## Algorithm 1 Creation of parameters for one Eedn convolutional layer

Input: Input feature count  $f_i$ , filter height r rows, filter width c columns, output feature count  $f_o$  (number of filters), and number of groups G (where each group is a disjoint subset of the filters, applied to a disjoint subset of the input features),

Output: Permuted ordering of input features  $\mathbf{P}$ , continuous weight matrix  $\mathbf{W}^h$ , discretized weight matrix  $\mathbf{W}$ , weight mask matrix  $\mathbf{M}$  to enforce groups, vector of biases  $\mathbf{B}$ 

- 1: Assert $(f_irc/G = \lceil f_irc/G \rceil)$  // Ensure total filter inputs are evenly divisible across groups
- 2: Assert $(f_o/G = \lceil f_o/G \rceil)$  // Ensure output features are evenly divisible across groups 3: Assert $(f_irc/G \le 128)$  // Ensure filter support region fits on one core 4: Assert $(f_o/G \le 128)$  // Ensure output features per group fits on one core

- 5:  $\mathbf{P} \leftarrow \text{Randperm}(f_i)$  // Create list of integers from 1 to  $f_i$ , randomly ordered

- 6:  $\mathbf{B} = \mathbf{zeros}(f_o)$  // Vector of zeros of length  $f_o$ 7:  $\mathbf{W}^h \leftarrow \mathrm{Rand}(r, c, f_i, f_o)$  //  $rcf_i \times f_o$  matrix of random real numbers drawn from [-1, 1]8:  $\mathbf{M} \leftarrow \mathrm{Createmask}(r, c, f_i, f_o, G)$  //  $\mathrm{Create}\ rcf_i \times f_o$  block diagonal matrix with blocks of size  $rcf_i/G \times f_o/G$  consisting of all 1s, and with 0s everywhere else; block size corresponds to input features per group  $\times$  output features per group
- 9:  $\mathbf{W^h} \leftarrow \mathbf{W}^h \circ \mathbf{M}$  // enforce groups by zeroing non-block diagonal values 10:  $\mathbf{W} \leftarrow \mathrm{Round}(\mathbf{W}^h)$  // Initialize weights to use in forward and backward pass

**Algorithm 2** One iteration of Eedn training algorithm for a network with K layers. Blue text indicates steps not standard in conventional deep learning

Input: Network parameters  $\{P, W, W^h, M, B\}_{k=1}^K$  (set in Algorithm 1); network input  $X_0$ ; F, a list of the class each output feature is assigned to predict (assignments are made randomly such that each class has an equal number of features); class labels  $\hat{\mathbf{Y}}$ Output: Trained network parameters

```
Forward propagation:
```

- 1: for k = 1 to K do
- $\mathbf{X}_{k-1} \leftarrow \operatorname{Permute}(\mathbf{X}_{k-1}, \mathbf{P}_k) \ // \operatorname{Permute features of } \mathbf{X}_{k-1} \operatorname{according to } \mathbf{P}_k$  $\mathbf{X}_k \leftarrow \operatorname{Forward}(\mathbf{X}_{k-1}, \mathbf{W}_k, \mathbf{B}_k) \ // \operatorname{Layer forward pass (see eqs. 1, 2, and 4)}$
- 5:  $\mathbf{Y} \leftarrow \operatorname{ComputeVotes}(\mathbf{X}_K, \mathbf{F})$  // Each output feature at each spatial location casts one vote for its assigned class (determined by F) if it is spiking, creating the network's prediction Y.

Loss: 6:  $L, \frac{\partial \mathbf{L}}{\partial \mathbf{Y}} \leftarrow \text{ComputeLoss}(\mathbf{Y}, \hat{\mathbf{Y}})$  // Compute loss, L, and loss gradient,  $\frac{\partial \mathbf{L}}{\partial \mathbf{Y}}$ . The softmax cross entropy loss function was used for this work.

- 10:  $\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{K}} \leftarrow \operatorname{BackwardComputeVotes}(\frac{\partial \mathbf{L}}{\partial \mathbf{Y}}, \mathbf{F})$  // Backward pass through voting step.

  8:  $\mathbf{for}\ k = K\ \text{to}\ 1\ \mathbf{do}$ 9:  $\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{k}}, \frac{\partial \mathbf{L}}{\partial \mathbf{W}_{k}}, \frac{\partial \mathbf{L}}{\partial \mathbf{B}_{k}} \leftarrow \operatorname{Backward}(\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{k+1}}, \mathbf{W}_{k}, \mathbf{B}_{k})$  // Layer backward pass (see eq. 5)

  10:  $\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{k}} \leftarrow \operatorname{Permute}(\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{k}}, \operatorname{Inverse}(\mathbf{P}_{k}))$  // Reverse feature permutation of forward pass 11: end for

## Parameter update:

- 12: for k = 1 to K do

- for k=1 to K do  $\frac{\partial \mathbb{L}}{\partial \mathbf{W}_k} \leftarrow \frac{\partial \mathbb{L}}{\partial \mathbf{W}_k} \circ \mathbf{M} \quad // \text{ Enforce groups}$   $\mathbf{B}_k \leftarrow \text{Update}(\mathbf{B}_k, \frac{\partial \mathbb{L}}{\partial \mathbf{B}_k}) \quad // \text{ Update bias.}$   $\mathbf{W}_k^h \leftarrow \text{Update}(\mathbf{W}_k^h, \frac{\partial \mathbb{L}}{\partial \mathbf{W}_k}) \quad // \text{ Update continuous weights using gradient computed with respect to discretized weights.}$
- $\mathbf{W}_k^h \leftarrow \text{Clip}(\mathbf{W}_k^h, -1, 1)$  // Snap values outside of range [-1, 1] to nearest value in range.
- $\mathbf{W}_{k}^{n} \leftarrow \operatorname{Cast}(\mathbf{W}_{k}^{n}, \mathbf{W}_{k})$  // Cast weights to  $\{-1, 0, 1\}$  values using hysteresis (see eq. 6).
- 18: end for