Supplemental information

Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering

Masaaki Sugiyama^{a,1,2}, Hirokazu Yagi^{b,1}, Kentaro Ishii^c, Lionel Porcar^e, Anne Martel^e, Katsuaki Oyama^f, Masanori Noda^g, Yasuhiro Yunoki^b, Reiko Murakami^b, Rintaro Inoue^a, Nobuhiro Sato^a, Yojiro Oba^a, Kazuki Terauchi^f, Susumu Uchiyama^{c,g}, and Koichi Kato^{b,c,d,2}

^aResearch Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan

^bGraduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

^cOkazaki Institute for Integrative Bioscience and ^d Institute for Molecular Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan

^eInstitut Laue-Langevin, 6 Rue Jules Horowitz, Grenoble 38042, France ^fDepartment of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

^gDepartment of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Supplemental Fig. S1. Full-length BN-PAGE images of Fig.1. KaiCwT, KaiCDE, KaiCDT, KaiCAA, and KaiCSE were incubated with KaiB at 30°C and were subjected to BN-PAGE at individual time points. The 12hr-lanes of individual BN-PAGE images are highlighted in Fig. 1.

Supplemental Fig. S2. Mass spectra of mixtures of KaiC_{DT} and KaiB at 1:0.17, 1:0.5, 1:1, and 1:1.5 molar ratios (KaiC_{DT} to KaiB). The mass spectra in the range from m/z 1,000 to m/z 12,700 in Figure 2 are shown. Orange, green, blue, and red circles show the ion series of the monomeric KaiB, the homo-tetrameric KaiB, the homo-hekameric KaiC_{DT}, and the 6:6 hetero-dodecamer complexes of KaiC_{DT} and KaiB, respectively.

Supplemental Fig. S3. Distribution of sedimentation coefficients of $60 \mu M \text{ KaiC}_{DT}$ (black) and $60 \mu M \text{ KaiB}$ - KaiC_{DT} complex (red). The 13.7 S peak corresponds to the complex at a 6:6 stoichiometry.

Supplemental Fig. S4. SANS profiles of the partially deuterated $KaiC_{DT}$ preparation in 0% (red), 30% (green), 60% (cyan), and 97% (blue) D₂O solvents. The profiles were measured with 6.0 Å neutron and the sample-to-detector distance of 2.0 m in 300 s by D22 of ILL.

Supplemental Fig. S5. Square root of SANS intensity at 0.029 Å⁻¹, $I(0.029)^{1/2}$, in 0% D₂O (H₂O), of partially deuterated KaiC_{DT}. The black line indicates the calculated $I_{\rm C}(0.029)^{1/2}$ as a function of deuteration ratio, while the red line and the orange zone show the observed value and the errors of $I_{\rm O}(0.029)^{1/2}$ of the partially deuterated KaiC_{DT} preparation, respectively. The cross point of black and red lines indicates that the deuteration ratio of the sample was $72.2 \pm 0.3\%$.

Supplemental Fig. S6. Map of scattering length density. Blue and red bars show the scattering length densities of hydrogenated KaiB (h-KaiB) and 72% deuterated KaiC_{DT} (72d-KaiC_{DT}). The scattering length densities of 0%, 40%, and 97% D₂O express with blue cross bars. Because a scattering intensity of substance in a solution is proportional to the square of the difference in scattering length density between solute and solvent, namely "contrast," the scattering of 72d-KaiC_{DT} can be almost ignored compared from that of h-KaiB in 97% D₂O solvent: yellow arrow shows the contrast of h-KaiB in 97% D₂O solvent.

Supplemental Fig. S7. The KaiC-binding site in the structural model of the fold switch KaiB used for calculation of SANS profiles. The KaiC-binding site (red) was mapped on the basis of the previously reported deuterium-exchange MS data¹.

Protein	Protein	Solvent D ₂ O ratio	Figure of SANS profile
	deuteration ratio		
KaiC _{DT}	72%	0%	Fig. S3
KaiC _{DT}	72%	30%	Fig.S3
KaiC _{DT}	72%	60%	Fig.S3
KaiC _{DT}	72%	97%	Fig.S3
h-KaiB+	0%	0 - 0/	
h-KaiC _{DT}	0%	97%	F1g.3
h-KaiB+	0%		
d-KaiC _{DT}	72%	97%	Figs. 3 and 5

Supplemental Table S1: Samples used for SANS experiments.

Reference

1. Chang, Y.G. et al. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. *Science* **349**, 324-8 (2015).