Mariusz Popenda, Jan Milecki and Ryszard W. Adamiak*

SUPPLEMENTARY MATERIAL

Table S1. ¹H NMR chemical shifts δ_H (p.p.m.) of (CGCGCG)₂ in the Z-RNA form at 303 K in D₂O.

Residue	H8/H6	H5	H1′	H2′	H3′	H4′	H5′	H5″	imino	am	ino
C1	7.33	5.88	5.83	3.88	4.45	3.76	3.01	2.57	-	8.28	6.29
G2	7.84	-	5.95	4.45	5.26	4.35	4.24	4.24	13.14	-	-
C3	7.25	5.27	5.85	4.00	4.61	3.93	3.88	2.51	-	8.54	5.84
G4	7.91	-	5.96	4.49	5.20	4.35	4.29	4.20	13.01	-	-
C5	7.34	5.37	5.92	4.06	4.65	3.99	3.89	2.65	-	8.51	5.86
G6	7.86	-	5.90	5.11	4.79	4.32	4.24	4.22	13.04	-	-

Table S2. Experimental $J_{1',2'}$, $J_{2',3'}$ and $J_{3',4'}$ coupling constants, sugar pucker parameters ^{a)} and percentage of N conformers for (CGCGCG)₂ in the Z-RNA form.

Residue	couplin	ng constants	[Hz] ^{b)}			12 final	12 final structures ^{d)}			
	J _{1',2'}	J _{2',3'}	J _{3',4'}	P _N	$\Phi_{\rm N}$	Ps	$\Phi_{\rm s}$	% _N	Р	Φ
C1	8.0	4.7	≤1.0	17 (16)	31 (6)	177 (17)	39 (6)	2	198 (1)	35 (1)
G2	≤1.0	5.5	9.8	35 (2)	40 (2)	-	-	100	48 (2)	41 (1)
C3	7.8	4.4	0.9	-28 (14)	36 (4)	185 (17)	41 (6)	2	135 (3)	40 (2)
G4	≤1.0	5.9	9.2	32 (1)	35(1)	-	-	100	44 (2)	36 (2)
C5	7.8	3.9	1.4	-21 (15)	29 (7)	184 (22)	48 (8)	6	162 (3)	41 (1)
G6	3.8	6.2	5.2	48 (16)	27 (9)	190 (59)	25 (8)	68	24 (4)	36 (1)

^{a)} average values are given with standard deviations in parentheses. $^{b)} \pm 1 \text{Hz}$

^{c)} all five values P_N , P_S , Φ_N , Φ_S , $\%_N$ were fitted to experimental data. Initial values of Φ_N , Φ_S were of 30° and initial $%_N$ was 50%. Initial values of P_N and P_S changed independently from 0° to 360° every 10°. For statistics, only results giving r.m.s.d. values less than 0.5 [Hz] were employed. $^{d)}$ ref (37)

Table S3. Backbone and glycosidic torsion angles^{a)} for 12 conformers representing the refined structure of (CGCGCG)₂ in the Z-RNA form (left column) and 11 reference X-ray Z-DNA structures ^{b)} of $d(CGCGCG)_2$ (*right column*).

Res.	α		β		γ		δ		3		ζ		χ	
C1	-	-	-	-	46(2)	39(38)	153(1)	143(6)	-68(1)	-93(4)	76(2)	75(5)	-151(2)	-150(5)
G2	49(4)	65(5)	-163(2)	-172(3)	-175(3)	177(3)	81(1)	95(7)	-104(1)	$-117(7)^{c}$	-55(2)	$-64(17)^{c}$	60(2)	62(5)
										$-161(5)^{d}$		$59(8)^{d}$		
C3	-145(2)	$-150(9)^{c}$	175(4)	$-132(15)^{c}$	71(1)	54(4)	127(2)	147(4)	-72(1)	-95(5)	76(2)	75(4)	-159(2)	-156(4)
		$165(5)^{d}$		$155(6)^{d}$										
G4	69(3)	66(5)	-159(1)	-174(6)	172(1)	179(3)	86(2)	95(5)	-105(1)	$-123(9)^{c}$	-65(3)	$-55(16)^{c}$	61(1)	60(6)
										$-176(4)^{d}$		$67(5)^{d}$		
C5	-134(4)	$-155(8)^{c}$	-158(3)	$-133(12)^{c}$	54(4)	49(7)	146(1)	141(5)	-83(4)	-95(4)	71(1)	70(7)	-141(2)	-155(6)
		$169(3)^{d}$		$163(5)^{d}$										
G6	62(2)	79(7)	-165(1)	-179(5)	-173(1)	176(3)	84(1)	148(5)	-	-	-	-	47(2)	76(3)

^{a)} $P \cong O5' \stackrel{\beta}{=} C5' \stackrel{\gamma}{=} C4' \stackrel{\delta}{=} C3' \stackrel{\epsilon}{=} O3' \stackrel{\zeta}{=} P$; average values with standard deviations in parentheses are given

^{b)} PDB ID: 131D, 1D39, 1D48, 1DCG, 1DJ6, 110T, 11CK, 292D, 293D, 2DCG, 336D.

^{c)}GpC step typical of the Z_I -DNA form

^{d)} GpC step typical of the Z_{II}-DNA form

Table S4. Lower (*left column*) and upper (*right column*) limits [^o] for the initial torsion angle restraints used in the structure determination (CYANA) of (CGCGCG)₂ in the Z-RNA form

Residue	β		γ		χ		ν_1		v_2		δ		3	
C1 (C7	132	228	40	70	-200	-120	17	50	-50	-23	127	168	188	292
G2 (G8	165	195	na	na	26	106	-18	-8	27	39	75	85	188	292
C3 (C9	132	228	40	70	-200	-120	17	50	-50	-23	127	168	188	292
G4 (G10)	165	195	na	na	26	106	-16	-7	23	35	80	90	188	292
C5 (C11)	132	228	40	70	-200	-120	16	50	-50	-26	127	170	188	292
G6 (G12)	165	195	na	na	26	106	-18	44	-29	39	75	123	-	-

Fig. S1. ¹H NMR spectra of (CGCGCG)₂ at 0M (right-handed form) (*bottom*) and 6M NaClO₄ (left-handed form) (*top*).

Fig. S2. Applied protocol for the structure determination (CYANA) of the (CGCGCG)₂ in Z-RNA form. At the structure calculation stage, the TAD algorithm was implemented to a new subroutine *ndrs.cya* which allows for automatic <u>NOE distance restraints selection</u>.

