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SUMMARY

The generation of neurons from neural stem cells re-
quires large-scale changes in gene expression that
are controlled to a large extent by proneural tran-
scription factors, such as Ascl1. While recent studies
have characterized the differentiation genes acti-
vated by proneural factors, less is known on the
mechanisms that suppress progenitor cell identity.
Here, we show that Ascl1 induces the transcription
factor MyT1 while promoting neuronal differentia-
tion. We combined functional studies of MyT1 during
neurogenesis with the characterization of its tran-
scriptional program. MyT1 binding is associated
with repression of gene transcription in neural pro-
genitor cells. It promotes neuronal differentiation
by counteracting the inhibitory activity of Notch
signaling at multiple levels, targeting the Notch1 re-
ceptor and many of its downstream targets. These
include regulators of the neural progenitor program,
such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1
suppresses Notch signaling cell-autonomously via
MyT1, coupling neuronal differentiation with repres-
sion of the progenitor fate.

INTRODUCTION

The generation of neurons in the developing vertebrate nervous

system requires the progression through a succession of

distinct cellular states. These transitions have been particularly

well characterized in the embryonic telencephalon, where radial

glia (RG) cells located in the ventricular zone (VZ) have character-

istics of neural stem cells and constitute the major progenitor

type during the neurogenic period (Götz and Huttner, 2005).

Upon division, an RG cell can give rise to another RG cell and

either a neuronal committed intermediate progenitor (IP) or a

post-mitotic neuron that migrate toward the subventricular

zone (SVZ) and cortical plate (CP), respectively (Kriegstein and

Alvarez-Buylla, 2009). These events are known to be coordi-

nated, to large extent, by the opposing activities of proneural

and Notch pathways.
Ce
This is an open access article under the CC BY-N
Proneural transcription factors, such as Ascl1 (also known as

Mash1), are both required and sufficient to induce a complete

program of neuronal differentiation (Bertrand et al., 2002; Vas-

concelos and Castro, 2014; Wilkinson et al., 2013). While

activating neuronal differentiation, proneural proteins induce

the transcription of Notch ligands, such as Dll1. Dll1 interacts

with a transmembrane Notch receptor in neighboring cells, re-

sulting in cleavage of the Notch intracellular domain (NICD)

by gamma-secretase and its nuclear translocation, forming a

complex with the DNA-binding transcription factor Rbpj and

additional coactivators. Direct targets of this complex include

the transcriptional repressors Hes1 and Hes5, which repress

the expression of proneural genes and neuronal differentiation

via a process called lateral inhibition (Kageyama et al., 2008;

Louvi and Artavanis-Tsakonas, 2006). The induction of differen-

tiation by proneural factors requires, therefore, the simultaneous

repression of Notch receptor activity in differentiating progeni-

tors by mechanisms that remain poorly understood.

Myelin transcription factor 1 (MyT1 or NZF2) is the founding

member of a family of zinc-finger proteins comprising also

MyT1Like (MyT1L or NZF1) and MyT3 (NZF3 or St18) (Jiang

et al., 1996; Kim and Hudson, 1992; Yee and Yu, 1998). All fac-

tors are expressed with distinct patterns throughout the mouse

developing nervous system. In situ hybridization studies have

described Myt1 expression in differentiating progenitors and

post-mitotic neuronal precursors, in both CNS and peripheral

nervous system, starting at the beginning of the neurogenesis

period (Matsushita et al., 2002, 2014). Evidence for a regulatory

function of MyT1 in a neurogenic context was provided by func-

tional studies in Xenopus embryos, where it counteracts lateral

inhibition in synergy with the proneural factors X-Ngnr1, Xash3,

or Xath5 (Bellefroid et al., 1996; Quan et al., 2004; Schneider

et al., 2001). In mouse, the analysis of MyT1-null embryos has

failed to provide insights into the function of MyT1 in the nervous

system, presumably due to the observed ectopic upregulation of

other family members in this mouse model (Hudson et al., 2011;

Wang et al., 2007). More recently, the extensive use of MyT1L in

neuronal reprogramming of mouse and human somatic cells

(e.g., Pang et al., 2011 and Vierbuchen et al., 2010) has renewed

the interest in understanding the function of MyT1 and its related

factors in vertebrate neurogenesis.

Here, we identify MyT1 as a direct target of the proneural

factor Ascl1 at the onset of neuronal differentiation, and we
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investigate the function of MyT1 at this critical stage by

combining acute functional experiments in the mouse telen-

cephalon with the characterization of its transcriptional program.

We found that MyT1 binding occurs mostly at active regulatory

regions in undifferentiated neural stem/progenitor cells and is

associated with transcriptional repression genome-wide. We

further show that MyT1 acts at multiple levels to antagonize

the inhibitory activity of Notch signaling, targeting both Notch

pathway components and downstream targets. Notably, MyT1

promotes the downregulation of Hes1, a determinant step for

the onset of neurogenesis, by competing with Rbpj for binding

to theHes1 promoter. Our results reveal a function of Ascl1 in in-

hibiting Notch signaling cell-autonomously, showing how activa-

tion of neuronal differentiation is tightly coordinated with repres-

sion of the progenitor program.

RESULTS

Ascl1 Directly Activates the Transcription Factor MyT1
Several observations have suggested the zinc-finger transcrip-

tion factor MyT1 may be under the regulation of Ascl1. Specif-

ically, Myt1 expression is increased or decreased in expression

profiling studies using DNA arrays upon Ascl1 gain and loss of

function (GoF and LoF), respectively, both in mouse cultured

neural stem/progenitor cells and in the embryonic telencephalon

(Figure S1) (Castro et al., 2011; Gohlke et al., 2008; Raposo et al.,

2015).

We started by analyzing the kinetics ofMyT1 expression, using

a cellular model of neurogenesis in which differentiation is trig-

gered by the activation of an inducible version of Ascl1 protein

(Ascl1-ERT2) in the neural stem cell line NS5 with 4-hydroxy-

tamoxifen (Tam) (Raposo et al., 2015). Upon Ascl1 induction,

MyT1 protein levels increased, as measured by immunocyto-

chemistry and western blot (Figures 1A and 1B). Co-localization

of MyT1 with the neuronal marker B-III-Tubulin (TuJ1) indicated

that MyT1 expression occurred in differentiating neurons (Fig-

ure 1A). The increase in Myt1 expression occurred after the in-

crease in Dll1 transcript, an early Ascl1 target gene, and pre-

ceded the increase in B-III-Tubulin transcript, an early neuronal

marker that is also directly activated by Ascl1 (Castro et al.,

2006, 2011) (Figure 1C). Thus, the timing of MyT1 induction is

consistent with MyT1 being directly controlled by Ascl1.
Figure 1. MyT1 Is a Direct Target of Ascl1 during Neuronal Differentiat

(A) Immunocytochemical analysis of MyT1 (green) and TuJ1 (red) before (�Tam)

Scale bar, 50 mm.

(B) Analysis of MyT1 protein levels by western blot post-Tam induction. a-tubulin

(C) RNA expression analysis of Myt1, Dll1, and B-III-Tubulin by qPCR post-Tam

(D) Ascl1 (black), H3K27ac (green), and H3K4me1 (blue) ChIP-seq and DNase-s

entiating NS cells. MyT1 prom_Fw and MyT1 prom_Rv indicate genomic locatio

(E) ChIP-qPCR of Ascl1 in chromatin extracted from E12.5 ventral telencephalon

amplified using the primers highlighted in (D).

(F) Immunohistochemical analysis for MyT1 (green) and neuronal marker B-III-Tub

sections of E14.5 mouse telencephalon is shown. Scale bar, 100 mm.

(G) Immunohistochemical analysis for MyT1 (green), Ascl1 (red), and TuJ1 (cya

indicate magnified regions of VZ and SVZ. White arrowheads indicate co-localiz

(lower panel). VZ, ventricular zone; SVZ, subventricular zone. Scale bar, 100 mm

Data are shown as mean ± SD; n.s., p > 0.05; **p < 0.01, ***p < 0.001, and ****p <

testing (C) and Student’s t test (E). See also Figure S1.
Effectively, visual inspection of the chromatin immunoprecipi-

tation followedbydeep sequencing (ChIP-seq) enrichment profile

of Ascl1-ERT2 in differentiating cells identified several peaks, cor-

responding to Ascl1 binding to active enhancer regions enriched

for H3K4me1 and H3K27ac in the vicinity of the MyT1 gene (Fig-

ure 1D). Some Ascl1-binding events (BEs) occurred in closed

chromatin regions in proliferating progenitors, which became

opened during neuronal differentiation, as assessed by DNase

sequencing (DNase-seq) (Figure 1D). This feature is associated

with Ascl1 targets that are expressed de novo during differentia-

tion (Raposo et al., 2015), and it may account for the late timing

of MyT1 induction after Ascl1 expression. Ascl1 binding to Myt1

promoter was further validated by ChIP-qPCR in chromatin ex-

tracted from the developing ventral telencephalon (Figure 1E).

MyT1 Promotes Neurogenesis in the Mouse
Telencephalon
Myt1 transcript is expressed in the germinal layers during the

neurogenic period in scattered cells in the VZ, with highest

expression in the SVZ (Matsushita et al., 2002, 2014). In the

ventral telencephalon, MyT1 protein expression domain largely

overlapped with that of the neuronal marker TuJ1 (Figure 1F).

At the cellular level, many, but not all, MyT1-expressing cells in

the SVZ co-expressed TuJ1 (Figure 1G), suggesting MyT1 was

expressed both in IPs and differentiating neurons. In addition,

few MyT1-expressing cells were interspersed in the VZ co-ex-

pressing TuJ1 (Figure 1G, arrowheads in upper panels). Although

MyT1 and Ascl1 expression domains were mostly non-overlap-

ping (Figure 1F), some cells co-expressing both factors could

be found in the SVZ (Figure 1G, arrowheads in bottom panels),

as expected from Ascl1-expressing IPs. Overall, the expression

pattern was consistent with MyT1 starting to be expressed at the

transition from RG cells to differentiating neurons, either directly

(VZ) or indirectly through the generation of IPs (SVZ). The persis-

tent expression of MyT1 in post-mitotic neuronal precursors

suggests a function also at later stages of neurogenesis.

We next investigated MyT1 function in the telencephalon by

performing acute GoF and LoF experiments by in utero electro-

poration. We targeted the lateral ganglionic eminence (LGE) at

embryonic day (E)12.5, a stage at which MyT1 is the only mem-

ber of its family to be significantly expressed in germinal layers

(Matsushita et al., 2002, 2014). MyT1 overexpression resulted
ion

and 48 hr after Tam induction (+Tam). Cell nuclei are labeled with DAPI (blue).

was used as a loading control.

induction is shown.

eq enrichment profiles (yellow) at Myt1 locus in undifferentiated and/or differ-

ns of primers used in (E).

is shown. ORF1, negative control region; MyT1 prom., Myt1 promoter region

ulin (TuJ1, red) (left panel) or MyT1 (green) and Ascl1 (red) (right panel) in frontal

n) in frontal sections of E14.5 mouse ventral telencephalon. Dashed squares

ation of MyT1 and TuJ1 in the VZ (upper panel) or MyT1 and Ascl1 in the SVZ

.

0.0001, according to one-way ANOVA with Bonferroni correction for multiple
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Figure 2. MyT1 Promotes Neurogenesis in

the Developing Telencephalon

(A) Analysis by western blot of MyT1 in P19 cells co-

transfected with MyT1 expression vector, scramble

shRNA (shControl), and/or MyT1 shRNA (shMyT1).

a-tubulin was used as a loading control.

(B and C) In utero electroporation of control or

MyT1-, control shRNA- (shControl), orMyT1 shRNA-

(shMyT1) expressing vectors in E12.5 mouse ventral

telencephalon. Immunofluorescence analysis on a

coronal section of the telencephalon for GFP (green

or gray) and TuJ1 (red) 2 days post-electroporation

(E14.5) is shown. Cell nuclei are labeled with DAPI

(blue). Histograms represent the quantification of VZ

to SVZ transition based on the fraction of GFP+ cells

that are retained in the VZ (GFP+VZ/GFP+) (B) and

of neuronal differentiation based on the fraction of

GFP+ cells that express TuJ1 ((TuJ1+GFP+)/GFP+)

(C). VZ, ventricular zone; SVZ, subventricular zone.

Scale bars, 20 and 50 mm (B and C).

Data are shown as mean ± SD; **p < 0.01, ***p <

0.001, and ****p < 0.0001, according to Student’s

t test (B and C). See also Figure S2.
in more cells (�56% increase) leaving the VZ, and this was asso-

ciated with an increase in TuJ1-expressing cells (�20% more)

when compared to control conditions (Figures 2B and 2C). By

contrast, knockdown of MyT1 with a small hairpin RNA (shRNA)

expression vector (ShMyT1) (Figure 2A) resulted in more cells re-

maining in the VZ (�85% increase) and fewer TuJ1-positive cells

(�17.4% decrease) (Figures 2B and 2C). We analyzed if the

concomitant induction of other family members could be

compensating the extent of the phenotype observed, by knock-

ing down MyT1 together with MyT1L or MyT3. Indeed, a signifi-

cant enhancement of the phenotype was observed when

combining shMyT1 with shMyT1L, both in number of cells re-

tained in the VZ and in the number of TuJ1-positive cells (Fig-

ure S2); the combination with ShMyT3 did not increase signifi-

cantly the phenotype triggered by shMyT1 alone. Altogether,

these experiments demonstrate that MyT1 promotes neurogen-

esis in the developing mouse embryo.

MyT1 Functions as a Transcriptional Repressor during
Neurogenesis
To understand the molecular basis of MyT1 function at the onset

of differentiation, we characterized its target genes upon acute

GoF in neural stem/progenitor cells. For this, we infected NS5

cells with a lentivirus expressing a doxycycline (Dox)-inducible

HA-tagged version of MyT1, and we characterized the gene

expression changes 4 hr post MyT1 induction using DNA arrays

(Figure S3). This identified 1,764 deregulated genes (p < 0.05),

of which 57% were downregulated and 43% were upregulated

(Table S1). We performed genome-wide mapping of MyT1

binding by ChIP-seq using an antibody against the HA-tag of
472 Cell Reports 17, 469–483, October 4, 2016
MyT1, and we identified 7,615 BEs (q <

10�2) associated with 4,448 unique genes

following a nearest gene annotation (Table

S2). A de novo search found the MyT1-

binding motif (Gamsjaeger et al., 2008;
Kim and Hudson, 1992) to be enriched at peak summits, with

peaks with one or multiple motifs significantly enriched when

compared to a control dataset (Figures 3A–3C). In addition, a

compound Rfx/Rbpj motif, E box (bHLH) and Sox DNA-binding

motifs were also overrepresented. Hierarchical clustering of

MyT1 peaks according to the presence of these motifs revealed

their occurrence was largely mutually exclusive (Figure S4A).

Although the largest group bore the MyT1 motif, the data sug-

gest that many MyT1 peaks result from indirect recruitment of

MyT1 by other TFs.

Previous reports have implicated MyT1 both in transcriptional

activation and repression (Bellefroid et al., 1996; Hu et al., 2013;

Romm et al., 2005; Wang et al., 2008; Yokoyama et al., 2014). To

gain an insight into the global transcriptional response mediated

by MyT1, we integrated the location analysis of MyT1 with the

expression profiling to find that 14% of sites are associated

with a deregulated gene. Strikingly, MyT1 BEs were statistically

significantly associated with downregulated genes (p < 3.45 3

10�51), whereas such association with upregulated genes was

not found (Figure 3D). Notably, this differential association with

downregulated genes was maintained when considering only

peaks containing theMyT1motif, or thosewithout it (Figure S4B),

suggesting that all types of MyT1 BEs are associated with

repression of gene expression.

We next determined the fractions of up- and downregulated

genes associated with at least one MyT1 BE (direct targets),

considering increasing p value cutoffs for MyT1 binding (Fig-

ure 3E). We found that downregulated genes were strongly en-

riched for MyT1 direct targets, in contrast to upregulated genes

(Figure 3E, compare Down/MyT1 with Up/MyT1), and that such
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enrichment was statistically significant (Figure 3E, compare

Down/MyT1 with Down/Random), confirming that MyT1 binding

is associated with gene repression genome-wide.

Genome-wide maps of histone modifications in proliferating

NS5 cells (Mikkelsen et al., 2007; Raposo et al., 2015) showed

significant enrichment of H3K27ac, H3K4me1, and H3K4me3

at MyT1 BEs, as compared to random genomic regions (while

no enrichment of the repressive mark H3K27me3 was found)

(Figure 3F). In addition, most MyT1 BEs were found within inter-

genic or intronic regions, with a smaller but significant fraction

occurring at gene promoters (Figure 3G). These results suggest

that MyT1 binds to distal enhancer and promoter regions

bearing active marks in neural stem/progenitor cells, and they

are in line withMyT1’s role as a transcriptional repressor at onset

of differentiation.

MyT1 Represses Notch Pathway Components and
Regulators of the Neural Progenitor Program
We next assessed the expression of the identified MyT1 targets

(bound and downregulated) at distinct stages of the neuronal

lineage, using expression profiling datasets representative of

various layers of the E14.5 mouse embryonic cortex (Fietz

et al., 2012). Notably, most MyT1 direct targets (69.0%) were

downregulated during neuronal differentiation in vivo, as indi-

cated by a decrease in expression from VZ to SVZ or CP (Fig-

ure 3H). In addition, their absolute levels of expression were

highest at VZ, when compared to SVZ and CP (Figure 3I).

To investigate the function of MyT1 direct targets, we per-

formed gene ontology (GO) analysis on a high-confidence list

of 402 MyT1 targets (bound and repressed by MyT1) (Table

S3). Enriched terms (GO biological processes) suggested a

role in maintenance of a progenitor state (negative regulation

of neuron differentiation, positive regulation of cell proliferation,

and cell-cycle process), and they were associated with Notch
Figure 3. MyT1 Binding Represses Neural Progenitor Genes

(A) Top overrepresented motifs in 50-bp regions centered at MyT1 peak summit

(B) Frequency distribution of MyT1 motif centered at MyT1 peak summits (blue) or

50 bp.

(C) Fold enrichment of MyT1 peaks with distinct number of MyT1 motifs as comp

(D) Number of MyT1 BEs associated with up- (blue bar) or downregulated (red bar)

significance was assessed by comparing the association with 1,000 randomize

represented as box with median of test and first and third quartiles. Whiskers, ±

(E) Heatmap displaying the cumulative fraction of deregulated genes in MyT1 Go

FC > 1.2 are plotted against MyT1 BEs with increasing p value (bin = 94 BE

100 randomly generated ChIP-seq datasets of equal size.

(F) ChIP-seq enrichment profiles of histone marks in undifferentiated NS5 cells, in

enrichment profile of histone marks at random genomic regions.

(G) Pie chart represents the fraction of MyT1 BE overlapping gene features.

(H) Heatmap representing the expression of MyT1 direct targets (bound and down

code refers to relative gene expression levels. Hierarchical clustering was done us

in the graph above. VZ, ventricular zone; SVZ, subventricular zone; CP, cortical

(I) Absolute expression levels (fragments per kilobase per million mapped reads [

telencephalon. Data distribution is represented as box with median and first and

(J) Enrichment of representative GO biological process terms associated with M

(K) Validation of MyT1 binding to selected genes by ChIP-qPCR with anti-HA anti

regions. Mean ± SD of triplicate assays.

(L) Validation of gene expression changes of selected genes in NS5 cells 4 hr up

(M) ChIP-qPCR using anti-LSD1 antibody in NS5 cells before (�Dox) and 4 hr af

Data are shown asmean ±SD; n.s., p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and
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pathway genes (e.g., Notch1, Lfng, Dtx4, and Hes1) (Figure 3J;

Table S4). In addition, MyT1 targets encoded important tran-

scriptional regulators (regulation of transcription from RNA

polymerase II [Pol II] promoter) (Figure 3J) of the neural progen-

itor program, such as Sox2, Id3, and Olig1 (Bai et al., 2007;

Englund et al., 2005; Gómez-López et al., 2011) (Figures 3K

and 3L; Table S4).

MyT1 has been shown to physically interact with the histone

demethylase LSD1 in a complex that contains CoREST and pro-

motes transcriptional repression (Yokoyama et al., 2014). To

address if LSD1 is recruited by MyT1 to the abovementioned

targets associated with a MyT1 motif, we performed anti-LSD1

ChIP-qPCR. We observed a substantial increase of LSD1

recruitment to MyT1 target sites upon MyT1 GoF, supporting a

role for this histone demethylase in MyT1-mediated transcrip-

tional repression in neural progenitor cells (Figure 3M).

MyT1 Promotes Neurogenesis by Counteracting
Notch-Signaling Activity
Given the prominence of Notch-related genes among MyT1 tar-

gets and in line with previous findings (Bellefroid et al., 1996; Hu

et al., 2013; Romm et al., 2005; Wang et al., 2008; Yokoyama

et al., 2014), we tested if MyT1 can counteract the inhibitory ef-

fect of Notch signaling in neurogenesis. We infected NS5 cells

with lentiviruses expressing Ascl1, MyT1, and a membrane-

bound dominant active version of the Notch1 receptor, whose

cleavage is independent of a ligand/receptor interaction (Act

Notch). As expected, Ascl1 expression induced the generation

of TuJ1-positive neurons with a concomitant decrease of Sox2

expression (Berninger et al., 2007; Farah et al., 2000; Nakada

et al., 2004), and this effect was inhibited by the co-expression

of Act Notch (Gaiano et al., 2000) (Figure 4A). Importantly,

MyT1 alone did not trigger neuronal differentiation, but its co-

expression with Ascl1 overcame the inhibition by Act Notch, as
s are shown. Z, Z score; R, enrichment ratio.

2 kb upstream (control, gray). y axis represents the number of motifs in bins of

ared to control regions is shown.

genes following a nearest gene annotation inMyT1 GoF DNA arrays. Statistical

d datasets of equal size and assuming a normal distribution. Test data are

1.53 interquartile range (IQR).

F that are directly regulated by MyT1. Number of transcripts with expression

s). Statistical significance was assessed by comparing the association with

4-kb genomic regions centered at MyT1 peak summits. Dashed lines show the

regulated) in distinct layers of the E14.5mouse embryonic telencephalon. Color

ing Pearson correlation. Absolute levels of expression of MyT1 are represented

plate.

FPKM]) of MyT1 direct targets in distinct layers of the E14.5 mouse embryonic

third quartiles (whiskers, ±1.53 IQR; notches, ±1.53 IQR/n1/2).

yT1 targets (genes bound and downregulated by MyT1) is shown.

body in NS5 cells upon MyT1 GoF is shown. ORF1 and ORF2, negative control

on MyT1 GoF by expression qPCR is shown. Mean ± SD of triplicate assays.

ter (+Dox) MyT1 GoF is shown. ORF1 and ORF2, negative control regions.

****p < 0.0001, according to Student’s t test (K–M). See also Figures S3 and S4.
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observed by a rescue of the number of TuJ1-positive cells to

levels similar to those obtained with Ascl1 alone (with Sox2

expression following a similar trend). In addition, a strong in-

crease in the differentiation activity of Ascl1 alone was observed

when both factors (Ascl1 + MyT1) were co-expressed (Figures

4A and 4B, respectively). Altogether, our results suggest that

MyT1 alone is not able to promote neuronal differentiation but

that it enhances the activity of the proneural factor by counter-

acting the inhibitory activity of the Notch pathway.

We next tested whether MyT1 could similarly counteract

Notch signaling in vivo by co-electroporating MyT1 and Act

Notch expression vectors in the dorsal telencephalon. As ex-

pected, expression of Act Notch inhibited endogenous neuro-

genesis, resulting in the retention of electroporated cells closer

to the ventricular surface and in a decreased number of cells

expressing the neuronal marker Satb2 (Figures 4B and 4C),

whereas MyT1 overexpression had the opposite effect (Figures

4B and 4C). Notably, co-expression of Act Notch and MyT1

rescued significantly the Act Notch phenotype (Figures 4B and

4C). Overall, these experiments support the conclusion that

MyT1 counteracts Notch signaling during neurogenesis.

MyT1 Counteracts Notch Activation of Hes1 Expression
Considering the well-established role of Hes1 as a downstream

effector of Notch signaling in neurogenesis (Artavanis-Tsakonas

et al., 1999; Shimojo et al., 2008), we next focused on the regu-

lation of this MyT1 target gene. Analysis of the MyT1 ChIP-seq

profile showed strong enrichment at theHes1 proximal promoter

region, centered on three evolutionarily conserved MyT1 motifs

(Figure 5A). Strikingly, these motifs were found in tandem, and

partially overlapping, with three Rbpj-binding motifs (TC box)

previously shown to mediate the regulation of Hes1 by Notch/

Rbpj (Arnett et al., 2010; Jarriault et al., 1995; Nam et al., 2007)

(Figure 5B). To test the ability of MyT1 to bind to its cognate mo-

tifs, we performed an electrophoretic mobility shift assay (EMSA)

using a Hes1 oligonucleotide probe spanning the MyT1motifs or

mutated versions. MyT1 was able to directly bind to this Hes1

promoter probe, as shown by the formation of a large DNA/

protein complex (Figure 5C). The formation of this complex

was strongly reduced or abolishedwhen each of theMyT1motifs

was disrupted separately or simultaneously, respectively, sug-

gesting cooperative binding of MyT1 to the three sites.

We next investigated whether MyT1 could counteract the ac-

tivity of Notch signaling on a luciferase reporter construct con-

taining the Hes1 proximal promoter region spanning all MyT1

and Rbpj sites (pHes1::Luc) (Nishimura et al., 1998). A transcrip-

tional assay in transfected P19 cells showed Act Notch strongly
Figure 4. MyT1 Counteracts Inhibition of Neuronal Differentiation by N

(A) Immunocytochemical analysis of Sox2 (red) and TuJ1 (green) upon infection w

Dox. Nuclei were labeled with DAPI (blue). Histograms represent the percentage

(B and C) In utero electroporation of control or MyT1, Act Notch, or Act Notch +

rescence analysis of coronal sections of GFP (green) and the neuronal marker Satb

DAPI (blue). Scale bars, 500 mm (B) and 50 and 20 mm (C, left and right). (B’) Histogr

from ventricular to pial surface, respectively) of equal length spanning the cortic

cells in each condition. Arrowheads indicate examples of Satb2+GFP+ cells. Arro

Data are shown as mean ± SD; n.s., p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, a

multiple testing (A) and Student’s t test (B’–C’).
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activates the Hes1 promoter, while co-expression of MyT1

completely abrogated this activity (Figure 5D). To test if the

observed effect of MyT1 is dependent on DNA binding, we per-

formed mutagenesis on the MyT1-binding sites. Mutations were

designed so as tominimize any effect onNotch activation, result-

ing in promoter constructs that still responded, albeit less

strongly, to Act Notch (Figure 5E). Disruption of individual bind-

ing sites partially impaired the activity of MyT1 (Figure 5F), while

simultaneous disruption of the three sites (BS1 + 2 + 3) had a

stronger effect readily observed when lower ratios of MyT1/Act

Notch were used (Figure 5G). Similar results were obtained using

a dominant active version of Rbpj fused to the VP16 activation

domain (RBPJ-VP16) (Figure 5H), further supporting that MyT1

regulates Hes1 at the promoter level. Importantly, no other tran-

scription factor tested was able to counteract Act Notch activity

on Hes1 promoter (Figure S5). Altogether, we concluded that

MyT1 counteracts the activity of the Notch/Rbpj complex on

the Hes1 promoter via a mechanism that depends on binding

to the three MyT1-binding sites.

Next, we analyzed MyT1 protein and Hes1 transcript expres-

sion patterns in the embryonic mouse telencephalon by double

immuno/in situ hybridization, andwe concluded these are largely

non-overlapping (Figure 6A). To further investigate this with sin-

gle-cell resolution, we re-examined the molecular signatures of

96 E11.5 dorsal telencephalic neural stem/progenitor cells ob-

tained by single-cell RNA sequencing (RNA-seq) (Hagey and

Muhr, 2014). Profiling using principal component 2 (PC2), which

orders cells through differentiation according to markers that

reflect the progression of cortical neurogenesis (Hagey and

Muhr, 2014), showed an inverse correlation between Myt1 and

Hes1 expression (Figure 6B, upper graph), with a Spearman

correlation coefficient of reads per kilobase per million mapped

reads (RPKM) levels of �0.407. In spite of this, examination

of absolute RPKM levels showed that co-expression of both

genes was detected in a small but significant fraction of cells,

suggesting the onset ofMyt1 expression occurs in cells that still

express Hes1 (Figure 6B, bottom panel). Thus,MyT1 expression

is inversely correlated, but partially overlapping, with that of

Hes1, which is consistent with MyT1 playing a determinant role

in switching off Hes1 transcription at the onset of neurogenesis.

MyT1 Represses Many Notch/Rbpj Transcriptional
Targets
The overrepresentation of a putative Rbpj-binding motif at MyT1

target sites (Figure 3A) suggests the direct control of Notch

target genes by MyT1 may extend beyond the regulation of

Hes1. To investigate this, we compared the transcriptional
otch Signaling

ith control or Ascl1-, Act Notch-, and/or MyT1-inducible lentiviruses 48 hr post-

of Sox2+/DAPI or TuJ1+/DAPI cells in each condition. Scale bar, 40 mm.

MyT1 expression vectors in E13.5 mouse dorsal telencephalon. Immunofluo-

2 (red) 5 days after electroporation (E18.5) is shown. Cell nuclei are labeled with

am represents the percentage of electroporated cells present in five bins (1 to 5

al thickness. (C’) Histogram represents the percentage of (Satb2+GFP+)/GFP+

ws indicate examples of Satb2�GFP+ cells.

nd ****p < 0.0001, according to one-way ANOVA with Bonferroni correction for



Figure 5. MyT1 Counteracts the Activity of

Rbpj/Notch at the Hes1 Promoter

(A) MyT1 (blue) and RBPJ (red) ChIP-seq enrichment

profiles at the vicinity of Hes1 gene. Regions con-

tained in Hes1::Luc and EMSA probe are indicated

below figure.

(B) Species alignment of Hes1 proximal promoter

region spanning MyT1 (blue) and Rbpj (red) binding

motifs is shown.

(C) EMSA shows MyT1 binding to a Hes1 promoter

probe with wild-type (WT) sequence or mutations in

MyT1 binding sites. n.s., non-specific band.

(D–G) Transcriptional assay in P19 cells co-trans-

fected with control or MyT1 and/or Act Notch

expression vectors and a reporter construct

expressing luciferase under the control of Hes1

proximal promoter region (pHes1::Luc) or mutated

versions in which MyT1-binding sites were individ-

ually or simultaneously disrupted. Equal amounts

of expression vectors were used, except in (G) in

which the various MyT1:ActNotch ratios used are

indicated. Mean ± SD of quadruplicate assays.

(H) Transcriptional assay in P19 cells co-trans-

fected with a control or MyT1 and/or RBPJ-VP16

(Blanpain et al., 2006) expression vectors together

with pHes1::Luc is shown.

Data are shown as mean ± SD; n.s., p > 0.05; *p <

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001,

according to Student’s t test (F and G) or one-way

ANOVA test with Bonferroni correction for multiple

testing (D, E, and H). See also Figure S5.
changes observed in our MyT1 GoF model with those that take

place upon exposure of NS5 cells to the pharmacological inhib-

itor of gamma-secretase LY411575 (LY), (Lanz et al., 2004), as

assessed by RNA sequencing (RNA-seq) (Table S5). When

considering a high-confidence list of genes deregulated upon

MyT1 induction (p < 0.01, n = 90), the vast majority (81%) was

also deregulated upon LY treatment, with all these but two genes

changing in the same direction (Figure 7A). Notably, this same

trend (expression of common deregulated genes changes in

same direction) was maintained when decreasing the stringency

cutoff for deregulation by MyT1 (p < 0.05, n = 1,612), or simulta-
Ce
neously increasing the stringency cutoff for

deregulation upon LY treatment (q < 0.01,

n = 1,612) (Figure 7A). Thus, MyT1 expres-

sion induces a global change in gene

expression that resembles that triggered

by the inhibition of Notch signaling.

Considering the short time points (4 hr)

at which both expression profiling experi-

ments were performed, it is likely that

many genes downstream Notch are direct

MyT1 targets. In agreement with this, we

found a much stronger statistical associa-

tion of MyT1 BEs with genes downregu-

lated by LY than with upregulated ones

(p < 1.63 10�70 versus p < 1.13 10�8) (Fig-

ure 7B). To evaluate the extent to which

MyT1 represses genes directly activated
by the Notch/Rbpj complex, we performed genome-wide map-

ping of Rbpj in NS5 cells by ChIP-seq, resulting in the identifica-

tionof 15,281BEs (q<10�2) (TableS6; Figure 7D) associatedwith

9,215 unique genes. As expected, a de novo search for DNAmo-

tifs enriched at Rbpj BEs found the TC box to be the most en-

riched motif, in addition to an E box (bHLH) and the compound

Rfx/Rbpj motif (Figure 7C). A strong Rbpj-sequencing signal

was found at genomic regions centered at MyT1 peak summits,

confirming that MyT1 often binds in close vicinity to Rbpj (Fig-

ure 7E), as illustrated for several targets (Figures 5A and 7D).

Notably, most (80.4%) of MyT1 direct targets identified were
ll Reports 17, 469–483, October 4, 2016 477



Figure 6. Comparative Analysis of MyT1 and Hes1 Expression in

Neural Progenitor Cells

(A) Immunofluorescence of MyT1 (green) and in situ hybridization for Hes1

(gray) in frontal sections of E14.5 mouse embryonic telencephalon. Dashed

squares indicate magnified regions of dorsal (middle) or ventral (bottom

panels) domains. Scale bar, 140 mm.

(B) Top panel: relative expression of Myt1 and Hes1 in 96 E11.5 dorsal telen-

cephalic neural progenitor cells, determined by single-cell RNA-seq. Dots

represent rolling averages, ordered by principal component 2 (PC2), with

polynomial trend lines overlapping. Bottom panel: absolute expression levels

of Myt1 and Hes1 in neural progenitor cells are shown as above, ordered by

MyT1 expression levels.
also bound by Rbpj. MyT1 and RBPJ binding and their opposite

effects in target gene expressionwere validated for several genes

(Figures 3K, 3L, 7F, and 7G). Most significantly was the ability of
478 Cell Reports 17, 469–483, October 4, 2016
both pathways to oppositely regulate the expression of Notch1,

further validated by the ability of MyT1 to counteract the activa-

tion of Notch1 gene promoter by Act Notch in a transcriptional

assay (Figures S6A–S6C). In conclusion, MyT1 can counteract

the Notch pathway at distinct levels, repressing Notch-signaling

components and many of its downstream targets.

DISCUSSION

In spite of its identification two decades ago, little progress has

been made toward understanding the function of the zinc-finger

factor MyT1 in vertebrate neurogenesis. After initial studies in

Xenopus embryos suggested X-MyT1 promotes neurogenesis

by counteracting lateral inhibition (Bellefroid et al., 1996), a

confirmation of such model using mouse genetics has been

hampered by functional redundancy with other family members

(Wang et al., 2007). In addition, nomolecular basis has been ever

established for MyT1 function, to large extent due to the lack of

identified target genes. Here we provide evidence of a neuro-

genic role for MyT1 in the developing mouse embryo, and we

characterize its transcriptional program.

Activation of neuronal differentiation requires the concomitant

repressionof thegeneexpressionprogram that operates in neural

stem/progenitor cells, including the downregulation of the Notch

transcriptional program (Imayoshi and Kageyama, 2014; Ka-

geyama et al., 2008). This is often attributed to decreased Notch

input signaling from neighboring cells (Kawaguchi et al., 2008;

Nelson et al., 2013), which results in default repression of Notch

target genes via the recruitment of corepressors by Rbpj. How-

ever, recent studies have reported that IPs exhibit attenuated

Rbpj signaling as compared to RG cells, and they are unable to

induce the expression of Hes genes upon activation of the Notch

receptor (Kawaguchi et al., 2008; Mizutani et al., 2007; Nelson

et al., 2013). This suggests the existence of cell-autonomous

mechanisms to inhibit the Notch program at the onset of differen-

tiation, which could be explained by the regulation of Notch

target genes by transcription factors such as MyT1. In addition,

MyT1 interacts with the Notch pathway also by regulating various

pathway components.Most notably, the repression ofNotch1 re-

ceptor gene may lead to an overall decrease of Notch-signaling

levels by MyT1. In agreement with this, the expression of Hes5,

awell-established readoutofNotchsignaling,wasstronglydown-

regulated upon MyT1 expression with no apparent binding of

MyT1 to its promoter region (Figures 3L, S6D, and S6E).

Among the targets identified, Hes1 is likely to be a major

effector of MyT1 in neurogenesis. Hes1 expression intrinsically

oscillates in proliferating neural stem/progenitor cells, by a

mechanism that relies on its activation by Notch signaling. It is

believed that the onset of differentiation depends critically on

the sustained downregulation of Hes1 expression; however,

the mechanisms that repress Hes1 in this context are poorly un-

derstood (Imayoshi and Kageyama, 2014; Imayoshi et al., 2013).

The cis architecture of theHes1 promoter, where MyT1 and Rbpj

sites are found interspersed and partially overlapping, was re-

vealed to be a very efficient mechanism to counteract Notch ac-

tivity. This feature may be unique to Hes1, as we did not find a

similar cis architecture at other regulatory regions targeted by

both pathways.



Figure 7. MyT1 and Notch Pathways Oppositely Regulate Many Transcriptional Targets

(A) Pie charts representing the percentage of genes deregulated in NS5 cells 4 hr upon MyT1 GoF and deregulated in the same direction (green), opposite di-

rection (red), or unchanged/data unavailable (gray) 4 hr upon LY treatment. Cutoff values for analysis upon MyT1 GoF (p value) and exposure to LY (q value) are

indicated in figure next to each pie chart. n, total number of genes.

(B) Number of MyT1 BEs associated with genes that are up- (blue bar) or downregulated (red bar) upon LY treatment. Boxplot distributions of MyT1-binding

associations, which can be found testing against 1,000 different random sets of genes, are shown. Test data are represented as box with median of test and first

and third quartiles (whiskers, ±1.53 IQR).

(legend continued on next page)
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It has been shown that MyT1L cooperates with Ascl1 in re-

programming mouse embryonic fibroblasts (MEFs) into induced

neurons (Vierbuchen et al., 2010). Although it is not clear what

the levels of canonical Notch signaling are in MEFs, Hes1

expression is well documented in this cellular context. MyT1

family members have high sequence homology within the

zinc-finger domains, and all have been shown to recognize the

MyT1 DNA-binding motif (Bellefroid et al., 1996; Jiang et al.,

1996; Yee and Yu, 1998). Therefore, it is possible that MyT1L

functions, at least in part, by repressing Hes1 during reprogram-

ming. In support of this, we found that MyT1L counteracts

the Notch activation of Hes1 promoter with the same efficiency

as MyT1 (Figure S7A). In addition, ChIP-qPCR analysis of an

HA-tagged version of MyT1L revealed a strong enrichment

at Hes1 proximal promoter soon after ectopic expression in

MEFs (Figure S7B).

The broad expression of MyT1 in the embryonic nervous sys-

tem (Matsushita et al., 2014), together with the importance of

Notch signaling in neurogenesis, suggests that the regulatory

events we identified in the telencephalon may occur pan-neuro-

nally throughout the embryonic nervous system. In addition,

while our study focuses on the function of MyT1 at the onset of

neuronal differentiation, further research should also address

the function of MyT1 at later stages along the neuronal lineage.

EXPERIMENTAL PROCEDURES

Immunohistochemistry and In Situ RNA Hybridization

Embryonic brains were processed for in situ hybridization or immunostaining

as previously described (Castro et al., 2011). For double in situ hybridization/

immunohistochemistry, frozen sections were treated as for in situ hybridization

until the last post-fixation step, before immunostaining. The Hes1 probe was

produced from the plasmid pBluescriptII SK-Hes1. NS5 cells were grown on

glass coverslips coated with poly-L-Lysine (Sigma-Aldrich) and fixed with

4% formaldehyde for 10 min. See the Supplemental Experimental Procedures

for antibody dilutions used. Bright-field and fluorescent images of fixed sec-

tions and coverslips were acquired using the microscope Leica DMRA2 or

the laser-scanning confocal microscope Zeiss LSM510 Meta.

In Utero Electroporation

MouseMyT1 cDNA (Nielsen et al., 2004) and AcNotch coding sequences were

cloned upstream of an internal ribosomal entry site (IRES) and an nuclear local-

ization signal (NLS)-tagged GFP in the pCAG expression vector (Niwa et al.,

1991). Control and shRNA plasmids used (Sigma-Aldrich) were pLKO.1

scramble shRNA (Addgene 1864), pLKO MyT1 shRNA (TRCN0000081610),

pLKO MyT1L shRNA (TRCN0000012109), and pLKO MyT3 shRNA

(TRCN0000042479). Electroporation in utero was employed at E12.5 or

E13.5 to deliver expression vectors (1 ml DNA plasmid corresponding to 3 mg

mixed with 0.03% fast-green dye in PBS) to the ventricular RG cells of mouse

embryos, as previously described (Saito, 2006; Sessa et al., 2008). All exper-

iments were conducted upon the approval and following the guidelines of an-

imal care and use committees from San Raffaele Scientific Institute (SRSI) and

Instituto Gulbenkian de Ciência (IGC).
(C) Top overrepresented motifs in 50-bp regions centered at MyT1 peak summit

(D) Examples of MyT1 (blue) and RBPJ (red) ChIP-seq enrichment profiles at vicinit

blue), and H3K27ac (green) ChIP-seq enrichment profiles are shown.

(E) Density plot of MyT1 (blue) and RBPJ (red) ChIP-seq reads at 4-kb genomic re

tag count) is shown.

(F) Validation of RBPJ binding to selected genes by ChIP-qPCR in NS5 cells is sho

(G) Validation of gene expression changes of selected genes in NS5 cells 4 hr af

Data are shown as mean ± SD; n.s., p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, a
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Culture and Infection of NS5 Cells

NS5 (Conti et al., 2005) and NS5-Ascl1-ERT2 cells (Raposo et al., 2015) were

cultured in mouse Neurocult NSC basal medium supplemented with mouse

Neurocult NSC proliferation supplement (STEMCELL Technologies), peni-

cillin-streptomycin (100 U/mL) (Gibco), epidermal growth factor (EGF,

10 ng/mL) (PeproTech), basic FGF (10 ng/mL) (PeproTech), and laminin

(1 mg/mL) (Sigma-Aldrich). For expression profiling and ChIP, NS5-MyT1-

HA/GFP TetON cells were generated upon infection with MyT1-HA TetON-

FUW, eGFP TetON-FUW, and M2rtTA TetON-FUW lentiviruses and were

further expanded. When indicated, cells were treated with 50 nM Tam

(Sigma-Aldrich), 2 mg/mL Dox hyclate (Sigma-Aldrich), or 10 nM LY (Lanz

et al., 2004). Replication-incompetent lentiviruses were produced by transient

transfection of HEK293T cells with TetON-FUW vectors co-transfected with

psPAX2 and pCMV-VSVG. Lentiviral particles were concentrated from super-

natant by ultracentrifugation at 9,000 3 g for 4 hr and resuspended in 0.1%

BSA PBS.

Gene Expression, DNA Microarrays, and RNA-Seq

Gene expression analysis of cultured NS5 cells by real-time qPCR with

PerfeCTa SYBR Green FastMix, ROX (Quanta Biosciences) was carried out

according to the manufacturer’s instructions on an ABI7900 HT machine

(Applied Biosystems), using cDNA produced with High Capacity RNA-to-

cDNA Master Mix (Applied Biosystems) after Trizol RNA extraction (see the

Supplemental Experimental Procedures for primers). Microarray analysis

was performed on biological triplicates of NS5 MyT1-HA TetON cells 0 and

4 hr post-Dox induction. RNA concentration and purity were confirmed using

Agilent 2100 Bioanalyzer with RNA Nano Kit (Agilent Technologies). RNA

(100 ng) was processed with Ambion WT Expression Kit (Life Technologies)

and hybridized to the Affymetrix Mouse Gene 1.0 ST Array. CEL files were

analyzed using Chispter software (version 3.1.0, Kallio et al., 2011) using

RNA normalization and empirical Bayes two-group test with Benjamini-Hoch-

berg post hoc for p value correction. Samples used for RNA-seq analysis were

obtained from biological triplicates of NS5 0 and 4 hr post-LY treatment, and

total RNA was extracted as described above. The sequencing library was pre-

pared according to the TruSeq RNA sample preparation version 2 protocol

(Illumina) and sequenced on an Illumina HiSeq 2000. Raw reads were aligned

to NCBI37 (mm9) mouse genome using Tophat2 version 2.0.3 (Kim et al.,

2013). Pairwise analysis of differential gene expression was performed with

cuffdiff version 2.1.1 using fragment bias and multi-read corrections (Trapnell

et al., 2013). Genomic sequence and gene annotation were obtained from

ENSEMBL (May 2012, version 67).

ChIP and ChIP-Seq

Ascl1 ChIP from embryonic telencephalon was performed as previously

described (Castro et al., 2011). NS5 cells were fixed sequentially with 2 mM

di(N-succimidyl) glutarate and 1% formaldehyde in PBS and lysed, sonicated,

and immunoprecipitated as described previously (Castro et al., 2011), using

anti-HA (ab1424, Abcam), anti-Rbpj (D10A4, Cell Signaling Technology), or

anti-LSD1 (ab17721, Abcam) antibodies. DNA sequences were quantified by

real-time PCR (see the Supplemental Experimental Procedures for primers).

For sequencing, DNA libraries were prepared from 10 ng immunoprecipitated

DNA according to the manufacturer’s protocol. Paired-end sequencing was

performed using MySeq. Raw reads were mapped to the mouse genome

(NCBI37/mm9) with Bowtie version 0.12.7 (Langmead et al., 2009). Data

were processed further with MACS version 1.4.1 (Zhang et al., 2008) to define

the locations of BEs. Further details of data processing are described in the

Supplemental Experimental Procedures.
s are shown. Z, Z score; R, enrichment ratio.

y of common bound genes and associated H3K4me3 (orange), H3K4me1 (dark

gions centered at MyT1 peak summits (signal intensity represents normalized

wn. ORF1 and ORF2, negative control regions. Mean ± SD of triplicate assays.

ter LY treatment by expression qPCR is shown.

nd ****p < 0.0001, according to Student’s t test (F and G). See also Figure S6.



In Vitro Binding and Transcriptional Assays

EMSAs were performed as described previously (Castro et al., 2006), using

probes (Supplemental Experimental Procedures) labeled with [g-32P] ATP

(PerkinElmer) using T4 polynucleotyde kinase (New England Biolabs). Control,

MyT1, andRBPJ proteins produced by coupled in vitro transcription and trans-

lation in rabbit reticulocyte lysates (TNT, Promega) were incubated with probe

in 20-mL binding reactions (15%glycerol, 20mMHEPES [pH 7.9], 5mMMgCl2,

50mMKCl, 0.1mMZnSO4, 0.01%Triton X-100, 10mMDTT, 5mMPMSF, and

0.2mg/uLherring spermDNA;Sigma-AldrichD7290) for 20minat room temper-

ature (RT). Reporter gene assays in transfected P19 cells were performed as

previously described (Castro et al., 2011). Oligonucleotides used to mutate

Hes1::Luc are described in the Supplemental Experimental Procedures.

Statistical Procedures

Where indicated, data from at least three (qPCR assays) or four (luciferase as-

says) biological replicates are presented as mean ± SD. For in utero electropo-

rations, >500 cells from at least three sections were counted, using three em-

bryos per condition. Differentiation in culture was scored counting >1,500 cells

from three coverslips per condition. In all cases, statistical significance was

calculated by performing a two-tailed, unpaired Student’s t test or one-way

ANOVA test with Bonferroni correction (see figure legends).

ACCESSION NUMBERS

The accession numbers for all genomic datasets reported in this paper are

Array Express (http://www.ebi.ac.uk/arrayexpress): E-MTAB-4330 (MyT1

ChIP-seq), E-MTAB-4494 (Rbpj ChIP-seq in NS5 cells), E-MTAB-4335

(MyT1 GoF in NS5 cell DNA arrays), and E-MTAB-4331 (RNA-seq from NS5

cells treated with LY).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and twelve tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.09.024.

AUTHOR CONTRIBUTIONS

F.F.V. performed most experimental work with contributions from C.L. and

D.M.T. V.T. performed the in vivo gene expression analysis and A.S. the in

utero electroporation experiments. A.A.S.F.R. did most of the bioinformatics

analysis with contributions from F.F.V. D.W.H. and J.M. performed the sin-

gle-cell transcriptomics analysis. D.S.C., F.F.V., A.S., and V.B. designed

experimental work. D.S.C. and F.F.V. wrote the manuscript, which was read

and approved by all others.

ACKNOWLEDGMENTS

We thank the IGC Bioinformatics Unit for expert assistance in data analysis,

the European Molecular Biology Laboratory (EMBL) Gene Core high-

throughput sequencing Unit for ChIP-seq library preparation and sequencing,

and the IGCGene Expression Unit for DNA array processing and hybridization.

We thank Guoqiang Gu for MyT1 and MyT1L antibodies; Brad G. Hoffman for

the MyT3 antibody; and Ryoichiro Kageyama, Tasuku Honjo, Warren S. Pear,

and Tohru Marunouchi for plasmids. This study was funded by Fundação para

a Ciência e Tecnologia (FCT) grants UID/Multi/04555/2013 and PTDC/NEU-

NMC/031572012 and Marie Curie CIG (303644) to D.S.C., the Telethon grant

(GGP15096) and the Italian Ministry of Health Young investigator grant (GR-

2013-02355540) to A.S., and an FCT doctoral fellowship (SFRH/BD/51178/

2010) to F.F.V. D.S.C. is supported by the FCT Investigator program (IF/

00413/2012).

Received: February 24, 2016

Revised: July 12, 2016

Accepted: September 9, 2016

Published: October 4, 2016
REFERENCES

Arnett, K.L., Hass, M., McArthur, D.G., Ilagan, M.X.G., Aster, J.C., Kopan, R.,

and Blacklow, S.C. (2010). Structural and mechanistic insights into coopera-

tive assembly of dimeric Notch transcription complexes. Nat. Struct. Mol.

Biol. 17, 1312–1317.

Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling:

cell fate control and signal integration in development. Science 284, 770–776.

Bai, G., Sheng, N., Xie, Z., Bian, W., Yokota, Y., Benezra, R., Kageyama, R.,

Guillemot, F., and Jing, N. (2007). Id sustains Hes1 expression to inhibit preco-

cious neurogenesis by releasing negative autoregulation of Hes1. Dev. Cell 13,

283–297.

Bellefroid, E.J., Bourguignon, C., Hollemann, T., Ma, Q., Anderson, D.J., Kint-

ner, C., and Pieler, T. (1996). X-MyT1, a Xenopus C2HC-type zinc finger protein

with a regulatory function in neuronal differentiation. Cell 87, 1191–1202.

Berninger, B., Costa, M.R., Koch, U., Schroeder, T., Sutor, B., Grothe, B., and
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Gómez-López, S., Wiskow, O., Favaro, R., Nicolis, S.K., Price, D.J., Pollard,

S.M., and Smith, A. (2011). Sox2 and Pax6maintain the proliferative and devel-

opmental potential of gliogenic neural stem cells In vitro. Glia 59, 1588–1599.
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List of Supplemental Tables 

Table S1.  Genes deregulated 4h after MyT1 GoF in NS5 cells (related to Figure 3). 

Table S2. Genomic coordinates of MyT1-HA binding events determined by ChIP-Seq 

(related to Figure 3). 

Table S3.  Genes bound and repressed by MyT1 GoF (related to Figure 3). 

Table S4. Identity of MyT1 target genes associated with enriched Gene Ontology terms 

(related to Figure 3) 

Table S5. Expression profiling dataset upon Notch inhibition (related to Figure 5). 

Table S6. Genomic coordinates of RBPJ binding events determined by ChIP-Seq 

(related to Figure 7). 

 
Supplemental experimental procedures 

1. Plasmids 

pCAG-MyT1-IRES-GFP 
The full-length cDNA of mouse MyT1 was excised from pMycMyT1-7ZF-IRES/Red 
vector with EcoRI and subcloned (blunt ended) into the EcoRV site of pCAG-LinkerA-
IRES-NLS-GFP. 

MyT1-HA TetON-FUW  
An HA-tag encoding oligonucleotide with restriction sites for XhoI and NotI at each end 
and EcoRI and AgeI sites downstream the HA-tag was inserted into the XhoI and NotI 
sites of pPyCAG-MCS-MyT1-V5.  The ECoRI fragment of MyT1-V5 was subcloned into 
the EcoRI site of TetON-FUW. 

FLAG-Act Notch TetON-FUW  
Activated Notch1 tagged N-terminally with FLAG-tag was excised from pCAG-IRES-
GFP-FLAG-Act Notch with BamHI, and cloned upon Klenow fill in reaction into the 
EcoR1 site of TetON-FUW. 

MyT1L-HA TetON-FUW  
An HA-tag oligonucleotide was inserted into the pCAG-MyT1L by PCR amplification 
using primers containing the HA-tag, STOP codon, one EcoRI site and one BglII site. 
The amplified fragment and the pCAG-MyT1L were digested with SacI and BglII. 
MyT1L-HA was excised from pCAG-MyT1L-HA vector using EcoRI and cloned into 
TetON-FUW.   

Site-directed mutagenesis of pHes1::Luc 
The mutations on the MyT1 BSs on the Hes1 promoter luciferase reporter (pHes1::Luc) 
were generated by site-directed mutagenesis using the plasmid pHes1::Luc and the 
primers listed on the Table S7.  PCR reactions were performed with 50nM of each 
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primer, 100ng of plasmid, 100μM dNTPs, 7.5U of Cloned Pfu polymerase and Pfu 
buffer with MgSO4 (Stratagene). Reaction was run under the following cycling 
conditions: 1 cycle 95ºC/5min; 18 cycles (95ºC/50sec; 60ºC/50sec; 72ºC/10min); 1 
cycle 72ºC/25min, followed by treatment with DpnI for 3-4h at 37ºC.  
 
Table S7 Oligonucleotides used for site-directed mutagenesis of pHes1::Luc (related to 
Figure 5) 

Primer Sequence 

MyT1_BS1_mut_FW CTCTTCCTCCCATTGGCTGAACCCTACTGTGGGAAAGAAAGTTTG 

MyT1_BS1_mut_RV CAAACTTTCTTTCCCACAGTAGGGTTCAGCCAATGGGAGGAAGAG 

MyT1_BS2_mut_FW GAAAGTTACTGTGGGAAAGAACCATTGGGAAGTTTCACACGAGCC

MyT1_BS2_mut_RV GGCTCGTGTGAAACTTCCCAATGGTTCTTTCCCACAGTAACTTTC  

MyT1_BS3_mut_FW GAAAGAAAGTTTGGGAACCTTCACACGAGCCGTTCG 

MyT1_BS3_mut_RV CGAACGGCTCGTGTGAAGGTTCCCAAACTTTCTTTC 

MyT1_BS1+2+3_mut_FW GAAAGAACCATTGGGAACCTTCACACGAGCCGTTC 

MyT1_BS1+2+3_mut_RV GAACGGCTCGTGTGAAGGTTCCCAATGGTTCTTTC 

 

2. Electromobility shift assay 

Table S8 Oligonucleotides used as EMSA probes (related to Figure 5) 

EMSA probe primers Sequence 

Hes1_WT_F 
TGGCTGAAAGTTACTGTGGGAAAGAAAGTTTGGGAAGTTTCACACG
AGCC 

Hes1_WT_R 
GGCTCGTGTGAAACTTCCCAAACTTTCTTTCCCACAGTAACTTTCAG
CCA 

Hes1_MyT1_BS1_mut_F 
TGGCTGAACCCTACTGTGGGAAAGAAAGTTTGGGAAGTTTCACACG
AGCC 

Hes1_MyT1_BS1_mut_R 
GGCTCGTGTGAAACTTCCCAAACTTTCTTTCCCACAGTAGGGTTCA
GCCA 

Hes1_MyT1_BS2_mut_F 
TGGCTGAAAGTTACTGTGGGAAAGAACCATTGGGAAGTTTCACACG
AGCC 

Hes1_MyT1_BS2_mut_R 
GGCTCGTGTGAAACTTCCCAATGGTTCTTTCCCACAGTAACTTTCAG
CCA 

Hes1_MyT1_BS3_mut_F 
TGGCTGAAAGTTACTGTGGGAAAGAAAGTTTGGGAACCTTCACACG
AGCC 

Hes1_MyT1_BS3_mut_R 
GGCTCGTGTGAAGGTTCCCAAACTTTCTTTCCCACAGTAACTTTCAG
CCA 

Hes1_MyT1_BS1+2+3_mut_F 
TGGCTGAACCCTACTGTGGGAAAGAACCATTGGGAACCTTCACACG
AGCC 

Hes1_MyT1_BS1+2+3_mut_R 
GGCTCGTGTGAAGGTTCCCAATGGTTCTTTCCCACAGTAGGGTTCA
GCCA 

Hes5_F  
GCGGCCTGGGAAAAGGCAGCATATTGAGGCGCGGGGCTCTCAGCA
TCAGGCCCCGGGATGCTAATGAGGGCGAGCGCGTTCCCACAGCCC

Hes5_R  
GGGCTGTGGGAACGCGCTCGCCCTCATTAGCATCCCGGGGCCTGA
TGCTGAGAGCCCCGCGCCTCAATATGCTGCCTTTTCCCAGGCCGC 
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3. Expression q-PCR 
 
Table S9 Expression real-time PCR primers (related to Figures 1, 3 and 7) 

Gene Forward Primer Reverse primer 

ActinB CTAAGGCCAACCGTGAAAAG ACCAGAGGCATAGGGACA 

Dll1 GGGCTTCTCTGGCTTCAAC TAAGAGTTGCCGAGGTCCAC 

GAPDH GGGTTCCTATAAATACGGACTGC CCATTTTGTCTACGGGACGA 

Hes1 TGAAGGATTCCAAAATAAAATTCTCTGGG CGCCTCTTCTCCTGATAGGCTTTGATGAC 

Hes5 AAGTACCGTGGCGGTGGAGAT CGCTGGAAGTGGTAAAGCAGC 

Id3 TCATAGACTACATCCTCGACCTTC CACAAGTTCCGGAGTGAGC 

Lfng CCACTCCCACCTAGAGAACCT ACTGCGTTCCGCTTGTTC 

Lmcd1 GATCCATCCAAAGAAGTGGAA TGTCAGCGTAGACCACAGG 

MyT1 GGCCATGCATGAAAATGTACT GCAATGGGACATCCAGATAAA 

Notch1 CTGGACCCCATGGACATC GGATGACTGCACACATTGC 

Olig1 CAGGCCCAGTTCTCCAAG GGGAAGATTGGCTGAGGTC 

Sox2 AAGCGCCTTCATGGTATGGTC TATAATCCGGGTGCTCCTTC 

Tubb3 GCGCATCAGCGTATACTACAA CATGGTTCCAGGTTCCAAGT 

 

4. ChIP q-PCR 
 
Table S10 ChIP-qPCR primers (related to Figures 1, 3 and 7) 

Primers Forward Primer Reverse primer 

Dll1 ORF (ORF1) GTCTCAGGACCTTCACAGTAG GAGCAACCTTCTCCGTAGTAG 

Fbxw7 ORF 
(ORF2) 

CTCGTCACATTGGAGAGTGG  CAGGAGCTTGGTTTCCTCAG 

Hes1 ORF (ORF3) CACTTTCTGCCTTCTGTGGA AGAGGATGGAGGAGTCATGG 

Hes1  GGGAAAGAAAGTTTGGGAAGT GTTATCAGCACCAGCTCCAG 

Hes5 GGGAAAAGGCAGCATATTGAGGCG CACGCTAAATTGCCTGTGAATTGGCG 

Id3 GAAAGGTTGCCTGGGACA GTCTGCGCTGTTTTTGTTTC 

Lfng CTCCCCCACCACTAAGGAG GGAGAGACACACAGGAAGCA 

Lmcd1 ACAGGAAGGGCTGTTACCAT CTGTTTGCTCTGTGTCTCTGG 

MyT1 CTGGCAACACAATTCCAAAG AGGGGTCATGCTGCTTCTAT 

Notch1_1 ATTTGGCCAGAATTTGCATT GCGCCACATTTAAACTCCTG 

Notch1_2  CAGACCTGCTTAATTGGCTTC  GGAGACAGAGAAGGCTCCAG 

Olig1 GTGAACAGTCCCCCTTCTGT GCTGCCAAACCTTCAGTCTA 

Sox2 CCGGAAACCCATTTATTCC TGCAAACACTCTCTTCTCTGC 

 

5. Cell culture 

P19 and HEK293T cells were transfected by using linear polyethylenimine (PEI) 
(Sigma-Aldrich) in the proportion of DNA:PEI (w/w) of 1:2.5 for P19 cells and 1:3 for 
HEK293T cells. Total amount of DNA/cm2, 500 ng. Medium was replaced with fresh 
medium 4-6h after transfection.  
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Mouse embryonic fibroblasts (MEFs) were isolated from E12.5 embryos. The head, 
vertebral column (containing the spinal cord), dorsal root ganglia and all internal organs 
were removed and discarded to ensure the removal of all cells with neurogenic 
potential from the cultures. The remaining tissue was manually dissociated and 
incubated 0.25% trypsin (Gibco) for 10-15 min to create a single cell suspension. The 
cells from each embryo were plated onto a T150 flask with MEF medium (Dulbecco’s 
Modified Eagle Medium (DMEM) (BioWest) / High glucose containing 10% fetal bovine 
serum (FBS) (BioWest), 2mML-Glutamine (Gibco) and 100U/mL 
Penicillin/Streptomycin (Gibco)). 

 

6. Antibodies 

Table S11 Antibodies used in this study 

Antigen (Species) 
Working dilution 
IF: immunofluorescence 
WB: Western blot 

Catalog 
number 

Company / 
Reference 

GFP (chicken)  1:1000 (IF) 06-896 Millipore 

HA-tag (rabbit)  1:1000 (IF) ab9110  Abcam 

MyT1 (rabbit)  1:1000 (IF) ; 1:5000(WB)   Wang et al., 2007 

MyT1L (guinea pig) 1:1000 (WB)  Tennant et al., 2012 

MyT3 (rabbit) 1:2000 (WB)  Guogiang Gu et al. 

Sox2 (rabbit)  1:500 (IF) AB5603 Millipore 

TubulinB III (mouse)  1:500 (IF) MAB1637 Millipore 

Alexa Fluor 488 Goat Anti-Chicken IgG  1:1000 (IF)  Life Technologies 

Alexa Fluor 488 Goat Anti-mouse IgG  1:1000 (IF)  Life Technologies 

Alexa Fluor 568 Goat Anti-rabbit IgG  1:1000 (IF)  Life Technologies 

Alexa Fluor 568 Goat Anti-mouse IgG  1:1000 (IF)  Life Technologies 

α-tubulin (mouse)  1:10 000 (WB) T6074 Sigma 

Goat Anti-Rabitt IgG (H+L) Poly-HRP 1:4000 (WB)  
Jackson 
ImmunoResearch 

Donkey Anti-Mouse IgG (H+L) Poly-HRP 1:4000 (WB)  
Jackson 
ImmunoResearch 

 

7. Image analysis and fluorescence quantification 
All images were treated using ImageJ. The number of DAPI, Sox2-, MyT1-HA-positive 
cells was quantified using Threshold, Watershed and Analyze particles tools from 
ImageJ. The number of TuJ1-positive cells was quantified using the Cell Counter plugin 
from ImageJ. The number of cells counted per condition is mentioned in figures 
legends. Data is presented as mean ± SD.  
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8. Bioinformatics 

Location analysis and expression data integration 
MyT1 ChIP-Seq peak overlap with expression data from MyT1 GoF microarrays was 
calculated and plotted as heat maps with R/Bioconductor packages “genomeIntervals”, 
“gplots”, and in-house developed scripts.  

Motif finding and Gene Ontology analysis 
De novo search for differentially enriched motifs was performed using CisFinder 
(Sharov and Ko, 2009). Searches were run against a control dataset of identical length 
located 2Kb upstream (FDR<0.05%; Match threshold for clustering, 0.55). Motif fold 
enrichment (peaks/control) and percentage of peaks with motif were determined using 
the abundance tables obtained from CisFinder. Frequency distributions were plotted 
using the frequency tables obtained with CisFinder upon search within 2000bp regions 
centered on peak summits.  Gene Ontology Biological Process analysis with functional 
annotation clustering was carried out using DAVID v6.7 (Dennis et al., 2003), using the 
whole microarray (MoGene 1.0 ST v1) as control (enrichment score (EASE)<0.05; 
similarity threshold for clustering, 0.8). 

Density plots 
ChIP-Seq normalized tag signals were calculated using a 10bp sliding window over the 
± 2kb region around each peak summit to generate the occupancy profiles (in-house 
developed algorithm). These were plotted as heat maps of signal density using 
R/Bioconductor packages (http://www.Rproject.org/ and http://CRAN.R-
project.org/package=gplots).  

Gene expression analysis  
NS5 Ascl1-ERT2 cells were plated in 6-well plates (600 000 cells/ well). Differentiation 
was induced 24h after plating by reducing EGF concentration to 5ng/mL and by adding 
4-hydroxy-tamoxifen (TAM) (Sigma-Aldrich) (50nm). Samples were collected in 
triplicates 0, 4, 12, 24 and 48h post TAM.  

Gene expression analysis using datasets from embryonic mouse telencephalon 
Expression RNA-Seq data sets from single cells isolated from E11.5 mouse cortex are 
from (Hagey and Muhr, 2014). Analysis of the correlation of MyT1 and Hes1 
expression was performed as previously described (Hagey and Muhr, 2014).  
Expression RNA-Seq data sets from cortical layers of the developing mouse brain at 
E14.5  are accessible at NCBI GEO database (Fietz et al., 2012), accession 
GSE38805. Hierarchical clustering of in vivo expression of genes bound and 
downregulated by MyT1 in culture was performed using distances based on the 
Pearson's correlation coefficient and plotted as a row-scaled heat map with 
R/Bioconductor “hclus” and “gplots” packages. 

Hierarchical clustering of motif-containing ChIP-Seq peaks 
Hierarchical clustering of ChIP-Seq peaks based on the presence or absence of the 
represented motifs. MyT1 motif and E-box were searched as consensus motifs. Rfx 
and Sox motifs were searched as positional weight matrices. Abundance tables 
obtained with the Cisfinder Search tool (Sharov and Ko, 2009) were converted to 
binary (1-presence, 0- absence). Only the peaks that have at least one of the motifs 
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searched are represented. Hierarchical clustering was plotted as heat maps with 
R/Bioconductor “hclust”, “heatmap” packages. P(MyT1 ChIP-Seq)>10-10. 

 

9. Publicly available data sets used in this study 

Table S12 Data sets previously generated used in this study 

Dataset Reference 

Ascl1-ERT2 ChIP-Seq in NS5 Ascl1-ERT2 cells, t=18h Wapinski et al., 2013 

H3K27ac ChIP-Seq in NS5 Ascl1-ERT2 cells, t=0h Raposo et al., 2015 

H3K4me1 in NS5 Ascl1-ERT2 cells, t=0h Raposo et al., 2015 

H3K4me3 ChIP-Seq in neural progenitor cells Mikkelsen et al., 2007 

H3K27me3 ChIP-Seq in neural progenitor cells Mikkelsen et al., 2007 

DNAse-Seq in proliferating and differentiating neural progenitor cells Raposo et al., 2015 
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