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Supplementary Methods

1 Mathematics of community detection

We applied a community detection algorithm to obtain a partitioning of the nodes – or fROIs –

of the language network into communities or modules. Nodes that are more strongly correlated

in activity belong to the same module, while nodes that are less correlated in activity belong to

different modules. Using a Louvain-like locally greedy algorithm (Blondel et al., 2008), we opti-

mized a generalization of the modularity quality function (Newman, 2006; Porter et al., 2009) to

the multilayer case (Mucha et al., 2010), which maximizes the quality of a partition of the fROIs

into network communities that can vary over time windows (network layers). Networks with a high

quality of partition can be sensibly divided into modules consisting of nodes with related activity

patterns. The multilayer modularity is given by:

Q =
1

2µ

∑
ijlr

{(Aijl − γlVijl) δlr + δijωjlr} δ(gil, gjr) (1)

where Aijl is a pairwise correlation (or edge) between fROIs (or nodes) i and j in a time window

l of the multilayer network, and Vijl is the corresponding element of a specified null model. We

use the Newman-Girvan null model within each layer: Vijl =
kilkjl
2ml

where the total edge weight

in layer l is ml =
1
2

∑
ij Aijl (i.e. the sum of all pairwise correlations in layer l), kil refers to the

intra-layer strength of node i in layer l (i.e. the sum of all pairwise correlations between node i and

all other nodes in layer l), and kjl is the intra-layer strength of node j in layer l. The parameter γl

is a structural resolution parameter of layer l that can be used to tune the number of communities

identified. The community assignment of node i in layer l is gil , the community assignment of node
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j in layer r is gjr, and δ(gil, gjr) = 1 if gil = gjr and 0 otherwise. The correlation strength between

node j in layer r and node j in layer l is ωjlr. The total edge weight is µ = 1
2

∑
jr κjr, where

κjl = kjl + cjl is the strength of node j in layer l, kjl is the intra-layer strength of node j in layer

l, and cjl =
∑

r ωjlr is the inter-layer strength of node j in layer l. Because we are considering an

ordinal case in which network layers are consecutive time windows, we let ωijl ≡ ω = constant

for neighboring layers, i.e. when |l − r| = 1. Otherwise, we let ωijl = 0. Similarly, we set

γ = γl to a constant. We use ω = 0.5 and γ = 1 in the analyses reported in the main text, and we

test the robustness of our results to variations in these parameter choices in later sections of this

Supplement. For each time window, a partition of the fROIs into communities was obtained by

optimizing this multilayer modularity function, Q. Due to the stochastic nature of the algorithm

and near degeneracy of the modularity landscape (Good et al., 2010), we performed this numerical

optimization of the quality function 100 times for the network of language fROIs, separately for

each participant and each run (Bassett et al., 2013a).
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Supplementary Results

2 Robustness across parameters

The multislice community detection algorithm contains a structural resolution parameter γ and a

temporal resolution parameter ω that must be selected prior to optimizing the multilayer modularity

quality function (Mucha et al., 2010). The structural resolution parameter γ can be used to tune the

size of communities identified: a small value of γ uncovers a few large communities, while a large

value of γ uncovers many small communities. The temporal resolution parameter ω can be used to

tune the temporal similarity of partitions: a small value of ω allows partitions to be quite different

between network layers (time windows; e.g., see Bassett et al. (2011, 2013b, 2015)), while a large

value of ω can be used to obtain a consistent partition across all network layers (e.g., see Cole et al.

(2014)).

To find the optimal pair of structural and temporal resolution parameters, we ran a grid-

search procedure that optimized the modularity function 100 times for each multilayer network,

and for each pair of γ and ω values (Fig. 1A). Using this procedure, we identified combinations

of parameters that fulfilled two criteria: (i) the pair of parameters yielded similar partitions across

optimizations, suggesting consistency with the underlying network organization (Bassett et al.,

2013a) (Fig. 1B), and (ii) the pair of parameters produced partitions in which nodes had neither an

average flexibility of zero (i.e., node allegiances to communities remained static over time) nor an

average flexibility of one (i.e., node allegiances to communities changed in every time window),
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indicating sensitivity to dynamic reconfiguration but insensitivity to noise (Fig. 1C). Note that we

calculated the similarity between partitions using the z-score of the Rand coefficient (Traud et al.,

2011).

Searching the parameter space yielded γ = 1 and ω = 0.5 as optimal values in which the

partitions were consistent over optimizations, and yet the nodes were moderately flexible over

time. Thus, these are the values that we used for the analyses reported in the main manuscript.

However, it is important to note that the basic properties of the community structure of the network

depended on the values chosen for the free parameters, as expected mathematically. We therefore

tested whether the main results reported in the main manuscript were robust to small variations

in the γ and ω values. We observed that the basic structure of the network remained reasonably

constant in the range γ ∈ [0.8, 1.2] and ω ∈ [0.4, 0.6]. A similar two-module structure divided by

left and right hemisphere exists in the module allegiance matrix for all pairs of γ and ω (Fig. 1D).

Additionally, we observe correlated flexibilities when the flexibility of each node at each γ, ω pair

is compared to the flexibility of each node when γ = 1.0 and ω = 0.5 (Fig. 2). These findings

indicate that the results described in the main manuscript are robust to small variations in structural

and temporal resolution parameter values, supporting the reliability of the findings.

3 Robustness to window placement and reliability across scans

In the main text, we presented results obtained when dividing the fMRI data set of the semantic

relatedness judgment task into 19 time windows, each lasting 20 TRs with a 50% overlap. We then
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computed the measures of module allegiance and flexibility across all participants, runs, time win-

dows, and optimizations. In this section, we present the results of the same analyses in two other

ways. First, we present module allegiance and flexibility after using non-overlapping windows for

the semantic relatedness judgement task, each 20 TRs in duration. Second, we use non-overlapping

windows, each 10 TRs in duration (consistent with Cole et al. (2014)), that align with the stimuli

presented during the semantic relatedness judgment task. In this second method, each time win-

dow contained data collected during either the number condition or the word condition, but not

both.

Using non-overlapping windows that were 20 TRs in duration, we uncovered a consistent

two-module structure in the module allegiance matrix. Additionally, we observed a high correla-

tion between flexibility of language nodes with non-overlapping windows and the original nodes

with overlapping windows (r = 0.76, p < 0.001, Fig. 3A).

Secondly, using non-overlapping windows that aligned with stimuli, we also obtained a

similar network structure with a distinct separation into right and left modules for both number

and word conditions, and correlated flexibility between nodes with non-overlapping, aligned time

windows and nodes with the original overlapping time windows (number condition: r = 0.65,

p = 0.007, word condition: r = 0.66, p = 0.005, Fig. 3B–C). These results suggest that the

flexibility and module allegiance of the language network is robust to changes in window size and

amount of overlap.
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4 Robustness across tasks

In the main manuscript, we presented the results obtained when comparing the architecture of

networks constructed from the semantic relatedness judgement task data to statistical null model

networks. In this section, we present a similar analysis for the story comprehension task.

First, we compute the Rand z-score for partitions in different optimizations, and partitions in

different time windows for each subject. We observe that the Rand z-score is significantly higher

for partitions in different optimizations (two-sample t-test t18 = 4.10, p < 0.001, Hedges’ g

measure of effect size: g = 1.76, Fig. 4A), suggesting that partitions in different optimizations are

more similar than partitions in different time windows. This indicates that variation across time is

a bigger driver in the structure of the module allegiance matrix than variation across optimizations.

Next, we compare the actual data to static and nodal null models. We obtain qualitatively

similar results in both tasks (Fig. 4). Using 100 static null model networks, we computed the null

model module allegiance matrices for each subject and optimization for a single representative null

model. We then computed the equivalent module allegiance matrices in the real data, again for each

subject, optimization, and run, and compute the equivalent module allegiance matrices in the real

data. We observed significant differences in the two distributions (two-sample ks-test k = 0.343,

p = 0, Fig. 4B). Next, we compute module allegiance matrices for the nodal null networks from

the second story. We computed the module allegiance matrix for each subject, averaged over all

optimizations and null models, and measured the average module allegiance in the left hemisphere,

right hemisphere, and between hemispheres. We then computed the corresponding values in the
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real data. We observed significant differences between the real data and the null models in the left

and right hemispheres (paired t-test left: t9 = 5.80, p < 0.001 Hedges’ g = 2.54, right: t9 = 6.73,

p < 0.001, g = 2.42). The difference between hemispheres was not significantly different from

the random null models (paired t-test t9 = −0.97, p = 0.356, g = −0.354, Fig. 4C). These results

indicate that the two modules – while distinct and sensitive to the different anatomical roles of each

hemisphere – nevertheless display nontrivial dynamic functional interactions. Lastly, we observe

that the distribution of data across all static null models (Fig. 4D) is qualitatively similar to the

distribution of a single null model. However, we focused on one null model when comparing the

null model to real data to maintain the same number of data points across both distributions.

5 Robustness across different stories

In the main text, we presented results for module allegiance, laterality, and flexibility during the

comprehension of a single story. Here, we present results for the remainder of the stories pre-

sented to subjects during fMRI data acquisition. In total there were 8 different stories presented to

subjects, and between 1 and 10 subjects listened to each story. Across all stories, we observed a

consistent two module structure in the module allegiance matrix (see Fig. 5). In Table 1, we pro-

vide the results of statistical tests demonstrating that module allegiance values were lower between

hemispheres than within hemispheres.
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6 Network Effects of Low Connectivity Strengths

To determine the effects of regions with low functional connectivity on the resulting network struc-

ture, we thresholded the functional connectivity matrices to remove correlations below 0.10, 0.25,

0.50, and 0.90 in absolute value. We then computed module allegiance and flexibility as was

done with the unthresholded functional connectivity matrices. We observed a similar separation

by hemisphere in the module allegiance matrices, and highly correlated flexibility values up to

the 0.50 threshold. These results suggest that the network structure is driven by changes in high

functional connectivity strengths rather than low functional connectivity strengths.

7 Activation Maps

Activation maps of the subjects during the language localizer task (sentences>nonwords contrast)

and the semantic relatedness judgment task (semantic > number contrast) show robust activations

corresponding to the 16 defined language fROIs. The activation maps are thresholded with a p-

value of p < 0.001. Only the positive intensities are displayed.

Supplementary Discussion

8 Dynamic reconfiguration of brain networks.

Advances in dynamic network-based techniques from applied mathematics have opened exciting

new avenues for characterizing neural architectures across many species from humans to rodents
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(Hutchison et al., 2013; Keilholz et al., 2013). Here, we use these approaches to study the dynamic

functional interactions that accompany and enable language processing in humans. Using a static

network null model, we first demonstrate that language – like other cognitive functions such as

learning (Bassett et al., 2011, 2013b, 2015; Mantzaris et al., 2013) and memory (Braun et al., 2015;

Siebenhuhner et al., 2013) – displays temporally varying functional connectivity patterns (Mattar

et al., 2015). This network reconfiguration is differentially driven by different brain areas, with

some highly variable regions and other regions that are more stable in their functional interactions.

Our results highlight the dimension of time, which is rarely addressed in fMRI studies. By using

tools from dynamic network analysis, we are able to portray the changing states of the brain during

language processing and apply novel metrics that take into account the temporal variability of

functional network architecture.

9 Methological Considerations

There are a few methological considerations pertinent to this work. First, we collected fMRI data

from a total of 22 subjects, ten participants for the story task and twelve participants for the seman-

tic relatedness judgment task. Second, subjects performed two language tasks that were funda-

mentally different in nature. Yet, using these distinct tasks enabled us to investigate consistencies

within the language network architecture across the two tasks. We observed similar lateralized

patterns in both tasks, suggesting that the modular organization of the language network is robust

and not dependent on the type of language task being performed. Third, alternate methods also

exist for the characterization of the non-stationarity of fROIs, such as fitting a vector autoregressive
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(VAR) model as a measure of dynamics (Chang and Glover, 2010). Here, we applied a comple-

mentary approach based on a temporal null model–random shufflings of network layers (Bassett

et al., 2013b).

A fourth important consideration lies in the choice of localizer task. Since our earlier work

in 2010 (Fedorenko et al., 2010), we have re-generated the functional language parcels using large

sets of subjects run on a passive-reading version of the localizer. The regions that emerge from

this localizer are similar to those studied here (Fedorenko, 2014). Furthermore, we observe that

the activations in the high-level language processing regions studied here are extremely robust to

task and many other features of the localizer, including the materials, modality of presentation,

and language for full bilinguals (Fedorenko, 2014). Thus, due to the similarities between parcels

defined using the passive reading localizer and the memory probe, the presence of the memory

probe tasks in some of the subjects’ data used for generating the functional language parcels and

its absence in the participants tested here is unlikely to capture the different cognitive strategies

involved in the memory component of the localizer.
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Figure 1: Effect of structural and temporal resolution parameters. (A) The average value of the modu-

larity quality index,Q, obtained by optimizing a multilayer modularity quality function using a Louvain-like

locally greedy algorithm (left). (B) We searched for (γ, ω) pairs that yielded partitions that were relatively

variable over time, resulting in a moderate z-score of the Rand coefficient over network layers (or time

windows) (middle). (C) Additionally, we searched for parameter pairs that yielded consistent partitions in

each optimization of the multilayer quality function, resulting in a high z-score of the Rand coefficient over

partitions (right). When selecting the parameter pair for the results reported in the main manuscript, we

considered both consistency of partitions over optimizations and moderate flexibility of partitions over time.

(D) Module allegiance matricies computed from various values of γ and ω parameters revealed a consistent

two-module structure.
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Figure 2: Robustness of flexibility across structural and temporal resolution parameters. Correlation

between (i) node flexibility obtained using various values of the γ and ω parameters and (ii) node flexibility

obtained using γ = 1.0 and ω = 0.5 (the values used for the results reported in the main manuscript).
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Figure 3: Effect of changing time window overlap and duration. (A) Module allegiance matrix computed

from non-overlapping windows 20 TRs in length (top). Correlation between flexibility of nodes with non-

overlapping windows, and flexibility of nodes with 20 TR overlapping windows (bottom). (B) Module

allegiance matrix computed from non-overlapping windows 10 TRs in length, capturing only the number

condition of the semantic relatedness judgment task (top). Correlation between flexibility of nodes with

non-overlapping windows of only the number condition, and flexibility of nodes with 20 TR overlapping

windows (bottom). (C) Module allegiance matrix obtained from using 10 TR non-overlapping windows,

capturing only the word condition of the semantic relatedness judgment task (top). Correlation between

flexibility of nodes with non-overlapping windows of the word condition, and flexibility of nodes with 20

TR overlapping windows (bottom).
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Figure 4: Comparison of story comprehension task to null models. (A) Module allegiance matrix ob-

tained from the second story of the story comprehension data (left). We observe more similarity in partitions

from different optimizations than partitions from different time windows (right). (B) Module allegiance

matrix of a representative static null model, obtained from a single multilayer association matrix (left). His-

togram of the distribution of module allegiance values computed for each subject and optimization, com-

pared to the distribution of module allegiance values of a representative null model, for each subject and

optimization (right). (C) Module allegiance matrix of a representative nodal null model, obtained from a

single multilayer association matrix (left). Boxplot showing the difference in the average value of module

allegiance for each subject in the left hemisphere, right hemisphere, and between hemispheres for real and

nodal null model module allegiance matrices (right). (D) Distribution of module allegiance values for the

semantic relatedness task (left) and the story comprehension task (right) over all 100 static null models.
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Table 1: Story Comprehension Task

Number of Subjects: MA LH-Btw: MA RH-Btw MA LH-RH

Story 1 9 t16 = 4.54, p < 0.001 t16 = 5.69, p < 0.001 t16 = 1.36, p = 0.19

Story 2 10 t18 = 5.44, p < 0.001 t18 = 4.41, p < 0.001 t18 = 2.31, p = 0.03

Story 3 9 t16 = 4.73, p < 0.001 t16 = 3.22, p = 0.005 t16 = 1.94, p = 0.07

Story 4 10 t18 = 5.60, p < 0.001 t18 = 5.76, p < 0.001 t18 = 1.47, p = 0.16

Story 5 9 t16 = 5.35, p < 0.001 t16 = 3.68, p = 0.005 t16 = 2.91, p = 0.01

Story 6 2 t2 = 1.04, p = 0.41 t2 = 1.04, p = 0.41 t2 = 0.47, p = 0.68

Story 7 3 t4 = 5.75, p = 0.004 t4 = 3.02, p = 0.03 t4 = 2.14, p = 0.09

Story 9 1
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Figure 5: Module allegiance of story comprehension tasks. In the module allegiance matrices for each

story, we observe a consistent two-module architecture separated by left and right hemisphere. Furthermore,

we observe that the average module allegiance within hemispheres is greater than the average module alle-

giance between hemispheres. Boxplots illustrate the average module allegiance within the left hemisphere,

within the right hemisphere, and between hemispheres for each story, where whiskers illustrate variation

between subjects.
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Figure 6: Effect of Removing Low Correlations. For the semantic relatedness judgment task, we thresh-

olded functional connectivity matrices to remove correlations below 0.10 (A), below 0.25 (B), below 0.50

(C), and below 0.90 (D) in absolute value. We computed module allegiance from the thresholded functional

connectivity (left), and the correlation between the flexibility using the thresholded functional connectivity

versus unthresholded functional connectivity (right). Similarly for the story comprehension task, we thresh-

olded functional connectivity matrices to remove correlations below 0.10 (A), below 0.25 (B), below 0.50

(C), and below 0.90 (D) in absolute value. We computed module allegiance from the thresholded functional

connectivity (left), and the correlation between the flexibility using the thresholded functional connectivity

versus unthresholded functional connectivity (right).
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langlocSN

Figure 7: Activation maps during task and localizer. Activation maps for four of twelve subjects during

the semantic relatedness judgment task (top), and the language localizer (bottom).

ATLLOC
subjects:
4,6,7,8

Figure 8: Activation maps during task and localizer. Activation maps for four of twelve subjects during

the semantic relatedness judgment task (top), and the language localizer (bottom).
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Figure 9: Activation maps during task and localizer. Activation maps for four of twelve subjects during

the semantic relatedness judgment task (top), and the language localizer (bottom).
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