
Algorithm 1 Creation of parameters for one Eedn convolutional layer
Input: Input feature count fi, filter height r rows, filter width c columns, output feature

count fo (number of filters), and number of groups G (where each group is a disjoint
subset of the filters, applied to a disjoint subset of the input features),

Output: Permuted ordering of input features P, continuous weight matrix Wh, discretized
weight matrix W, weight mask matrix M to enforce groups, vector of biases B

1: Assert(firc/G = dfirc/Ge) // Ensure total filter inputs are evenly divisible across groups

2: Assert(fo/G = dfo/Ge) // Ensure output features are evenly divisible across groups

3: Assert(firc/G ≤ 128) // Ensure filter support region fits on one core

4: Assert(fo/G ≤ 128) // Ensure output features per group fits on one core

5: P← Randperm(fi) // Create list of integers from 1 to fi, randomly ordered

6: B = zeros(fo) // Vector of zeros of length fo
7: Wh ← Rand(r, c, fi, fo) // rcfi × fo matrix of random real numbers drawn from [−1, 1]

8: M ← Createmask(r, c, fi, fo, G) // Create rcfi × fo block diagonal matrix with blocks of

size rcfi/G× fo/G consisting of all 1s, and with 0s everywhere else; block size corresponds to

input features per group × output features per group

9: Wh ←Wh ◦M // enforce groups by zeroing non-block diagonal values

10: W← Round(Wh) // Initialize weights to use in forward and backward pass
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Algorithm 2 One iteration of Eedn training algorithm for a network with K
layers. Blue text indicates steps not standard in conventional deep learning

Input: Network parameters {P,W,Wh,M,B}Kk=1 (set in Algorithm 1); network input X0;
F, a list of the class each output feature is assigned to predict (assignments are made
randomly such that each class has an equal number of features); class labels Ŷ

Output: Trained network parameters

Forward propagation:
1: for k = 1 to K do
2: Xk−1 ← Permute(Xk−1,Pk) // Permute features of Xk−1 according to Pk

3: Xk ← Forward(Xk−1, Wk, Bk) // Layer forward pass (see eqs. 1, 2, and 4)

4: end for
5: Y ← ComputeVotes(XK ,F) // Each output feature at each spatial location casts one vote

for its assigned class (determined by F) if it is spiking, creating the network’s prediction Y.

Loss:
6: L, ∂L

∂Y
← ComputeLoss(Y, Ŷ) // Compute loss, L, and loss gradient, ∂L

∂Y . The softmax

cross entropy loss function was used for this work.

Backward propagation:
7: ∂L

∂XK
← BackwardComputeVotes( ∂L

∂Y
,F) // Backward pass through voting step.

8: for k = K to 1 do
9: ∂L

∂Xk
, ∂L
∂Wk

, ∂L
∂Bk

←Backward( ∂L
∂Xk+1

, Wk, Bk) // Layer backward pass (see eq. 5)

10: ∂L
∂Xk

← Permute( ∂L
∂Xk

, Inverse(Pk)) // Reverse feature permutation of forward pass

11: end for

Parameter update:
12: for k = 1 to K do
13: ∂L

∂Wk
← ∂L

∂Wk
◦M // Enforce groups

14: Bk ← Update(Bk,
∂L
∂Bk

) // Update bias.

15: Wh
k ← Update(Wh

k ,
∂L
∂Wk

) // Update continuous weights using gradient computed with

respect to discretized weights.

16: Wh
k ← Clip(Wh

k ,−1, 1) // Snap values outside of range [−1, 1] to nearest value in range.

17: Wk ← Cast(Wh
k ,Wk) // Cast weights to {−1, 0, 1} values using hysteresis (see eq. 6).

18: end for
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