|               |                                          |                                | K0215272      | AV673049 | ΔV656139      | AV1/036/      |
|               | Calathea warscewiczii                    | -                              | -             | KU215052 | KU214025      | A1140304      |
|               | Calathea zebrina<br>Ctanantha amabilis   | 19700743 (BR)<br>19391944 (BR) | -<br>KU215270 | KU215055 | KU214925      | -<br>KU215178 |
|               | Ctenantha kummerana                      | 19391944 (BR)                  | KU215279      | KU215056 | K0214950      | K0215176      |
|               | Ctenantha concernationa                  | 19673801 (BR)                  | KU215277      | KU215050 | -<br>VU214021 | -<br>KU215170 |
|               | Ctenantha sotosa                         | 19600571 (BR)                  | KU215260      | KU215057 | KU214931      | KU215100      |
|               | Donax cannactormic                       | 17020307 (DK)<br>10733/25 (DD) | KU2132/ð      | KU215057 | KU214929      | KU215190      |
|               | Donax cannaejormis                       | 19755425 (BR)                  | -             | KU215009 | KU214945      | KU215191      |
|               | Goeppertia lindeniana                    | 19/00/41 (DK)                  | -<br>VU015071 | KU215052 | KU214924      | -<br>VU016174 |
|               | Goeppertia louisea                       | van Caeckenbergne s.n. (BR)    | KU2152/1      | KU215046 | KU214918      | KU215174      |
|               | Goeppertia nigricans                     | 19391641 (BR)                  | KU215275      | KU215050 | KU214922      | KU215176      |
|               | Goeppertia orbifolia                     | 19910146-23 (BR)               | -             | KU215044 | KU214916      | KU215172      |



Musaceae

| Goeppertia sp.                | 19391639 (BR)               | -        | -            | KU214927 | -        |
|-------------------------------|-----------------------------|----------|--------------|----------|----------|
| Halopegia azurea              | -                           | -        | AY914650     | AF141048 | AY140372 |
| Hypselodelphys hirsuta        | Van Caeckenberghe s.n. (BR) | KU215288 | KU215064     | KU214939 | KU215186 |
| Indianthus virgatus           | -                           | -        | AY914666     | AY914620 | AY140411 |
| Ischnosiphon heleniae         | -                           | -        | AY673055     | AY656145 | AY140379 |
| Ischnosiphon leucophaeus      | -                           | -        | JQ341309     | AF141053 | JN413162 |
| Ischnosiphon ovatus           | Van Caeckenberghe s.n. (BR) | KU215291 | KU215067     | KU214942 | -        |
| Maranta bicolor               | 19074039 (BR)               | KU215283 | KU215061     | KU214934 | KU215181 |
| Maranta depressa              | 19700747 (BR)               | KU215282 | KU215060     | KU214933 | KU215180 |
| Maranta leuconeura            | 19660030 (BR)               | KU215284 | KU215062     | KU214935 | KU215182 |
| Maranta lietzei               | 19073766 (BR)               | -        | KU215054     | KU214926 | -        |
| Marantochloa conferta         | Van Caeckenberghe s.n. (BR) | -        | -            | KU214943 | KU215188 |
| Marantochloa leucantha        | 19547056 (BR)               | KU215287 | -            | KU214938 | KU215185 |
| Marantochloa congensis        | -                           | -        | EU605903     | AF141062 | EU647811 |
| Marantochloa filipes          | 19850681 (BR)               | -        | KU215070     | KU214946 | KU215192 |
| Marantochloa purpurea         | -                           | -        | AY673057     | AF141067 | AY140389 |
| Megaphrynium macrostachyum    | 10005583 (BR)               | -        | KU215071     | KU214947 | KU215193 |
| Monotagma laxum               | -                           | -        | AY673058     | AY656148 | AY140392 |
| Phrynium giganteum            | -                           | -        | AY673050     | EF382848 | AY140365 |
| Phrynium imbricatum           | -                           | -        | AY673059     | AY656149 | AY140402 |
| Phrynium maximum              | -                           | -        | AF434901     | AF430118 | AY140398 |
| Phrynium pubinerve            | -                           | -        | JQ341264     | AY914638 | JQ341212 |
| Pleiostachya pruinosa         | 19910154-31 (BR)            | KU215286 | KU215063     | KU214937 | KU215184 |
| Sarantha sp                   | 19575002 (BR)               | KU215289 | KU215065     | KU214940 | KU215187 |
| Sarcophrynium brachystachys   | 19910155-32 (BR)            | KU215285 | KU215072     | KU214948 | KU215194 |
| Sarcophrynium priogonium      | 10005466 (BR)               | -        | -            | KU214936 | KU215183 |
| Schumannianthus dichotomus    | -                           | -        | AY673064     | AY656154 | AY140410 |
| Stachyphrynium latifolium     | -                           | -        | AY914653     | AY914607 | AY140412 |
| Stachyphrynium repens         | -                           | -        | AY673060     | AY656150 | AY140403 |
| Stachyphrynium spicatum       | -                           | -        | AY914658     | AY914612 | AY140415 |
| Stachyphrynium sumatranum     | -                           | -        | AY914659     | AY914613 | AY140400 |
| Stromanthe porteana           | 19710269 (BR)               | KU215290 | KU215066     | KU214941 | -        |
| Thalia dealbata               | -                           | -        | AY914693     | AY914648 | AY140419 |
| Thalia multiflora             | 19770092 (BR)               | KU215292 | KU215068     | KU214944 | KU215189 |
| Thaumatococcus daniellii      | -                           | -        | AY673067     | AF141091 | AY140421 |
| Trachyphrynium braunianum     | -                           | -        | EU605916     | AY656158 | AY140377 |
| Ensete superbum               | -                           | -        | FJ621291     | -        | FJ621291 |
| Ensete gilletii               | ITC1389                     | KU215319 | KU215101     | KU214977 | -        |
| Ensete glaucum                | -                           | FJ428019 | FJ428154     | FJ428124 | FJ428154 |
| Ensete glaucum                | ITC0775                     | KU215306 | KU215088     | KU214963 | -        |
| Ensete homblei                | -                           | -        | FJ621290     | -        | FJ621290 |
| Ensete ventricosum            | ITC1387                     | -        | KU215100     | KU214976 | KU215215 |
| Musa acuminata ssp. banksii   | ITC0617                     | KU215302 | KU215083     | KU214959 | KU215206 |
| Musa acuminata ssp. banksii * | ITC0619                     | KU215304 | KU21<br>5085 | -        | KU215208 |
| Musa acuminata ssp. banksii   | ITC0879                     | KU215307 | KU215089     | KU214964 | -        |
| Musa acuminata ssp. banksii   | ITC0896                     | KU215309 | KU215090     | KU214966 | KU215211 |



| Musa acuminata ssp. burmannica               | -       | FJ428041 | FJ428083 | FJ428135 | FJ428169 |
|----------------------------------------------|---------|----------|----------|----------|----------|
| Musa acuminata ssp.<br>hurmannicoides -      | -       | FJ428044 | FJ428085 | FJ428133 | FJ428170 |
| Musa acuminata ssp. errans *                 | -       | FJ428051 | FJ428094 | FJ428126 | FJ428160 |
| Musa acuminata ssp. malaccensis              | ITC0609 | -        | KU176107 | KU176108 | KU176109 |
| Musa acuminata ssp. malaccensis<br>*         | ITC1511 | KU215320 | KU215102 | KU214978 | KU215205 |
| Musa acuminata ssp. microcarpa<br>*          | ITC0253 | KU215296 | KU215076 | KU214952 | KU215198 |
| Musa acuminata ssp. siamea -                 | ITC0672 | KU215338 | KU215122 | KU214997 | -        |
| Musa acuminata ssp. truncata *               | ITC0393 | KU215340 | KU215124 | KU214999 | KU215218 |
| Musa acuminata ssp. zebrina                  | ITC0728 | -        | KU215087 | KU214962 | -        |
| Musa acuminata ssp. zebrina                  | ITC1177 | KU215316 | KU215097 | KU214973 | -        |
| Musa acuminata ssp. zebrina                  | ITC1178 | KU215317 | KU215098 | KU214974 | -        |
| Musa acuminata ssp. zebrina *                | ITC1179 | KU215318 | KU215099 | KU214975 | -        |
| Musa aurantiaca °                            | -       | FJ428037 | FJ428090 | FJ428127 | FJ428162 |
| Musa balbisiana °                            | ITC0247 | KU215294 | KU215074 | KU214950 | KU215196 |
| Musa balbisiana                              | ITC0565 | KU215300 | KU215080 | KU214956 | KU215202 |
| Musa balbisiana                              | ITC1587 | KU215330 | KU215114 | KU214989 | -        |
| Musa barioensis *                            | ITC1568 | KU215328 | KU215112 | KU214987 | -        |
| Musa basjoo -                                | ITC0061 | KU215293 | KU215073 | KU214949 | KU215195 |
| Musa beccarii var. beccarii *                | -       | FJ428028 | FJ428065 | FJ428120 | FJ428189 |
| Musa beccarii var. hottana *                 | -       | FJ428029 | FJ428066 | FJ428115 | FJ428190 |
| Musa borneensis *                            | ITC1531 | KU215326 | KU215110 | KU214985 | -        |
| Musa campestris ssp.<br>sarawakensis *       | ITC1517 | KU215322 | KU215104 | KU214980 | -        |
| Musa cheesmanii °                            | ITC1519 | KU215323 | KU215106 | KU214982 | -        |
| Musa coccinea °                              | ITC0287 | KU215298 | KU215078 | KU214954 | KU215200 |
| Musa exotica °                               | ITC1532 | KU215327 | KU215111 | KU214986 | -        |
| Musa gracilis *                              | -       | FJ428022 | FJ428075 | FJ428111 | FJ428194 |
| Musa hirta *                                 | -       | FJ428026 | FJ428074 | FJ428117 | FJ428199 |
| Musa ingens *                                | -       | FJ428036 | FJ428077 | FJ428118 | FJ428184 |
| Musa itinerans ssp.<br>xishuangbanaensis °   | ITC1526 | KU215325 | KU215108 | KU214984 | -        |
| Musa jackeyi                                 | ITC0588 | KU215301 | KU215081 | KU214957 | KU215203 |
| Musa laterita °                              | ITC1076 | KU215315 | KU215096 | KU214972 | -        |
| Musa lolodensis *                            | ITC0956 | KU215313 | KU215094 | KU214970 | KU215213 |
| Musa lutea °                                 | ITC1515 | KU215321 | KU215103 | KU214979 | -        |
| Musa maclayi ssp. ailulai *                  | ITC0614 | KU215332 | KU215116 | KU214991 | KU215216 |
| Musa maclayi ssp. maclayi var.<br>maclayi *  | ITC0864 | KU215335 | KU215119 | KU214994 | -        |
| Musa maclayi ssp. maclayi var.<br>namatani * | ITC0915 | KU215310 | KU215091 | KU214967 | KU215212 |
| Musa mannii °                                | ITC0543 | KU215299 | KU215079 | KU214955 | KU215201 |
| Musa monticola *                             | -       | FJ428049 | FJ428073 | FJ428119 | FJ428191 |
| Musa nagensium °                             | -       | FJ428058 | FJ428101 | FJ428144 | FJ428158 |
| Musa ornata $^{\circ}$                       | ITC0637 | KU215333 | KU215117 | KU214992 | -        |
| Musa peekelii ssp. peekelii *                | ITC0917 | KU215311 | KU215092 | KU214968 | -        |
| Musa peekelii sss. angustigemma<br>*         | ITC0618 | KU215303 | KU215084 | KU214960 | KU215207 |
| Musa peekelii ssp. angustigemma              | ITC0625 | KU215305 | KU215086 | KU214961 | KU215209 |



|                | Musa rosea -              | -                           | FJ428045 | FJ428080 | FJ428131 | FJ428171 |
|----------------|---------------------------|-----------------------------|----------|----------|----------|----------|
|                | Musa rubinea °            | -                           | FJ428048 | FJ428093 | FJ428128 | FJ428163 |
|                | Musa rubra °              | ITC1590                     | KU215331 | KU215115 | KU214990 | -        |
|                | Musa salaccensis *        | -                           | FJ428023 | FJ428072 | FJ428112 | FJ428196 |
|                | Musa schizocarpa          | ITC0599                     | -        | KU215082 | KU214958 | KU215204 |
|                | Musa schizocarpa          | ITC0890                     | KU215308 | -        | KU214965 | KU215210 |
|                | Musa schizocarpa          | ITC0926                     | KU215312 | KU215093 | KU214969 | -        |
|                | Musa schizocarpa *        | ITC1002                     | KU215336 | KU215120 | KU214995 | -        |
|                | Musa siamensis -          | -                           | FJ428047 | FJ428086 | FJ428134 | FJ428168 |
|                | Musa textilis *           | ITC1072                     | KU215314 | KU215095 | KU214971 | KU215214 |
|                | Musa tonkinensis °        | -                           | FJ428055 | FJ428099 | FJ428146 | FJ428178 |
|                | Musa velutina °           | ITC0638                     | KU215334 | KU215118 | KU214993 | -        |
|                | Musa violescens *         | ITC1514                     | KU215339 | KU215123 | KU214998 | KU215217 |
|                | Musa viridis °            | ITC1525                     | KU215324 | KU215107 | KU214983 | -        |
|                | Musa yunnanensis °        | ITC1573                     | KU215329 | KU215113 | KU214988 | -        |
|                | Musella lasiocarpa        | -                           | FJ428021 | FJ428155 | FJ428123 | FJ428155 |
| Strelitziaceae | Phenakospermum guyannense | 19812682 (BR)               | -        | -        | KU215000 | KU215219 |
|                | Ravenala madagascariensis | -                           | FJ428017 | FJ428107 | FJ428110 | FJ428182 |
|                | Strelitzia reginae        | -                           | -        | FJ626403 | JQ027166 | FJ621298 |
| Zingiberaceae  | Aframomum danielii        | 20030092-77 (BR)            | KU215362 | KU215148 | KU215024 | KU215239 |
|                | Aframomum hanburyi        | Van Caeckenberghe s.n. (BR) | KU215361 | KU215147 | KU215023 | -        |
|                | Aframomum corrorima       | Van Caeckenberghe s.n. (BR) | KU215364 | KU215150 | -        | KU215241 |
|                | Aframomum luteoalbum      | -                           | -        | AF414493 | AF414546 | FJ848664 |
|                | Aframomum thonneri        | 20030090-75 (BR)            | KU215363 | KU215149 | -        | KU215240 |
|                | Aframomum verrucosum      | -                           | -        | AF414492 | AF414545 | FJ848660 |
|                | Alpinia luteocarpa        | 19880195 (BR)               | KU215342 | KU215125 | KU215001 | KU215220 |
|                | Alpinia purpurata         | 19880109 (BR)               | KU215343 | KU215126 | KU215002 | KU215221 |
|                | Boesenbergia rotunda      | 20040188-85 (BR)            | -        | KU215139 | KU215016 | -        |
|                | Boesenbergia sp           | 19710472 (BR)               | -        | KU215135 | KU215012 | KU215229 |
|                | Cautleya lutea            | 20091405-86 (BR)            | KU215355 | KU215141 | KU215018 | KU215234 |
|                | Curcuma longa             | 19670244 (BR)               | KU215347 | -        | KU215006 | KU215224 |
|                | Curcuma zanthorrhiza      | 19750147 (BR)               | KU215348 | KU215130 | KU215007 | -        |
|                | Etlingera elatior         | 19560132 (BR)               | -        | -        | KU215025 | KU215242 |
|                | Etlingera yunnanensis     | -                           | -        | AF414468 | AF414521 | AY769809 |
|                | Globba schomburgkii       | 19741200 (BR)               | KU215357 | KU215143 | KU215020 | KU215236 |
|                | Hedychium coronarium      | 19870230 (BR)               | -        | KU215134 | KU215011 | KU215228 |
|                | Hedychium cylindricum     | 19520915 (BR)               | KU215350 | KU215132 | KU215009 | KU215226 |
|                | Kaempferia elegans        | 20060023-35 (BR)            | KU215353 | KU215138 | KU215015 | KU215232 |
|                | Hedychium flavescens      | 19800483 (BR)               | KU215351 | KU215133 | KU215010 | KU215227 |
|                | Hedychium horsfieldii     | 19602071 (BR)               | KU215349 | KU215131 | KU215008 | KU215225 |
|                | Kaempferia gilbertii      | 19570275 (BR)               | KU215352 | KU215136 | KU215013 | KU215230 |
|                | Kaempferia rotunda        | 19074013 (BR)               | -        | KU215137 | KU215014 | KU215231 |
|                | Kaempferia sp.            | Van Caeckenberghe s.n. (BR) | KU215360 | KU215146 | KU215022 | KU215238 |
|                | Renealmia alpina          | 19921107-23 (BR)            | KU215358 | KU215144 | KU215021 | -        |
|                | Renealmia nicolaioides    | 19750423 (BR)               | KU215354 | KU215140 | KU215017 | KU215233 |
|                | Renealmia cernua          | -                           | -        | AF414476 | AF414529 | DQ444517 |



|           | Riedelia sp.          | 19620382 (BR)               | KU215359 | KU215145 | -        | KU215237 |
|-----------|-----------------------|-----------------------------|----------|----------|----------|----------|
|           | Siphonochilus decorus | 19870078 (BR)               | -        | -        | KU215026 | KU215243 |
|           | Siphonochilus kirkii  | 20040213-13 (BR)            | KU215356 | KU215142 | KU215019 | KU215235 |
|           | Zingiber darceyi      | Van Caeckenberghe s.n. (BR) | KU215346 | KU215129 | KU215005 | -        |
|           | Zingiber officinale   | 19920009-89 (BR)            | -        | -        | KU215027 | KU215244 |
|           | Zingiber papuanum     | 19763771 (BR)               | KU215344 | KU215127 | KU215003 | KU215222 |
|           | Zingiber zerumbet     | 19520932 (BR)               | KU215345 | KU215128 | KU215004 | KU215223 |
| Typhaceae | Sparganium sp.        | -                           | JF280745 | -        | HQ913892 | HQ882765 |
|           | Typha angustifolia    | -                           | FJ914237 | -        | AM116858 | JF319450 |



**Table S2** Dispersal probability between the different Southeast Asian (and African) areas throughout four defined time periods (0–10 Mya (Pleistocene to Late Miocene), 10–20 Mya (Late to Early Miocene), 20–30 Mya (Early Miocene to Oligocene) and 30–55 Mya (Oligocene to Early Eocene) used as input for the ancestral area analyses conducted by Lagrange. Due to the complex evolution of the Southeast Asian subcontinent, dispersal probabilities (DP) differ in time (DP 1.0: no dispersal restriction between Southeast Asian distribution ranges, DP 0.5: limited dispersal as certain landmasses (e.g. New Guinea) were not fully emerged yet, DP 0.0: Land mass not yet existing during defined time period. A, Africa; B, Southwest India and Sri Lanka; C, northern Indo-Burma; D, South China; E, southern Indo-Burma; F, Sumatra and Malayan Peninsula; G, Borneo; H, Philippines; I, New Guinea and surrounding islands; J, Northwest Australia; K, Lesser Sunda Islands; L, Sulawesi.

| 0 to                                                                  |                                                                             |                                                                             |                                                                             |                                                                         |                                                                         |                                                                             |                                                                             |                                                                                |                                                                         |                                                                             |                                                                         |                                                                                |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 10                                                                    | А                                                                           | В                                                                           | С                                                                           | D                                                                       | E                                                                       | F                                                                           | G                                                                           | Η                                                                              | Ι                                                                       | J                                                                           | K                                                                       | L                                                                              |
| А                                                                     |                                                                             | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| В                                                                     | 1.0                                                                         |                                                                             | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| С                                                                     | 1.0                                                                         | 1.0                                                                         |                                                                             | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| D                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         |                                                                         | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| E                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     |                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| F                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     |                                                                             | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| G                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         |                                                                             | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| Н                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         |                                                                                | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| Ι                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            |                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                            |
| J                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     |                                                                             | 1.0                                                                     | 1.0                                                                            |
| Κ                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         |                                                                         | 1.0                                                                            |
| L                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                         | 1.0                                                                     | 1.0                                                                     | 1.0                                                                         | 1.0                                                                         | 1.0                                                                            | 1.0                                                                     | 1.0                                                                         | 1.0                                                                     |                                                                                |
|                                                                       |                                                                             |                                                                             |                                                                             |                                                                         |                                                                         |                                                                             |                                                                             |                                                                                |                                                                         |                                                                             |                                                                         |                                                                                |
|                                                                       |                                                                             |                                                                             |                                                                             |                                                                         |                                                                         |                                                                             |                                                                             |                                                                                |                                                                         |                                                                             |                                                                         |                                                                                |
| 10                                                                    |                                                                             |                                                                             |                                                                             |                                                                         |                                                                         |                                                                             |                                                                             |                                                                                |                                                                         |                                                                             |                                                                         |                                                                                |
| 10<br>to                                                              | •                                                                           | D                                                                           | C                                                                           | D                                                                       | F                                                                       | F                                                                           | C                                                                           | TT                                                                             | T                                                                       | T                                                                           | V                                                                       | T                                                                              |
| 10<br>to<br>20                                                        | A                                                                           | B                                                                           | <u>C</u>                                                                    | D                                                                       | E                                                                       | F                                                                           | G                                                                           | H                                                                              | I                                                                       | J                                                                           | K                                                                       | L                                                                              |
| 10<br>to<br>20<br>A                                                   | A<br>                                                                       | B<br>1.0                                                                    | C<br>1.0                                                                    | D<br>1.0                                                                | E<br>1.0                                                                | F<br>1.0                                                                    | G<br>1.0                                                                    | H<br>1.0                                                                       | I<br>0.5                                                                | J<br>1.0                                                                    | K<br>0.5                                                                | L<br>1.0                                                                       |
| 10<br>to<br>20<br>A<br>B                                              | A<br><br>1.0                                                                | B<br>1.0<br>                                                                | C<br>1.0<br>1.0                                                             | D<br>1.0<br>1.0                                                         | E<br>1.0<br>1.0                                                         | F<br>1.0<br>1.0                                                             | G<br>1.0<br>1.0                                                             | H<br>1.0<br>1.0                                                                | I<br>0.5<br>0.5                                                         | J<br>1.0<br>1.0                                                             | K<br>0.5<br>0.5                                                         | L<br>1.0<br>1.0                                                                |
| 10<br>to<br>20<br>A<br>B<br>C                                         | A<br><br>1.0<br>1.0                                                         | B<br>1.0<br><br>1.0                                                         | C<br>1.0<br>1.0<br>                                                         | D<br>1.0<br>1.0<br>1.0                                                  | E<br>1.0<br>1.0<br>1.0                                                  | F<br>1.0<br>1.0<br>1.0                                                      | G<br>1.0<br>1.0<br>1.0                                                      | H<br>1.0<br>1.0<br>1.0                                                         | I<br>0.5<br>0.5<br>0.5                                                  | J<br>1.0<br>1.0<br>1.0                                                      | K<br>0.5<br>0.5<br>0.5                                                  | L<br>1.0<br>1.0<br>1.0                                                         |
| 10<br>to<br>20<br>A<br>B<br>C<br>D                                    | A<br><br>1.0<br>1.0<br>1.0                                                  | B<br>1.0<br><br>1.0<br>1.0                                                  | C<br>1.0<br>1.0<br><br>1.0                                                  | D<br>1.0<br>1.0<br>1.0<br>                                              | E<br>1.0<br>1.0<br>1.0<br>1.0                                           | F<br>1.0<br>1.0<br>1.0<br>1.0                                               | G<br>1.0<br>1.0<br>1.0<br>1.0                                               | H<br>1.0<br>1.0<br>1.0<br>1.0                                                  | I<br>0.5<br>0.5<br>0.5<br>0.5                                           | J<br>1.0<br>1.0<br>1.0<br>1.0                                               | K<br>0.5<br>0.5<br>0.5<br>0.5                                           | L<br>1.0<br>1.0<br>1.0<br>1.0                                                  |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E                               | A<br><br>1.0<br>1.0<br>1.0<br>1.0                                           | B<br>1.0<br><br>1.0<br>1.0<br>1.0                                           | C<br>1.0<br>1.0<br><br>1.0<br>1.0                                           | D<br>1.0<br>1.0<br>1.0<br><br>1.0                                       | E<br>1.0<br>1.0<br>1.0<br>1.0<br>                                       | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                        | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                        | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                           | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                    | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                        | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                    | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                           |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F                          | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0                                    | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0                                    | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0                                | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0                                | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>                                    | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                 | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                 | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F<br>G                     | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0                             | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0                         | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0                         | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0                             | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>                             | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                      | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                          | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                      | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H                | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0                  | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0                  | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0                      | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0               | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                   | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0               |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I           | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5               | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5               | C<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5                   | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.5           | E<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5               | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5                   | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.5        | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5               | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5        | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5            | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5        | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5               |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J      | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0        | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0        | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0        | D<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0        | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.5<br>1.0    | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0            | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.5<br>1.0 | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>0.5<br>1.0    | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5            | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0        |
| 10<br>to<br>20<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>K | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | D<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | E<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5     | H<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>0.5 | I<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | J<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br><br>0.5 | K<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | L<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>1.0<br>1.0 |



| 20<br>to                                                                   |                                                                             |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                             |                                                                        |                                                                                |                                                                                           |                                                                        |                                                                        |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| 30                                                                         | А                                                                           | В                                                                                  | С                                                                                  | D                                                                                  | Е                                                                                  | F                                                                                  | G                                                                           | Н                                                                      | Ι                                                                              | J                                                                                         | Κ                                                                      | L                                                                      |
| А                                                                          |                                                                             | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| В                                                                          | 1.0                                                                         |                                                                                    | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| С                                                                          | 1.0                                                                         | 1.0                                                                                |                                                                                    | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| D                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                |                                                                                    | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| E                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                |                                                                                    | 1.0                                                                                | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| F                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                |                                                                                    | 1.0                                                                         | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| G                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                |                                                                             | 0.5                                                                    | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| Н                                                                          | 0.5                                                                         | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                         |                                                                        | 0.5                                                                            | 1.0                                                                                       | 0.5                                                                    | 1.0                                                                    |
| Ι                                                                          | 0.5                                                                         | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                         | 0.5                                                                    |                                                                                | 0.5                                                                                       | 0.5                                                                    | 0.5                                                                    |
| J                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 1.0                                                                    | 0.5                                                                            |                                                                                           | 0.5                                                                    | 1.0                                                                    |
| Κ                                                                          | 0.5                                                                         | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                                | 0.5                                                                         | 0.5                                                                    | 0.5                                                                            | 0.5                                                                                       |                                                                        | 1.0                                                                    |
| L                                                                          | 1.0                                                                         | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                                | 1.0                                                                         | 1.0                                                                    | 0.5                                                                            | 1.0                                                                                       | 1.0                                                                    |                                                                        |
|                                                                            |                                                                             |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                             |                                                                        |                                                                                |                                                                                           |                                                                        |                                                                        |
|                                                                            |                                                                             |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                             |                                                                        |                                                                                |                                                                                           |                                                                        |                                                                        |
| 30                                                                         |                                                                             |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                                    |                                                                             |                                                                        |                                                                                |                                                                                           |                                                                        |                                                                        |
| 30<br>to<br>55                                                             | A                                                                           | в                                                                                  | C                                                                                  | D                                                                                  | E                                                                                  | F                                                                                  | G                                                                           | н                                                                      | T                                                                              | T                                                                                         | к                                                                      | I.                                                                     |
| 30<br>to<br>55<br>A                                                        | A                                                                           | B<br>1.0                                                                           | <u>C</u>                                                                           | D<br>1.0                                                                           | <u>E</u>                                                                           | F<br>1.0                                                                           | <u> </u>                                                                    | H<br>0.0                                                               | I<br>0.0                                                                       | J<br>0.0                                                                                  | <u>K</u>                                                               | L<br>0.0                                                               |
| 30<br>to<br>55<br>A<br>B                                                   | A<br><br>1.0                                                                | B<br>1.0                                                                           | C<br>1.0<br>1.0                                                                    | D<br>1.0<br>1.0                                                                    | E<br>1.0<br>1.0                                                                    | F<br>1.0<br>1.0                                                                    | G<br>1.0<br>1.0                                                             | H<br>0.0<br>0.0                                                        | I<br>0.0<br>0.0                                                                | J<br>0.0<br>0.5                                                                           | K<br>0.0<br>0.0                                                        | L<br>0.0<br>0.0                                                        |
| 30<br>to<br>55<br>A<br>B<br>C                                              | A<br><br>1.0<br>1.0                                                         | B<br>1.0<br><br>1.0                                                                | C<br>1.0<br>1.0                                                                    | D<br>1.0<br>1.0<br>1.0                                                             | E<br>1.0<br>1.0<br>1.0                                                             | F<br>1.0<br>1.0<br>1.0                                                             | G<br>1.0<br>1.0<br>1.0                                                      | H<br>0.0<br>0.0<br>0.0                                                 | I<br>0.0<br>0.0<br>0.0                                                         | J<br>0.0<br>0.5<br>0.5                                                                    | K<br>0.0<br>0.0<br>0.0                                                 | L<br>0.0<br>0.0<br>0.0                                                 |
| 30<br>to<br>55<br>A<br>B<br>C<br>D                                         | A<br><br>1.0<br>1.0<br>1.0                                                  | B<br>1.0<br><br>1.0<br>1.0                                                         | C<br>1.0<br>1.0<br><br>1.0                                                         | D<br>1.0<br>1.0<br>1.0                                                             | E<br>1.0<br>1.0<br>1.0<br>1.0                                                      | F<br>1.0<br>1.0<br>1.0<br>1.0                                                      | G<br>1.0<br>1.0<br>1.0<br>1.0                                               | H<br>0.0<br>0.0<br>0.0<br>0.0                                          | I<br>0.0<br>0.0<br>0.0<br>0.0                                                  | J<br>0.0<br>0.5<br>0.5<br>0.5                                                             | K<br>0.0<br>0.0<br>0.0<br>0.0                                          | L<br>0.0<br>0.0<br>0.0<br>0.0                                          |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E                                    | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | B<br>1.0<br><br>1.0<br>1.0<br>1.0                                                  | C<br>1.0<br>1.0<br><br>1.0<br>1.0                                                  | D<br>1.0<br>1.0<br>1.0<br><br>1.0                                                  | E<br>1.0<br>1.0<br>1.0<br>1.0                                                      | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                               | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                 | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5                                                      | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F                               | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0                                           | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0                                           | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0                                           | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                               | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                          | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                               | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G                          | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0                                    | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0                                    | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0                             | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                 | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                 | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0              |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H                     | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0               | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0                             | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.0                             | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.0                             | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.0                             | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.0                             | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0                   | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.0                          | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I                | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0        | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0                      | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0                      | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.0<br>0.0                      | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.0<br>0.0                      | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.0<br>0.0               | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>0.0<br>0.0               | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br><br>0.0   | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.0<br>0.5                          | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J           | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.0 | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5               | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5               | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5               | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.0<br>0.0<br>0.5               | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.0<br>0.0<br>0.5               | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5     | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br><br>0.0<br>0.0   | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.         | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.0<br>0.5<br>               | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>K      | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.0 | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0        | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0        | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0        | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0        | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.0<br>0.0<br>0.5<br>0.0 | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>0.0<br>0.0<br>0.5<br>0.0 | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.         | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.0<br>0.5<br><br>0.0               | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. |
| 30<br>to<br>55<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>K<br>L | A<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.0 | B<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | C<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | D<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | E<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>1.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | F<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br><br>1.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | G<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.0<br>0.0<br>0.0     | H<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | I<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5<br>0.0<br>0.0 | J<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.0<br>0.5<br><br>0.0<br>0.0 | K<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | L<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. |



Table S3 Sequence characteristics of ITS, *atpB-rbcL*, *trnL-F* and *rps16*, and the combined matrix

|                     | ITS  | atpB-rbcL | trnL-F | rps16 | combined |
|---------------------|------|-----------|--------|-------|----------|
| Analyzed characters | 1908 | 1086      | 2060   | 1750  | 6807     |
| Variable characters | 807  | 211       | 467    | 494   | 1979     |
| PI characters       | 612  | 126       | 278    | 147   | 1163     |
| No. of taxa         | 201  | 142       | 180    | 213   | 227      |

PI, parsimony informative



**Table S4.** Model fit of area-dependent diversification. Eight models with diverse constraints and degrees of freedom (df) were selected for Bayesian model averaging (BMA). Subscript 0 refers to an Indo-Burmese distribution, whereas subscript 1 refers a Malesian distribution. Bayes factors testing support the selected model of equal speciation rates, equal transition rates and a null extinction for species occurring in Indo-Burma.

|                | Bi          | SSE mo    | dels    |                |                        |    |         |       |
|----------------|-------------|-----------|---------|----------------|------------------------|----|---------|-------|
| λ <sub>0</sub> | $\lambda_1$ | $\mu_0$   | $\mu_1$ | ${\bf q}_{01}$ | <b>q</b> <sub>10</sub> | df | LogMarg | BF    |
| $\lambda_0 =$  | $\lambda_1$ | 0         |         | $q_{01} =$     | $q_{10}$               | 3  | -183.83 | 0.0   |
| $\lambda_0$ =  | $\lambda_1$ |           | 0       | $q_{01} =$     | $q_{10}$               | 3  | -185.27 | 2.88  |
| $\lambda_0$ =  | $\lambda_1$ |           |         | $q_{01} =$     | $q_{10}$               | 4  | -185.45 | 3.24  |
|                |             | 0         | 0       | $q_{01} =$     | $q_{10}$               | 2  | -190.34 | 13.02 |
|                |             |           |         | $q_{01} =$     | $q_{10}$               | 5  | -190.82 | 13.98 |
|                |             | 0         |         | $q_{01} =$     | $q_{10}$               | 4  | -191.30 | 14.94 |
|                |             |           | 0       | $q_{01} =$     | $q_{10}$               | 4  | -191.61 | 15.56 |
|                |             | $\mu_0$ = | $\mu_1$ | $q_{01} =$     | <b>q</b> <sub>10</sub> | 4  | -192.25 | 16.84 |





**Fig. S1** BEAST Maximum clade credibility tree of Zingiberales inferred from combined ITS, *trnL-F*, *rps16* and *atpB-rbcl*. Bayesian Posterior Probabilities at family level or higher are added above the branches. Calibration points are indicated at selected nodes: (A) secondary calibration point Zingiberales, (B) *Zingiberopsis attenuata* and (C) *Ensete oregonense*. Pl., Pliocene; P., Pleistocene.





**Fig. S2** Bayesian consensus phylogram of (a) the chloroplast (*trnL-F*, *rps16* and *atpB-rbcL*) dataset and (b) nuclear (ITS) dataset. Bayesian Posterior probability values are indicated above or below the branches.





**Fig. S3** Maximum clade credibility tree of the combined ITS, *atpB-rbcL*, *rps16* and *trnL–trnF* dataset of the Musaceae from the BEAST analysis (detail of the large Zingiberales phylogram of Fig. S1). Blue bars indicate age intervals (95% HPD credibility). Bayesian Posterior probability values are indicated above or below the branches. Unsupported nodes present in the maximum clade credibility tree are indicated by a hyphen.



## Methods S1 Taxon sampling.

The taxon sampling of this study was chosen to represent the geographic and taxonomic diversity of the Musaceae family. In total 5 Ensete species (6 accessions), 38 Musa species (63 accessions) and 1 species (1 accession) of Musella were included. Furthermore, in order to correctly estimate node ages for Ensete, Musa and Musella, we extended the Musaceae dataset - which is the focal point of this study with a substantial number of genera and species of all known Zingiberales families: Heliconiaceae (1 genus, 11 species), Lowiaceae (1 genus, 4 species), Strelitziaceae (3 genera, 3 species), Zingiberaceae (13 genera, 34 species), Marantaceae (23 genera, 62 species), Cannaceae (1 genus, 2 species) and Costaceae (6 genera, 40 species). Within the Zingiberales dataset, each species was represented by one accession. Newly obtained sequences were obtained from fresh or silica-dried leaf material. For the Musaceae accessions, we obtained in vitro rooted plants of most of the wild Musa and Ensete species from the International Transit Centre, Bioversity International (based at KU Leuven, Belgium), whereas extant Zingiberales samples were retrieved from the living plant collection of the Botanic Garden Meise (formerly known as National Botanic Garden Belgium). Typha angustifolia and Sparganium sp. (Typhaceae) were selected as outgroup species to the large Zingiberales dataset. Information about species names, voucher information and GenBank accessions are provided in Table S1.



Methods S2 Molecular protocols and sequence analyses.

A modified CTAB protocol was used for total genomic DNA isolation (Tel-Zur *et al.*, 1999). Amplification reactions of *rps16*, *atpB-rbcL*, *trnL-F* and ITS were carried out following primers and protocols of Oxelman *et al.* (1997), Chiang *et al.* (1998), Taberlet *et al.* (1991) and White *et al.* (1990), respectively. Purified amplification products were sequenced by the Macrogen sequencing facilities (Macrogen Europe, Amsterdam, Netherlands). Raw sequences were assembled using Geneious v7.0.6 (Biomatters, Auckland, New Zealand). Automatic alignment was conducted with MAFFT (Katoh *et al.*, 2002) using an E-INS-i algorithm, a 100PAM/k=2 scoring matrix, a gap open penalty of 1.3 and an offset value of 0.123. Manual fine-tuning of the aligned dataset was performed in Geneious v7.0.6.

Congruency between the different datasets was inferred using different methods. First, a series of partition homogeneity test (Farris *et al.*, 1995) were carried out with PAUP\* 4.0b10 (Swofford, 2003). Pairwise tests were performed between datasets of different genomic origin (combined plastid dataset and nuclear ribosomal ITS dataset). Despite the well-known sensitivity of the partition homogeneity test (Barker & Lutzoni, 2002), the results of this test were compared in light of the resolution and support values of the obtained plastid and nuclear topologies. As a result, possible conflict between data matrices was visually inspected, searching for conflicting relationships within each topology that are strongly supported (hard vs. soft incongruence; Johnson & Soltis, 1998).

The best-fit nucleotide substitution model for each plastid and nuclear dataset was selected using jModelTest 2.1.4. (Posada, 2008) under the Akaike information criterion (AIC). The GTR+I+G model was determined as best fit for *rps16* and *trnL-F*, GTR+G for *atpB-rbcL* and F81+I for ITS. Likewise, we used a mixed-model approach to apply different evolutionary models on each DNA region of the combined dataset (Ronquist & Huelsenbeck, 2003). Bayesian inference analyses were conducted with MrBayes 3.1 (Huelsenbeck & Ronquist, 2001) on four individual data partitions and a combined data matrix. Each analysis was run two times for 20 million generations. Trees were sampled every 5,000th generation. Chain convergence and ESS parameters were inspected with TRACER 1.4 (Rambaut & Drummond, 2007). Only nodes with Bayesian posterior probabilities (BPP) above 0.95 are considered as well supported (Suzuki *et al.*, 2002).



Methods S3 BEAST detail methods, parameters and settings.

BEAST 1.8.0 (Drummond & Rambaut, 2007) was used to compute divergence times. However, in order to surpass the zero likelihood issue in BEAST, we used a starting tree that was obtained by carrying out a ML analysis in RAxML 7.2.8 (Stamatakis *et al.*, 2008) under GTRGAMMA model with the rooted likelihood tree as input tree for a penalized likelihood (PL) analysis in the software program PL-tree (Wang *et al.*, 2013). PL-tree is based on the Penalized Likelihood algorithm of Sanderson (2002). All calibration points are used as described above. Due to differing substitution models for the plastid and nuclear gene markers, a partitioned Bayesian MCMC analysis was performed under the Yule speciation model and a relaxed lognormal clock. Partitions were unlinked for the model of evolution. The analysis ran for 30 million generations and was sampled each 5,000th generation. Convergence of the chains and ESS parameter evaluation (ESS > 200) was performed with TRACER 1.6 (Rambaut & Drummond, 2007). A maximum clade credibility tree using a posterior probability limit of 0.5 was calculated using TreeAnnotator 1.8.0. (Drummond & Rambaut, 2007).



## References

**Barker FK, Lutzoni FM. 2002.** The utility of the incongruence length difference test. *Systematic Biology* **51**: 625–637.

**Chiang TY, Schaal BA, Peng C-I. 1998.** Universal primers for amplification and sequencing a non-coding spacer between the *atpB* and *rbcL* genes of chloroplast DNA. *Botanical Bulletin of Academia Sinica* **39**: 245–250.

**Drummond AJ, Rambaut A. 2007.** BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Biology* **7**: 214.

**Farris JD, Källersjö M, Kluge AG, Bult C. 1995.** Constructing a significance test for incongruence. *Systematic Biology* **44**: 570–572.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES, Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755.

Johnson LA, Soltis DE. 1998. Assessing congruence: Empirical examples from molecular data. In: Soltis PS, Soltis DE, Doyle JJ, eds. *Molecular Systematics of Plants II: DNA Sequencing*. Boston, MA, USA: Kluwer, 297-348.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30: 3059–3066.

**Oxelman B, Liden M, Berglund D. 1997.** Chloroplast *rps16* intron phylogeny of the tribe Sileneae (Caryophyllaceae). *Plant Systematics and Evolution* **206**: 393–410.

**Posada D. 2008.** jModelTest: phylogenetic model averaging. *Molecular Biology and Evolution* **25**: 1253–1256.

Rambaut A, Drummond AJ. 2007. *Tracer v1.4*. URL http://beast.bio.ed.ac.uk/Tracer.

**Ronquist F, Huelsenbeck JP. 2003.** Mr. Bayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **19**: 1572–1574.

Sanderson MJ. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. *Molecular Biology and Evolution* 19: 101–109.

**Stamatakis A, Hoover P, Rougement J. 2008.** A fast bootstrapping algorithm for the RAxML web servers. *Systematic Biology* **57**: 758–771.

Suzuki Y, Glazko GV, Nei M. 2002. Over credibility of molecular phylogenies obtained by Bayesian phylogenetics. *Proceedings of the National Academy of Sciences, USA* 99: 16138–16143.



Swofford DL. 2003. PAUP\*: Phylogenetic Analysis Using Parsimony (\*and other methods), version 4.0b10. Sunderland, MA, USA: Sinauer Associates.

**Taberlet P, Gielly L, Pautou G, Bouvet J. 1991.** Universal primers for the amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* **17**: 1105–1109.

**Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y. 1999.** Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera *Hylocereus* and *Selenicereus* (Cactaceae). *Plant Molecular Biology Reporter* **17**: 249–254.

Wang J, Lu J, Fang Z, Ge T, Chen C. 2013. PL-Tree: An Efficient Indexing Method for High-Dimensional Data. In: Nascimento M, Sellis T, Cheng R, Sander J, Zheng Y, Kriegel H-P, Renz M, Sengstock C, eds. *Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science*. Heidelberg, Geramany: Springer, 183–200.

White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JI, White TJ, eds. *PCR Protocols: A Guide to Methods and Applications*. San Diego, CA, USA: Academic Press, 315–322.