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SUMMARY

Hormone-secreting cells within pancreatic islets of
Langerhans play important roles in metabolic ho-
meostasis and disease. However, their transcrip-
tional characterization is still incomplete. Here, we
sequenced the transcriptomes of thousands of hu-
man islet cells from healthy and type 2 diabetic do-
nors. We could define specific genetic programs for
each individual endocrine and exocrine cell type,
even for rare d, g, ε, and stellate cells, and revealed
subpopulations of a, b, and acinar cells. Intriguingly,
d cells expressed several important receptors, indi-
cating an unrecognized importance of these cells in
integrating paracrine and systemic metabolic sig-
nals. Genes previously associated with obesity or
diabetes were found to correlate with BMI. Finally,
comparing healthy and T2D transcriptomes in a
cell-type resolved manner uncovered candidates
for future functional studies. Altogether, our analyses
demonstrate the utility of the generated single-cell
gene expression resource.

INTRODUCTION

The pancreas is a vital organ for maintaining metabolic homeo-

stasis, consisting largely of exocrine ductal and acinar cells that

produce and deliver digestive enzymes into the gut. Intermingled

in the exocrine regions are the islets of Langerhans, comprised of

at least five distinct endocrine cell types: a cells (secreting

glucagon,GCG), b cells (insulin, INS),g/PPcells (pancreatic poly-

peptide, PPY), d cells (somatostatin, SST), and ε cells (ghrelin,
Cell Metabolism 24, 593–607, Oc
This is an open access article under the CC BY-N
GHRL), together making up less than 2% of pancreas mass.

The cell-type composition within human islets of Langerhans is

50%–60% b cells, 30%–45% a cells, less than 10% g and d cells,

and less than 1% ε cells (Cabrera et al., 2006); however, this

composition varies among individuals. The endocrine islets are

essential for blood glucose homeostasis and key players in the

development of diabetes, which is characterized by loss of

functional b cells (Kahn et al., 2006). Type 2 diabetes (T2D) is

caused by a combination of increasing INS resistance in periph-

eral tissues and reduced mass or dysfunction of the b cells.

In order to understand the molecular mechanism governing the

function of the pancreas, it has been important to investigate

cell-type-specific gene expression in health and disease. Due to

the cellular heterogeneity within the islets of Langerhans, it is

challenging to interpret whole-islet transcriptome data, and fluo-

rescence-activated cell sorting (FACS)-enriched transcriptome

data only exist for a few cell types. In particular, it is hard to distin-

guish cell-type compositional differences from alterations occur-

ringwithin specificcell typesandaddresswhether subpopulations

exist. These issues could be resolved using single-cell transcrip-

tomics (Sandberg, 2014; Stegle et al., 2015). The two studies to

date have had too few cells (Li et al., 2016; Wang et al., 2016) to

control for inter-individual differences and profile rare cells.

Here, we used single-cell RNA-sequencing (RNA-seq) to

generate transcriptional profiles of endocrine and exocrine cell

types of the human pancreas in healthy and T2D individuals.

We could reveal subpopulations in endocrine and exocrine cell

types, identify genes with interesting correlations to BMI in spe-

cific cell types, and find alterations in gene expression in T2D.
RESULTS

Pancreatic tissue and cultured islets were obtained from six

healthy and four T2D donors of varying BMI and age (Figure 1A).
tober 11, 2016 ª 2016 The Authors. Published by Elsevier Inc. 593
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Functionality of the islets was confirmedwith glucose-stimulated

INS secretion (GSIS) (Figure S1A, available online). Islets were

dissociated into single-cell suspension and viable individual cells

were distributed via FACS into 384-well plates containing lysis

buffer (Figure S1B). Next, single-cell cDNA libraries were gener-

ated using the Smart-seq2 protocol (Picelli et al., 2014), which

enables the capture of full-length poly(A)+ RNAs with higher

sensitivity and more even transcriptome coverage than with pre-

vious protocols (Picelli et al., 2013; Ramsköld et al., 2012; Stegle

et al., 2015). Each single-cell transcriptome was sequenced to

�750,000 reads, sufficient for cell-type classification (Pollen

et al., 2014). Gene expression was quantified as reads per kilo-

base of transcript per million mapped reads (RPKM) using

rpkmforgenes (Ramsköld et al., 2009).

Since certain endocrine populations (e.g., ε cells) are present

within the islets at low frequencies, we sequenced �350 cells

from each donor. In total we obtained 3,386 cells, and after strin-

gent quality control filtering (see Supplemental Experimental

Procedures; Figures S1C–S1H), we retained 2,209 cells. As con-

trols, we also sequenced 16 empty wells for six of the donors (in

total 96 wells). The sequencing reads detected in the controls,

originating from low levels (<0.5%) of RNA contamination from

FACS or library preparation, were below the quality thresholds.

Cell-Type Identification and Expression
We explored the single-cell transcriptome data in an unbiased

manner by identifying biological variation in gene expression

(Brennecke et al., 2013) (Table S1) and projecting all cells onto

two dimensions using t-distributed stochastic neighbor embed-

ding (t-SNE) (Van der Maaten and Hinton, 2008). The major sep-

aration of cells reflected gene expression differences between

exocrine and endocrine cell types (Figure 1B), with two clusters

corresponding to exocrine acinar (n = 185) and ductal (n = 386)

cells based on expression of their respective markers, PRSS1

and KRT19 (Figure 1C), whereas the third cluster contained the

endocrine cells (n = 1,554). The five smaller observed clusters

(Figure 1B) corresponded to pancreatic stellate cells (PSCs;

n = 54, high expression of collagen genes, matrix metalloprotei-

nases, TIMP1, FN1, POSTN, and ACTA2) (Liu and Du, 2015),

endothelial cells (n = 16, expressing PLVAP, CD31/PECAM1,

VWF, and ANGPT2), mast cells (n = 7, expressing tryptase genes

TPSB2, TPSD1, and TPSAB1), antigen-presenting MHC class II

cells (n = 5, high expression of CD74, CD86, HLA-DPA1, HLA-

DPB1, and HLA-DRA) and two cells of unknown origin (‘‘unclas-

sified exocrine,’’ high expression of, e.g., RCAN1, SPP1, and
Figure 1. Single-Cell Transcriptome Analyses of Human Pancreas

(A) Table of donor information (HbA1c, glycated hemoglobin).

(B) Projection of all cells (n = 2,209) onto two dimensions using t-SNE based on

variation across cells.

(C) Expression (log2RPKM) of exocrine marker genes (PRSS1 for acinar and KRT

(D) Boxplots displaying the expression levels in the seven obtained clusters o

(TPSAB1), pancreatic stellate cells (COL1A2), and endothelial cells (PLVAP). Med

indicate the 25th and 75th percentiles. Bars extend to extreme data points and o

(E) Two-dimensional t-SNE projection of the endocrine cells (n = 1,554) based o

variation across endocrine cells. The obtained clusters were assigned to the

correspond to cell types and shadings indicate donors. Healthy and T2D cells ar

(F) t-SNE representation of cells as in (E) illustrating the expression of the five end

log2RPKM values, with white and red colors corresponding to minimum (zero) an

(G) Bar graphs showing the percentage of cells classified into cell types, per don
NOV ) (Figure 1D; Table S1). The cell clusters were obtained

without using knowledge of cell types or prior purification of

cell populations.

To resolve the various endocrine cell types, we performed a

similar analysis only on the endocrine cells, which separated

them into discrete clusters (Figure 1E) with distinct hormone

expression and allowed their classification into a, b, g, d, and ε

cells (Figure 1F). The endocrine cells clustered together irrespec-

tively of inter-individual differences and T2D status (Figure 1E),

demonstrating that cell-type-specific expressions are associ-

atedwith the dominating transcriptome patterns. A group of cells

characterized by a high expression of multiple hormones and an

elevated number of expressed genes was detected among b

cells (‘‘co-expression,’’ n = 39; Figures 1E and S2A). Although

such cells have been reported (Blodgett et al., 2015), this group

likely corresponds to cell doublets and therefore was excluded.

Indeed, image analyses identified 0.3% cell doublets during sin-

gle-cell sorting (Supplemental Experimental Procedures), and

hormone co-expression was found in �0.9%–1.8% of the re-

maining endocrine cells after removal of the potential cell

doublets (Figures S2C and S2D). A second cluster of cells

(unclassified endocrine, n = 41; Figure 1E, white group) charac-

terized by low number of genes expressed (Figure S2B) was also

excluded from the analyses.

Variations in Cell-Type Composition
The composition of cells profiled from each donor varied sub-

stantially (Figures 1G and S3A; Table S1), both in terms of

exocrine and endocrine cells and within the endocrine cell types.

To determine if the observed composition of cell types corre-

sponded to cell types present in the non-dissociated tissue

and islet preparations, we performed immunohistochemistry

staining with GCG and INS on the pancreatic tissues and purified

islets (Figure S3B) (eight donors), and FACS analyses on disso-

ciated islets using antibodies targeting GCG, INS, and SST

(two donors) (Figure S3C). Analyses of the estimated fractions

of a, b, and d cells in the tissue and islets revealed that a cells

were more abundant and b cells less numerous in the single-

cell data than in the corresponding tissue and islet preparations

(Figure S3D). This could reflect lower survival of b cells during

single-cell dissociation and FACS. For g and d cells, the numbers

were in general agreement except for an increase of g cells in the

single-cell data in one T2D donor (Figure 1G). We concluded that

single-cell dissociation and FACS introduce a systematic bias

in cell-type proportions. In order to compare single-cell to
the expression values (log2RPKM) of the 1,000 genes with highest biological

19 for ductal cells) overlaid onto the 2D t-SNE as shown in (B).

f marker genes for MHC class II antigen-presenting cells (CD86), mast cells

ian and mean are shown as a line and circle, respectively. Edges of each box

utliers are plotted as gray dots.

n the expression values (log2RPKM) of the 500 genes with highest biological

endocrine cell types based on the hormone expression levels in (F). Colors

e marked with circles and triangles, respectively.

ocrine hormones: GCG, INS, PPY, SST, and GHRL. Color scale is according to

d maximum (log2RPKM = 21) expression, respectively.

or.
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whole-islet RNA-seq, we correlated the average gene ex-

pression in single cells with the expression in whole-islet

sequencing from the same donors. This analysis demonstrated

that single-cell data give a reliable view of the whole islet

(Spearman’s r, 0.86–0.92; Figure S4A) and that with only tens

of single cells, correlations start to saturate (Figure S4B).

Gene Expression Signatures of Endocrine Cells
Theaveragenumberofgenesexpressedpercell typewas roughly

5,500 for endocrine and 7,000 for exocrine cells (Figure 2A), with

slight variation using higher expression threshold (Figure S1H).

Strikingly, hormone expression accounted for a large fraction of

the transcriptome in endocrine cells, reflecting their functional

dedication to hormone secretion, with INS, PPY, and SST tran-

scripts alone accounting for�50%of the total cellular transcripts

in the b,g, and d cells, respectively (Figure 2B). In a and ε cells, the

expressionofGCGandGHRL, respectively, accounted for�20%

of their transcriptomes (Figure 2B; Table S1).

Next, we investigated the specific gene expression in the six

major cell types (a, b, g, d, acinar, and ductal cells) to shed light

on their respective functions, using one-way ANOVA on the five

healthy male donors (to exclude confounding effects of sex and

disease). This analysis revealed several hundred genes that were

expressed at significantly higher levels in a, b, g, d, or exocrine

cell types (Table S2; Figures 2C, 2D, and 3C). Most of the previ-

ous transcriptome studies of the pancreas have investigated

whole islets or used FACS to sort for either a or b cells followed

by microarray analysis or RNA-seq. For a or b cells, several

studies in mouse (Benner et al., 2014; Ku et al., 2012) or human

islets (Blodgett et al., 2015; Bramswig et al., 2013; Dorrell et al.,

2011; Nica et al., 2013) have found cell-type-specific transcripts

with 2-fold or higher expression levels than in other cell types.

The genes we identified as being a and b cell enriched overlap-

ped largely with the previous studies. For example, in a cells we

detected known markers such as GCG, LOXL4, DPP4, GC, and

FAP (Figure 2E) (Dorrell et al., 2011). Importantly, RNA in situ hy-

bridization verified significant co-expression of FAP and GCG in

a cells (Figure 2F; Table S3). We also observed cell-type en-

riched expression of genes that have not previously been linked

to specific endocrine cell types.GPR119 has been identified as a

potential target for the treatment of diabetes, since agonists

have been shown to enhance nutrient-stimulated INS and
Figure 2. Characterization of Endocrine Cell Transcriptomes

(A) Boxplots showing the number of genes detected in each cell type (expressi

respectively. Edges of each box indicate the 25th and 75th percentiles. Bars ext

(B) Percentage of all mRNAs in respect to the total transcriptome in each cell t

descending order (x axis).

(C) Table with the number of significantly enriched genes in a, b, g, d, acinar, and

(D) Heatmap with expression distributions for the top 25 enriched genes in each

based on the magnitude of expression range among the four endocrine cell types

endocrine and exocrine cell type, with labels indicating cell type and donor (top). C

heatmap contains the distribution of values across the cells for each cell type an

(E) Boxplots with the expression levels of selected cell-type enriched genes ident

LINC01099 for b cells; and LEPR and GHSR for d cells. Gene expression is sho

different donors. Median andmean are shown as a line and circle, respectively. Ed

data points and outliers are plotted as gray dots.

(F and G) Single-molecule RNA FISH on pancreatic tissue section. (F, left) A rep

(blue). (G, left) Islet (donor H5) co-stained with SST (green), LEPR (red), and DAPI (

and additional images in Table S3. Scale bar represents 25 mm.
GLP-1 release and also to increase b cell mass in mice in vivo

(Chu et al., 2008; Gao et al., 2011). We could assign the expres-

sion of GPR119 primarily to a cells in humans (Figure 2E), in

contrast to previous reports (Chu et al., 2008; Odori et al., 2013).

In b cells, we found elevated expression levels of, e.g., INS,

IAPP, ADCYAP1, PDX1, MAFA, NKX6-1, and MEG3 (Figures

2D and 3B). Additionally, b cell-specific protein expression of

both PDX1 and NKX6-1 was verified using FACS analysis, where

the PDX1+/NKX6-1+ cell population coincided with the expres-

sion of b cell marker C-peptide protein (Figure S5A). We also

detected long non-coding RNAs, e.g., LINC01099, with expres-

sion restricted mainly to b cells (Figure 2E).

Transcriptional Profiling of Rare Endocrine Cell Types
The transcriptomes of g, d, and ε cells are largely unknown in hu-

man. We noted that many receptors were highest or exclusively

expressed in d cells (e.g., UNC5B, GABRB3, GABRG2, CASR,

FFAR4/GPR120, andKCNJ2) (Figure 2D; Table S2).We also iden-

tifiedpronouncedexpressionof the leptin receptor (LEPR) indcells

(Figure 2E). Previous studies in murine and human cells have re-

ported LEPR protein expression in a, b, and d cells (Kieffer et al.,

1996, 1997; Tudurı́ et al., 2009). RNA in situ hybridization validated

significant co-expression of LEPR and SST in d cells (Figure 2G;

Table S3). Expression of the GHRL receptor (GHSR) has been

reported on mouse a cells (Date et al., 2002), rat INS-1 b cell line

(Wierup et al., 2004), and to be partly localized to b cells in human

islets (Granata et al., 2007). Intriguingly, we uncovered that the

GHSRwas specifically expressed in d cells (Figure 2E).

We also identified genes specifically expressed in g cells, e.g.,

SERTM1, SPOCK1, ABCC9, and SLITRK6 (Figure 2D; Table S2),

none of which, to the best of our knowledge, have been assigned

to pancreatic or g cell functions. Among the 2,209 cellular tran-

scriptomes captured, seven were from ε cells. Analysis of these

cells allowed us to identify elevated expression of 39 genes,

including the expression of GHRL and GHRLOS. The ε cells

uniquely expressed several interesting receptors like NPY1R,

OPRK1, PTGER4, and ASGR1, and processing enzymes such

as PCSK6 (Figure 3A; Table S2).

Transcription Factor Expression in Endocrine Cells
We could confirm the expression of many transcription factors

in endocrine cells, e.g., ISL1 and NEUROD1, and restricted
on threshold, RPKM R 1). Median and mean are shown as a line and circle,

end to extreme data points and outliers are plotted as gray dots.

ype (Table S1), with genes ranked according to the expression magnitude in

ductal cells.

of the four endocrine cell types (a, b, g, and d cells). The genes were selected

. The expression profiles of the ten donors are shown separately and for each

olors correspond to standardized log2 expression values, where each cell in the

d donor.

ified in the differential expression analysis: FAP, DPP4, and GPR119 for a cells;

wn for a, b, g, d, ε, acinar, and ductal cells, with color shadings representing

ges of each box indicate the 25th and 75th percentiles. Bars extend to extreme

resentative islet (donor H5) co-stained with GCG (green), FAP (red), and DAPI

blue). (F and G, right) Zoom-in on merged or individual channels. Quantification
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expression of MAFA in b cells and IRX2 in a cells (Figure 3B).

However, many transcription factors were expressed in a subset

of endocrine or exocrine cells, including ARX expression in a and

g cells, in line with the increase in g and a cell numbers after

forced ARX expression in mouse embryonic islets (Collombat

et al., 2007). We found HHEX expression in both d and ductal

cells while MAFB expression was restricted to a, b, and d cells

(Figure 3B). We also detected several enrichments of factors in

particular cell types. For example,NKX6-3was enriched in d cells

and SIX2 and SIX3 were restricted to b cells. In g cells, we

observed significantly elevated expression of MEIS2, ETV1,

and ID4 (Figure 3B), whereas AFF3 was specifically expressed

in ε cells (Figure 3A).

Cell-Type-Specific Expression in Other Pancreatic Cell
Types
The transcriptomes of exocrine cell types had higher numbers of

significantly enriched genes, 332 and 408 genes, respectively,

for acinar and ductal cells (Figures 2C and 3C; Table S2). Addi-

tionally, we detected a large number of genes that were ex-

pressed at higher levels in both exocrine cell types but were

absent in endocrine cells (data not shown). The pancreatic stel-

late cells and endothelial cells also expressed a large number of

specific genes (Figure 3D; Table S2).

Using our cell-type-specific expression data, we assessed to

what extent cell-type-specific gene expression can be identified

from whole-islet sequencing (Taneera et al., 2012) by simply

correlating gene expression with cell-type-defining hormone or

marker gene expression. Our results indicate that only few of

the cell-type enriched genes would be captured, as our stron-

gest cell-type enriched genes were either seldom significant or

had low ranks (Figure S5B).

The Identification of Subpopulations and Cellular States
Inorder toexploreheterogeneitywithincell populations,we inves-

tigated the clustering of cells within each cell type. After assigning

cells to cell types, the secondstrongestdeterminant of thecellular

transcriptomes was inter-individual differences (Figure S6).

Clustering analysis after the removal of donor effect (see Sup-

plemental Experimental Procedures) uncovered subpopulations

of a, b, and acinar cells. For g, d, and ductal cells, no robust

separation was observed (Figure S6). Twelve a cells belonging

to multiple donors (both healthy and T2D) grouped separately

from all other a cells (Figures 4A and S6A). GCG expression

was similar in both clusters; however, differential expression

analysis showed a mild downregulation of several a enriched

genes (C10orf10, PEMT, PLCE1, ARRDC4, CRYBA2, LOXL4,
Figure 3. Cell-Type-Specific Expression
(A) Heatmap showing ε cell enriched gene expression (rows) across the seven cell

shown on the top. Colors in the heatmap correspond to standardized log2 expres

across the cells for each cell type and donor.

(B) Heatmap with expression levels of transcription factors (rows) across the c

correspond to minimum (zero) and maximum (log2RPKM = 12) expression, respe

(C) Heatmapwith expression of significantly enriched genes (rows) in acinar and du

selected based on the magnitude of expression range between the two exocrine

(D) Heatmap showing the differentially expressed (DE) genes (columns) between

obtained using single-cell differential expression (SCDE), and only the genes with

shown. The colors in the heatmap correspond to standardized log2 expression va

the cells of each cell type.
RGS4, and SMIM24) and a high expression of proliferation-asso-

ciated genes (e.g., TOP2A,MKI67,CENPF,BIRC5, andCDK1) in

these twelve cells (Figure 4A). Therefore, the rare a cells consti-

tuted proliferating a cells that were distinguished by a signature

of 439 significantly upregulated genes (Table S4). Importantly,

this group was not detectable before adjusting for donor effects

(Figure S6A). Searching for proliferative gene expression signa-

tures across the complete single-cell dataset revealed additional

acinar (n = 8) and ductal (n = 2) cells with expression of prolifer-

ative markers (Figure S7). The gene expression signatures of

these rare proliferating cells might provide clues to the mecha-

nisms of self-renewal of pancreatic tissue.

Sub-clustering of b cells revealed five clusters of cells with

combinatorial expression of RBP4, FFAR4/GPR120, ID1, ID2,

and ID3 (Figure 4B; Table S4). Cells of the five clusters expressed

INS at similar levels (Figure 4B). Interestingly, clusters 1 and 5 ex-

pressed RBP4 (also expressed in d cells; Figure 2D), an adipokine

primarily expressed in the liver and adipocytes (Klöting et al.,

2007). Increased circulating levels ofRBP4are prominent in obese

andT2D individualsandcorrelatewith INS resistance in theperiph-

ery (Yanget al., 2005). The sameRBP4-expressingbcells (clusters

1 and 5) also express FFAR4.FFAR4agonists havebeen shown to

induce INS release inmouse pancreatic islets (Moran et al., 2014).

b cell clusters 1, 2, and 3 were characterized by expression of

ID1 and ID3, regulators of basic helix-loop-helix (bHLH) transcrip-

tion factors (Ling et al., 2014). To the best of our knowledge, these

subgroups of b cells have never been described before.

Finally, we identified two clusters of acinar cells (Figure 4C).

Cells belonging to cluster 1 were characterized by elevated

expression of inflammatory related genes (Figure 4C; Table S4),

including components of the MHC class II molecule, e.g.,

CD74,HLA-DMA,HLA-DRA, andHLA-DRB1 (Figure 4C). Cluster

1 also expressed pro-inflammatory chemokines (e.g., CXCL1,

CXCL6, CCL2, CCL20, and CX3CL1), cytokines (IL17C and

IL18), and transcription factors and immune regulators (STAT1,

NFKBIA,NFKBIZ,HIF1A, SOX4, andONECUT2). Cells of cluster

2 expressed higher levels of key acinar genes encoding secretory

digestive enzymes (e.g., CEL, CELA2A, and AMY) and important

transcription factors that regulate expression of digestive

enzymatic genes including PTF1A and RBPJL (Figure 4C).

Gene Expression Alterations with Increased Obesity
In order to investigate gene expression signatures relating to

obesity, we correlated the expression of each gene with donor

BMI for the five healthy males, separately per cell type (see Sup-

plemental Experimental Procedures; Table S5). Several of the

genes correlating with BMI have earlier been implicated in
types for the ten donors (columns). Labels indicating the cell type and donor are

sion values, where each cell in the heatmap contains the distribution of values

ells from the six cell types for the ten donors (columns). Blue and red colors

ctively.

ctal cells across the six cell types for the ten donors (columns). The geneswere

cell types. The heatmap was generated as in (A).

the pancreatic stellate (PSCs) and the endothelial cells (rows). The results were

a log2 fold change in expression of at least seven between the two groups are

lues, where each cell in the heatmap contains the distribution of values across
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A

B

C

Figure 4. Uncovering Subtypes of Endo-

crine and Exocrine Cells

(A) (Left) Two-dimensional t-SNE representation of

all a cells (n = 886, 10 donors) using donor-

normalized expression values of the 500 most

variable genes in a cells. Colored according to

cluster assignments. (Right) Heatmap illustrating

the top DE genes (columns) between the two a cell

clusters (rows). The colors in the heatmap corre-

spond to standardized log2 expression values,

where each cell in heatmap contains the distribu-

tion of values across the cells in each cluster.

(B) (Left) Two-dimensional t-SNE representation of

b cells (n = 270, 10 donors) using donor-normal-

ized expression values of the 50 most variable

genes in b cells. (Right) t-SNE representation of

cells, colored according to expression (log2RPKM)

of DE genes among the five clusters.

(C) (Left) Two-dimensional t-SNE projection of

acinar cells (n = 185, 10 donors) using donor-

normalized expression values of the 100 most

variable genes in acinar cells. (Right) Heatmaps

illustrating the top DE genes (columns) per

cell cluster (rows). The heatmap was generated

as in (A).
obesity or diabetes progression. Expression of the PCSK1 inhib-

itor (PCSK1N) showed a strong positive correlationwith BMI in all

endocrine cell types (Figures 5A and 5B). PCSK1 converts pro-

hormones to active hormones with substrates such as INS,

SST, and enkephalins. Altered function of PCSK1 is associated

with obesity both in mouse and human (Nead et al., 2015). In

addition, transgenic mice overexpressing PCSK1N have an

obese phenotype (Wei et al., 2004). Analysis also revealed that

SCG5 was negatively correlated with BMI in all cell types (Fig-

ure 5B). SCG5 is a molecular chaperone of PCSK2, the enzyme

responsible for cleavage of pro-GCG to GCG and also involved

in pro-IAPP to IAPP processing (Braks and Martens, 1994;

Wang et al., 2001), implicating an a and b cell-related dysfunc-

tion in GCG and IAPP processing, respectively, correlating with

increasing BMI. Interestingly, PPDPF expression in a, b, d, and

ductal cells was positively correlated with BMI (Figure 5A).

PPDPF regulates exocrine pancreas development in zebrafish,

where overexpression leads to relative expansion of the exocrine
600 Cell Metabolism 24, 593–607, October 11, 2016
pancreas (Jiang et al., 2008). Finally, we

noted that CALM2 was negatively corre-

lated with BMI in endocrine (a, b, g, and

d) and ductal cells (Figures 5A and 5B),

which is of interest given the role of

calmodulins in calcium sensing and

signaling, e.g., in b cells and INS release

(Gilon et al., 2014). Naturally, previous

bulk analyses should, in principle, be

able to identify genes that are correlating

to BMI in all (or the most abundant) cell

types, whereas those specific to partic-

ular cell types would not be easily

revealed without single-cell resolution.

This is apparent when comparing correla-

tions obtained with all cells to correlations
based on separate cell types (Figure 5C). For example, positive

correlations of INS, PPY, and SST in b, g, and d cells were stron-

ger in cell-type resolved analyses. Interestingly, several genes

with previous links to obesity and diabetes were correlating

with BMI in the cell-type resolved analyses, but were not corre-

lating in the bulk analyses (Figure 5C).

Gene Expression Alterations in T2D
Contrasting the transcriptomes from healthy and T2D individuals

in each cell type independently identified significant (adjusted

p value % 0.01) alterations in gene expression in endocrine

and exocrine cell types (Figure 6A; Table S6). INS deficiency in

T2D can result from decreased b cell mass and reduced INS pro-

duction in remaining b cells. Three out of four T2D donors had

lower numbers of b cells (Figure S3A), and we detected signifi-

cantly lower INS mRNA levels in T2D b cells (Figure 6B). The

most significant difference in b cells was a downregulation of

FXYD2 in T2D individuals (Figure 6B). FXYD2 encodes the
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gamma subunit of an Na,K-ATPase. Mice lacking FXYD2 are

more glucose tolerant, have a substantial pancreatic b cell hy-

perplasia, and have increased plasma INS levels (Arystarkhova

et al., 2013). In line with these experiments, overexpression of

FXYD2 in renal cells reduced the rate of cell division (Wetzel

et al., 2004). Our data also revealed several important genes

that were upregulated in T2D b cells, e.g., GPD2 and LEPROTL1

(Figure 6B). GPD2 is one of two key enzymes of the NADH shut-

tles into mitochondria and aids the subsequent ATP production

and glucose-induced activation of mitochondrial metabolism

and INS secretion in b cells (Eto et al., 1999). Moreover,

LEPROTL1 is also known as endospanin-2. Overexpression of

the LEPROTL1 protein decreases the surface localization

of the leptin receptor (Séron et al., 2011) and the growth

hormone receptor (GHR) in cells (Touvier et al., 2009), thereby in-

hibiting the hormonal actions. Endospanin-1, a paralog of

LEPROTL1with similar activity (Séron et al., 2011), was recently

shown to be upregulated in obese mice, and silencing of the

gene restored central leptin responsiveness in these mice, lead-

ing to body weight loss (Vauthier et al., 2014).

We also observed transcriptional alterations in a cells of T2D

individuals. RGS4 has been shown to be a negative regulator

of GSIS in mouse MIN6 insulinoma cells via its inhibitory actions

on the M(3) muscarinic receptor (CHRM3) (Ruiz de Azua et al.,

2010). The expression of RGS4 and CHRM3 in pancreas has

not been established before and we detected them significantly

enriched in a and g cells, respectively (Table S2). We found a

significantly decreased expression of WFS1 in T2D a cells (Fig-

ure 6B; Table S6), in agreement with a recent study (Taneera

et al., 2012).

Finally, we used gene set enrichment analysis (GSEA) to inves-

tigate whether transcriptional alterations in T2D were enriched for

specific functional categories or previously defined gene signa-

tures. The analysis revealed that genes responsible for energy

metabolism in mitochondria and protein synthesis were signifi-

cantly downregulated in most cell types in T2D individuals (Fig-

ure6C;TableS7). In contrast, among thegenes foundupregulated

in T2D, we observed, for example, enrichment for apoptosis, dia-

betic nephropathy, and cytokine signaling (Figure 6C).

Functional Validation of GLP1R
GCG-like peptide receptor 1 (GLP1R), expressed in b and d cells

(Figure 7A), is of interest for targeted diabetic treatment due to

the ability of GLP1R agonists to induce GSIS in b cells (Nadkarni

et al., 2014). Moreover, GLP1 analogs (e.g., exenatide and lira-

glutide) are commonly used anti-diabetic drugs (Montanya,

2012). To validate the functionality of the isolated human islets,

we measured both the INS response to exenatide treatment
Figure 5. Gene Expression Correlates to Donor Physiological Charact

(A) Heatmap of gene expression associated with BMI in a cells (n = 417, healthy m

magnitude are ranked in descending order of coefficient. Cells (columns) are ord

(zero) and maximum (log2RPKM = 14) expression, respectively. The correspondin

(based on the cells from healthy male donors) are displayed on the right of the h

(B) Scatterplots showing the expression levels of four genes with a robust corre

between the expression and BMI, where m is the slope and b the y-intercept.

(C) Scatterplots of Spearman’s correlations of genes toward BMI computed base

(y axis). Colored are the genes with an absolute correlation coefficient of at least

correlation computed using all cells.
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and the GLP1R protein expression. Immunohistochemistry de-

tected GLP1R solely in the endocrine islets and predominantly

in b cell enriched regions (Figure 7B). Additionally, GLP1R+

cellular fractions (FACS) were significantly enriched for b and

d cells (Figure 7C). Finally, we observed a significant increase

in INS release from islets treated with 10 nM exenatide in high

glucose conditions, regardless of whether the islets originated

from healthy or T2D donors (Figure 7D). We conclude that the

islets are functional in terms of GLP1/GLP1R signaling and that

GLP1R protein expression was in agreement with the single-

cell RNA-seq data.

DISCUSSION

With the development of single-cell RNA-seq, high-throughput

profiling of transcriptomes across cell types, states, and sub-

populations has become feasible (Sandberg, 2014). Here, we

generated a unique resource of 2,209 full-length, single-cell tran-

scriptomes from cultured pancreatic islets of ten donors. Our

data are available through a user-friendly and searchable web

portal (http://sandberg.cmb.ki.se/pancreas). Unbiased analyses

of the data allowed the identification of cell types, demonstrating

that cell-type-specific gene expression programs were the

strongest determinant of the cellular transcriptomes. Impor-

tantly, due to the large number of profiled cells, we could simul-

taneously define the transcriptional signatures of both abundant

and rare cell types in the pancreas, including d, g, ε, stellate,

immune, and endothelial cells.

Despite the few numbers of scattered d and ε cells within the

islets of Langerhans, their transcriptomes hinted that they may

have important, previously unrecognized roles in islet homeosta-

sis.Withmultiple receptors, d cells could sense and react to a va-

riety of hormonal signals. First, they express the GHRL receptor,

which enables them to receive input locally from GHRL-produc-

ing ε cells and/or systemically from GHRL release from the intes-

tine during digestion.

In our transcriptional profile of d cells, we also uncovered that

they uniquely express the leptin receptor. Because leptin is

released predominantly from adipocytes (Fasshauer and Blüher,

2015), the initial pancreatic response to leptin levels could be

mediated through d cells. In this respect, it is also tempting to

speculate whether the scattered positions of d cells within hu-

man islets of Langerhans enable them to integrate both para-

crine and endocrine factors before using SST and other factors

(van der Meulen et al., 2015) to signal to their immediate

environment.

After assigning cells to cell types, it was apparent that cells

within cell types grouped according to donor (Figure S6). Only
eristics

ale donors). Genes (rows) with a positive or negative correlation of at least 0.7 in

ered in descending order of BMI. Blue and red colors correspond to minimum

g Spearman’s correlation coefficients computed for the genes in each cell type

eatmap.

lation with BMI. The fitted curve in each scatter shows the linear regression

d on overall expression in donors (x axis) or for the specific indicated cell type

0.6 within a particular cell type that is also at least 10% higher in respect to the

http://sandberg.cmb.ki.se/pancreas
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Figure 7. Functional Analysis of GLP1R

(A) Boxplot showing expression of GLP1R in a, b, g, d, ε, acinar, and ductal cells, with color shadings representing different donors. Median and mean are

shown as a line and circle, respectively. Edges of each box indicate the 25th and 75th percentiles. Bars extend to extreme data points and outliers are plotted as

gray dots.

(B) Immunohistochemistry of pancreatic tissue for INS (brown) and GCG (red) (top left and zoom-in on top right), or GLP1R (brown) (lower left and zoom-in on

lower right).

(C) (Left) FACS analysis of islet cells stainedwith fluorescently conjugatedGLP1R antagonist. Gate shows fraction of the total islet cells positive for GLP1R. (Right)

Pie charts with the percentage of a, b, d, and other cells in FACS analyses of total islet cells (upper) or the GLP1R+ cellular fraction (lower), labeled with INS, GCG,

and SST antibodies.

(D) Dot plots showing GSIS of human islets from one healthy (left) and one T2D (right) donor treated with 16.7 mM glucose ± 10 nM Exenatide (Ex4).
after correcting for donor differences were we able to identify

subpopulations and cellular states. The large number of profiled

cells allowed us to investigate the heterogeneity within each cell

type. Interestingly, we unraveled distinct sub-clusters of endo-

crine and exocrine cells, including proliferating a cells and sub-

sets of b cells with combinatorial expression of transcriptional

regulators. Moreover, we identified a group of acinar cells ex-

pressing MHC class II genes (CD74, HLA-DMA, HLA-DRA,

HLA-DRB1, and HLA-DRB5). MHC class II molecules are pre-

dominantly expressed by professional antigen-presenting cells.

In addition, peripheral cells in close contact with environmental
Figure 6. Altered Gene Expression in Cells from T2D Individuals

(A) Bar graphs showing the number of DE genes between cells from healthy and

(B)Heatmapswith theDEgenesbetweenhealthyandT2Da (left) andbcells (right). La

in the heatmap correspond to standardized log2 expression values, where each cell

(C) Heatmap of the enriched gene sets (using GSEA) within the a, b, g, d, acina

according to the adjusted p values (�log10), with red and blue colors correspond

Sets with no significant enrichment are indicated with white color.
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cues for immunological reactions (e.g., intestinal epithelial cells,

airway epithelial cells, and keratinocytes) have been shown to

express MHC class II molecules (Kambayashi and Laufer,

2014). It is possible that the antigen-presenting acinar cells are

localized to pancreatic areas in closer contact with environ-

mental cues.

For metabolic diseases, it is expected that single-cell tran-

scriptome analyses can be paradigm changing. The single-cell

resolution allows for the parallel identification of disease-associ-

ated transcriptional alterations in each cell type independently

(Sandberg, 2014). Moreover, although islets or tissues in health
T2D donors per cell type.

bels indicating thediseasestatusandsexof thecells are shownonthe top.Colors

in the heatmap contains the distribution of values across the cells of each group.

r, and ductal cell types for healthy and T2D groups. The heatmap is colored

ing to enrichments among genes up- and downregulated in T2D, respectively.



and disease vary in cellular composition, single-cell transcrip-

tomics circumvents these challenges by first assigning cells to

cell types, which then allows comparisons in a cell-type resolved

manner. Our analyses revealed potential compensatory actions

for the lower b cell mass in T2D, including the downregulation

of FXYD2 and upregulation of GPD2. It is intriguing that mice

lacking FXYD2 had a pronounced pancreas phenotype with

increased proliferation of b cells (Arystarkhova et al., 2013).

The downregulation of FXYD2 could indicate an effort to stimu-

late b cell proliferation also in humans, but whether the function

of FXYD2 is shared in mice and men needs to be established.

Moreover, elevated levels of GPD2 in T2D b cells could increase

INS secretion via increase of NADH shuttles into mitochondria.

Finally, aberrations in mitochondrial respiratory functions were

also prominent in the functional gene enrichment results for

several cell types in the pancreas from the T2D donors.

In this study, we generated a resource of single-cell transcrip-

tomes from healthy and T2D donors that should be of great value

to the research community. Our computational analyses demon-

strated the power of cell-type resolved analyses and revealed

cell-type-specific gene expression programs, subpopulations,

and transcriptional alterations in T2D. Similar single-cell ana-

lyses of other metabolic tissues and pathologies will significantly

advance our understanding of heterogeneity within metabolic

tissues in health and disease.

EXPERIMENTAL PROCEDURES

Single-Cell RNA-Seq of Pancreatic Islets

Human tissue and primary islets were purchased fromProdo Laboratories Inc.,

providing islets isolated from donor pancreases obtained from deceased indi-

viduals with research consent fromOrgan Procurement Organizations (OPOs).

The use and storage of human islets and tissue samples were performed in

compliance with the Declaration of Helsinki, ICH/Good Clinical Practice and

was approved by the independent Regional Ethics Committee. Human islet

samples (85%–95% pure) were cultured for 4 days in complete Prodo Islet

Media Standard PIM(S) to recover after arrival. Islets were dissociated and

distributed by FACS into 384-well plates. Single-cell RNA-seq libraries were

produced with the Smart-seq2 protocol as previously described (Picelli

et al., 2014). Sequencing was carried out on an Illumina HiSeq 2000 generating

43 bp single-end reads.

RNA-Seq of Whole Islets

RNAwas isolated fromwhole islets from seven donors (healthy donors H3, H4,

and H6 and all T2D donors) using QIAGEN RNeasy Microkit with on-column

DNase digestion (QIAGEN) and processed with Illumina TruSeq Stranded

mRNA Library Prep Kit. Indexed libraries were pooled and sequenced

(paired-end 75 bp) on an Illumina NextSeq 500.

Single-Molecule mRNA Fluorescence In Situ Hybridization

mRNAs were visualized by single-molecule fluorescence in situ hybridization

(smFISH) using the RNAscope Fluorescent Multiplex Kit (Advanced Cell

Diagnostics, Inc.) on formalin-fixed, paraffin-embedded (FFPE) sections of

pancreas from four healthy donors. The following RNAscope probes were

used: Hs-GCG (ACD556741), hs-SST (ACD310591), hs-FAP (ACD411971),

and hs-LEPR (ACD406371). Images were acquired on a Nikon A1R confocal

microscope. See Table S3 for detailed information about how each cell was

counted together with the statistics per slide and donor.

Processing of RNA-Seq Data

Sequence reads were aligned toward the human genome (hg19 assembly) us-

ing STAR (v2.3.0e), and uniquely aligned reads within RefSeq gene annota-

tions were used to quantify gene expression as RPKMs using rpkmforgenes

(Ramsköld et al., 2009).
Cell-Type Classification

Cell-type classification was defined in a two-dimensional t-SNE space that

was constructed using a set of genes with highest biological variation. The

assignment of the formed clusters to cell types was performed based on the

expression levels of hormones or other known marker genes. The cell-type

classification of all cells analyzed is included in Table S1.

Differential Expression Analysis

Differential expression analysis between cell types (a, b, g, d, acinar, and

ductal cells) was performed using one-way ANOVA with log2-transformed

expression data from the five healthy male donors.

Analysis of Heterogeneity in the Cell Types

To investigate heterogeneity within cell types, single-cell expression data of

each cell type independently was ranked based on biological variability, and

using this as input, the cells were projected onto two dimensions with the

t-SNE. In all cases, the obtained embedding was dominated by donor differ-

ences (Figure S6). We applied a parametric empirical Bayesian framework to

remove donor differences and repeated the t-SNE dimensionality reduction

using the adjusted expression values.

Analyses of Gene Expression against BMI

Spearman’s r coefficients were calculated separately for each gene and cell

type based on the log2-transformed expression values. The results were

adjusted using Benjamini-Hochberg to control the false discovery rate

(a = 0.01). The five healthymale donors were used, since there is a positive cor-

relation between BMI and sex in our donors (r = 0.49). The lists containing

genes with an absolute correlation coefficient with BMI greater than 0.5 are

included in Table S5. We also generated gene correlations using all cells

(not separated per cell type) from the same five male donors to simulate the

correlations one would obtain in ‘‘whole-islet’’ analyses.

Differential Expression Analysis between Cells from Healthy and

T2D Donors

We identified statistically significant gene expression differences between

healthy and T2D individuals for the major cell types: a, b, g, d, acinar, and

ductal cells. Non-parametric one-way ANOVA (Kruskal-Wallis test) was used

after dividing samples into four groups based on disease status (healthy or

T2D) and sex. Bonferroni adjustment was used for the multiple comparison

correction and the Benjamini-Hochberg method to control the false discovery

rate at significance level a = 0.01. The genes that showed significant differ-

ences in respect to sex were excluded from the results in both tests in order

to identify the differentially expressed (DE) genes related to T2D.

GSEA in Cell Types

GSEA was used to examine whether the genes identified as DE between the

healthy and T2D cells for each cell type are members of categories with spe-

cific functions. We used the pre-ranked version, providing the difference in

median expression values between the healthy and T2D cells as the gene

ranking metric. The significant categories (FDR % 1%) that are enriched in

each cell type for the two conditions are reported in Table S7.
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Figure S1. Functionality of pancreatic islets and sequence library statistics. Related to 
Experimental Procedures. 
(A) Dot plots showing glucose-stimulated insulin secretion (GSIS) of human islets after 6 to 8 days in 
culture to assess functionality. (B) FACS analysis and sorting of dissociated human islets. Cells were 
distinguished from debris in a forward scatter (FSC)-side scatter (SSC) plot followed by discrimination 
of aggregates using FSC-H and FSC-A. Exclusion of nonviable cells was performed after staining cells 
with 7-aminoactinomycin D (7AAD). (C) Boxplots showing the percentage of sequenced reads that 
aligned uniquely to human genome, multi-mapping or non-mapping for each donor. (D) Boxplots 
showing the percentage of uniquely aligned reads that overlap annotated RefSeq exons, introns or 
between gene annotations for each donor. (E) Boxplots with the number of genes expressed across the 
cells from each donor using two different expression thresholds (RPKM≥1 and RPKM≥5). (F-H) 
Boxplots illustrating the mapping statistics as in (C-E) respectively, but cells are grouped according to 
the identified cell types.  
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Figure S2. Filtering of single-cell RNA-sequencing data. Related to Figure 1. 
(A) Boxplots showing the number of genes expressed across the cells from “co-expressing” endocrine, 
endocrine and exocrine cell types using two different thresholds (RPKM≥1 and RPKM≥5). The “co-
expressing” cells have a larger number of genes expressed compared to the other endocrine cells, in line 
with the potential sorting of cell doublets. (B) Boxplots showing the number of genes expressed across 
the cells from unclassified endocrine, endocrine and exocrine cell types using two different thresholds 
(RPKM≥1 and RPKM≥5). The unclassified endocrine cells express very few genes, which could have 
resulted from failures to accurately amplify the cellular RNA or that only parts of a cell was deposited 
into these wells of the plate during FACS distribution. Both the “co-expressing” and unclassified 
endocrine cells were excluded from the analyses of the paper. (C) Scatter plots showing the expression 
of the four endocrine hormones: GCG (blue), INS (orange), PPY (red) and SST (green), across α, β, γ and 
δ-cells. In each graph, cells (x-axis) are sorted based on decreasing expression of the cell-type specific 
hormone. (D) Bars showing the fraction of cells in which the expression of at least one hormone of other 
cell types is above the corresponding threshold (log2RPKM). Bars denoted with asterisk (*) show the 
number of cells in which the expression of at least one hormone of other cell types is higher than the 
cell-type specific hormone expression. Calculations were performed considering only cells from the α, 
β, γ and δ cell types. Colors indicate the fraction of cells in each cell type. Fractions were computed using 
the number of all sequenced cells (n=2,209).  
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Figure S3. Cell-type composition in single-cell sequencing, tissue and dissociated islets. Related to 
Figure 1. 
(A) Table with the number of cells for each cell type and donor. (B) (Left) Pancreatic tissue from a 
healthy (H3) and a T2D (T2D1) donor, respectively. (Right) Isolated islet from the two donors. 
Immunohistochemistry (IHC) of pancreatic tissue and isolated pancreatic endocrine islets stained for 
glucagon (red) and insulin (brown), labeling α and β-cells, respectively. (C) FACS analysis of human 
islet cells labeled with anti-chromogranin A, anti-c-peptide, anti-somatostatin and anti-glucagon 
antibodies. Percentage of each parental population is indicated in gates for each graph. (D) The relative 
change in abundance of α, β, γ and δ cell types based on islet and single-cell RNA-sequencing material 
from three healthy and two T2D donors in respect to the tissue. Tissue and islets were stained with IHC 
and quantified with BioPix software. FACS-sorted single pancreatic cells were analyzed using single-
cell RNA-sequencing. Y-axis shows relative change of expression in relation to the tissue signal for the 
different cell types and donors. For the single-cell RNA-sequencing data, α, β, γ and δ-cells from 
individual donors were grouped and quantified based on their gene expression profiles in relation to all 
cells (all cells) or only the endocrine part (endocrine cells) of the donors. 
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Figure S4. Comparison of single-cell and whole-islet RNA-sequencing data. Related to 
Experimental Procedures. 
(A) Scatter plots showing the gene expression levels averaged across single cells (x-axis) against the 
whole-islet RNA-sequencing data (y-axis) of the same individual. Values are in log2-scale. Spearman’s 
correlation (ρ) between the expression levels of the two methods is indicated in each graph. Colors 
correspond to the density of the data (red: sparse, pink: dense). (B) Investigating the (minimum) number 
of single cells needed to obtain a reliable view of the whole islet. Boxplots showing the Spearman’s 
correlation coefficients between single-cell and bulk expression data, computed using different number 
of single cells. For each different number of cells tested, 200 iterations were performed in which cells 
were selected at random from each individual donor and compared with the corresponding bulk data. 
Data is shown for 3 donors (H6, T2D1 and T2D2). 
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Figure S5. FACS analysis of Pdx1 and Nkx6-1 positive β-cells and assessment of cell-type 
enriched expression inferred from whole-islet data. Related to Experimental Procedures. 
(A) FACS analysis of dissociated human islets cells labelled with anti-c-peptide, anti-chromogranin-A, 
anti-Nkx6-1 and anti-Pdx1 antibodies. The β-cell population was distinguished in the double-positive 
scatter plots for c-peptide and chromogranin-A (top left FACS graph). Nkx6-1 and Pdx1 positive scatters 
coincide with the c-peptide positive β-cell population (top right and bottom left FACS graphs). The same 
cell population is also Nkx6-1 and Pdx1 double-positive (bottom right FACS graph). (B) Correlation 
between cell type hormone expression and gene expression using the data published in Taneera et al., 
2012. Spearman’s correlation coefficients are shown for the top 25 genes in each cell type with the 
corresponding hormone or marker gene (GCG for α, PPY for γ, SST for δ, REG1A for acinar and KRT19 
for ductal top genes). The rank obtained from sorting the genes according to correlation magnitude 
(absolute) in descending order and the adjusted p-value for each gene are displayed on the right of the 
heat maps. Colors in the heat map correspond to Spearman’s correlation coefficients (ρ). 
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Figure S6. Sub-clustering of cells before and after donor normalization. Related to Figure 4. 
Projection of (A) α-cells, (B) β-cells, (C) acinar cells, (D) γ-cells (E) δ-cells and (F) ductal cells onto 
two dimensions using t-SNE. For each cell type, the two embeddings shown on the left and right were 
obtained using the expression values (log2RPKM) of the most variable genes, before and after ComBat 
adjustment respectively. The colors correspond to the individual donors in order to illustrate the removal 
of donor effect on the resulting clusters following batch correction. 
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Figure S7. Expression of proliferation-associated genes. Related to Figure 4. 
Scatter plots showing the expression of proliferation-associated genes across the six cell types: α, β, γ, δ, 
acinar and ductal cells. In all graphs, cells (x-axis) are sorted based on decreasing expression of TOP2A 
in each cell type. Colors correspond to cell types. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SUPPLEMENTAL TABLES 
 
Table S1. Cell-type identification and gene expression. Related to Figure 1. 
This table provides details on the identification of genes with most biological variation, genes with 
highest expression in cell types, donors and whole-islet RNA-sequencing of donors. Additionally, 
it contains the cell-type composition per donor and general statistics of each processed cell.  
 
(supplied as Excel file: Supplemental Table 1.xlsx) 
 
Table S2. Differential expression analysis of cell types. Related to Figure 2. 
This supplemental table lists the genes identified as significantly cell-type enriched in each of the 
cell types (as separate sheets in the Excel file).  
  
(supplied as Excel file: Supplemental Table 2.xlsx) 
 
Table S3. Detailed analyses of single-molecule RNA-FISH images. Related to Figure 2. 
Detailed information of the quantification of expression based on the RNA in situ hybridization 
experiments on FAP/GCG in α-cells and LEPR/SST in δ-cells. It summarizes the quantifications of 
multiple human islets in sections obtained from several donors. The images and details of the 
counting of each cell in each image are provided in the additional sheets in the Excel file (names by 
donor and RNA in situ targets).  
    
(supplied as Excel file: Supplemental Table 3.xlsx) 
 
Table S4. Differential expression analysis of the subpopulations within cell types. Related to 
Figure 4. 
Lists of the genes that were identified as significantly differentially expressed between 
subpopulations within cell types. Results for each cell type are provided in separate sheets in the 
Excel file (α, β and acinar cells; the cell types for which we could identify robust subpopulations).
            
(supplied as Excel file: Supplemental Table 4.xlsx) 
 
Table S5. Correlation of gene expression and BMI in the cell types. Related to Figure 5. 
Details on the correlations of gene expression with BMI either for cells of each cell type or using 
all cells per donor. 
 
(supplied as Excel file: Supplemental Table 5.xlsx) 
 
Table S6. Differential expression analysis between healthy and T2D cells in each cell type. 
Related to Figure 6. 
Lists of the genes identified as differentially expressed between healthy individuals and type 2 
diabetes.  
  
(supplied as Excel file: Supplemental Table 6.xlsx) 
 
Table S7. Gene set enrichment analysis (GSEA). Related to Figure 6. 
Detailed results from the Gene Set Enrichment Analysis (GSEA) performed on each cell type that 
are listed in separate sheets in the Excel file. 
  
(supplied as Excel file: Supplemental Table 7.xlsx) 
 
 
 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Human tissue collection 
Human primary islets from 6 healthy and 4 type 2 diabetic diseased donors were purchased from Prodo 
Laboratories Inc (Irvine, CA, USA) providing islet isolated from donor pancreases obtained with 
research consent from Organ Procurement Organizations (OPOs) (Kühtreiber et al., 2010) and kept in 
Prodo Islet Media Standard (PIM(S)) complete. The use and storage of human islets and tissue samples 
was performed in compliance with the Declaration of Helsinki, ICH/Good Clinical Practice and was 
approved by the independent Regional Ethics Committee (Gothenburg, Sweden). 
 
Dissociation of islet cells 
Human islet samples (85–95% pure) were cultured for 4 days in a 37°C incubator with 5% CO2 in PIM 
complete media to recover after arrival. Media was changed every second day. For preparation of a 
single-cell suspension, 300 islets were identified using a microscope and handpicked to a tube containing 
fresh culture media. Islets were allowed to sediment on ice for 5 minutes or gently centrifuged if 
necessary. Media was removed carefully and 1 mL pre-warmed TrypLE Express (Life Technologies, 
Darmstadt, Germany) was added. The islets were incubated for 5 minutes in a water bath at 37°C and 
triturated by resuspending 4-5 times during incubation. Remaining cell aggregates were removed with a 
40 µm filter. Dissociated islet cells were washed once with culture media before FACS cell sorting. 
 
FACS analysis of endocrine cells 
Dissociated human islets cells were fixed with Fixation buffer I (BD Biosciences) at 37°C for 10 minutes. 
Cells were washed in DPBS without calcium and magnesium and permeabilized with Perm/Wash buffer 
(BD Biosciences). Cells were incubated over night at 4°C with primary antibodies, rabbit anti-
chromogranin A (Abcam, Cambridge, UK), rat anti-c-peptide (Developmental Studies Hybridoma bank, 
The University of Iowa), rabbit anti-insulin (Cell Signaling technology, Beverly, MA), goat anti-
somatostatin (Santa Cruz) and mouse anti-glucagon (Abcam). For labeling of GLP1R, we have used 
BODYPI FL dye tagged GLP1R antagonist (Exendin 9-39) conjugate produced in a similar way as 
previously described (Montrose-Rafizadeh et al., 1997). After washing twice in BD Perm/wash buffer, 
cells were stained with secondary antibodies, donkey anti-rabbit alexa fluor 350, donkey anti-rat alexa 
fluor 488, donkey anti-goat alexa fluor 680 and donkey anti-mouse alexa fluor 594 (Invitrogen, Carlsbad, 
CA). Cells were washed twice in BD Perm/wash buffer and resuspended in DPBS without calcium and 
magnesium containing 2% FBS and 5mM EDTA. Analysis was performed on a BD LSR Fortessa.  
 
FACS single-cell sorting 
Dissociated primary islets cells were resuspended in 1mL DPBS without calcium and magnesium 
containing 2% FBS and 5mM EDTA (cell density should not exceed 1.5x106/mL). Dead cells were 
stained with 7-AAD solution (BD Biosciences, San Jose, CA, USA) 5 minutes prior to fluorescence-
activated cell sorting (FACS) analysis and cell sorting using a BD FACS AriaII (BD Biosciences). FACS 
sorting was done using a ceramic nozzle with a size of 100 µm. Cell doublets were excluded by gating 
singlets on FSC-H and FSC-A. By using a single-cell discrimination mask viable individual islet cells 
were sorted and collected in FrameStar 384-well plates (4titude, Surrey, UK) containing 2,3 µL lysis 
buffer (0.4% TritonX100 (Sigma-Aldrich), 1 U RNase inhibitor (Clontech), 2,5 µM Smart dTVN30 
oligos (Picelli et al., 2014), 4mM dNTP (Thermo scientific, Waltham, MA USA), 0,1 µl (H1 donor) or 
0,025 µl (all other 9 donors) of 1:40 000 dilution ERCC RNA spike-in mix (Ambion, Life Technologies)). 
Sample plates were kept at -80°C for future preparation into Smart-seq2 cDNA libraries. 
 
Image-based validation of single-cell sorting 
Cell-permeable Hoechst 33342 diluted 1:2000 (ThermoFisher, Invitrogen) and 5 µM of the vital dye 
calcein-AM (Invitrogen) were incubated with the cells for 30 minutes prior to FACS sorting (for details 
see FACS single-cell sorting, Experimental Procedures). Single cells, or in control wells hundreds of 
cells, were sorted into 384-well plates (Greiner Bio-One) and imaged using an ImageXpress automated 
fluorescence microscope fitted with a 4x S-fluor objective (3,2 pixels/µm). Well images were masked 
and segmented for cell counting using MetaXpress image analysis software (Molecular Devices, 5.3.0.1). 
 
Glucose-stimulated insulin secretion (GSIS)  
Glucose-stimulated insulin secretion (GSIS) of human islets from different donors was performed after 
6-8 days in culture. Briefly, islets were washed in 2.8 mM Krebs Ringer phosphate hepes (KRH) buffer. 



Five islets/well were transferred into a 96 well plate containing KRH buffer with 2.8 or 16.7 mM glucose. 
When testing the effect of a GLP1 receptor agonist, 10nM of exenatide (Ex4) (Bachem, Bubendorf, 
Switzerland) was added to KRH buffer containing 16.7mM glucose. Secreted insulin was measured in 
six replicates of each condition after 1 hour of incubation. Human Insulin ELISA (Mercodia AB, Uppsala, 
Sweden, article number 10-1113-01) was run according to manufacturer's protocol.  
 
Immunohistochemistry 
Histological staining was performed on 4 µm thick paraffin-embedded pancreatic tissue sections or 
isolated pancreatic islets using an IntelliPath FLX automated immunostainer (Biocare) as described 
previously (Walsh et al., 2014). Primary antibodies, rabbit anti-secretogranin III (Atlas antibodies, 
Stockholm Sweden) diluted 1:350, mouse anti-glucagon (Sigma-Aldrich, Stockholm, Sweden) diluted 
1:8000, guinea pig anti-insulin (Dako, Glostrup, Denmark) diluted 1:8000 and rabbit anti-GLP1R 
(Abcam), diluted 1:1000 was incubated for 1 hour following 1 or 2 steps of Polymer kit (Biocare Medical, 
Concord, CA, USA). Following anti-insulin labeling a secondary biotinylated donkey anti-Guinea Pig 
antibody (Jackson Laboratory, Bar Harbor, Maine, USA) was used. This was followed by 4+streptavidin 
horse radish peroxidase labeling for 10 minutes using 3–3’-diaminobenzidine as the chromogen (Biocare 
Medical). Stained sections were scanned and digitized at a magnification of ×20 with the use of the Carl 
Zeiss MIRAX slide scanner (Zeiss, Goettingen, Germany). For calculation of the region of interest and 
the area of staining the whole section from each donor was analyzed using BioPix Image software 
(BioPix, Gothenburg, Sweden).  
 
Preparation and sequencing of single-cell RNA-sequencing libraries 
Single-cell RNA-sequencing libraries were produced in half the reaction volumes compared to the Smart-
seq2 protocol previously described (Picelli et al., 2014). The protocol was executed with either a liquid 
handling robot (Biomek FXP, Beckman Coulter) or by manual preparation. Adjustments to the original 
Smart-seq2 protocol were the following: cDNA was synthesized with Superscript II (Invitrogen) and 
2µM TSO strand switch oligo and further amplified with ISPCR primers at a concentration of 0.08µM 
with KAPA High Fidelity Hot Start polymerase (Kapa Biosystems). The cDNA was purified using Sera-
Mag magnetic SpeedBeads, carboxylate-modified (GE Healthcare Biosciences) in the presence of 19.5% 
PEG8000 at a 0.8:1 ratio beads:cDNA. The quality of the cDNA was assessed for random samples with 
an Agilent 2100 Bioanalyser and High Sensitivity DNA Chip (Agilent Technologies Inc.). Tn5 
transposase directed tagmentation of 0.5-1 ng cDNA was performed with recombinant Tn5 in 10% 
PEG8000, 10mM TAPS-NaOH (pH 8.3), 5mM MgCl2 (Picelli et al., 2014b). The Tn5 enzyme was 
removed from the DNA with 0.04% SDS. Sequencing libraries were generated with Nextera XT Index 
kit v2 (Illumina Inc.) and KAPA High Fidelity amplification (Kapa Biosystems). Sequencing libraries 
were multiplexed with 192 cells in each and purified with Sera-Mag magnetic SpeedBeads, carboxylate-
modified (GE Healthcare Biosciences) in the presence of 24% PEG8000 at 1:1 ratio beads:DNA. The 
quantity and quality of the sequencing libraries were analysed with an Agilent 2100 Bioanalyser and 
Qubit 2.0 Fluorometer (Invitrogen). Sequencing was carried out with an Illumina HiSeq 2000 generating 
43 bp single-end reads.  
 
RNA-sequencing of whole islets 
RNA was isolated from seven whole islets (healthy donors H3, H4 and H6 and all T2D donors) using 
Qiagen RNeasy microkit with on-column DNAse digestion (Qiagen, Hombrechtikon, Swizerland). The 
RNA samples were processed with Illumina TruSeq Stranded mRNA Library prep kit following the 
manufacturer’s recommendations. Libraries were quantified with Qubit HS (ThermoFisher, MA, USA) 
and Fragment Analyzer (Advanced Analytical Technologies, Iowa, USA) adjusted to the appropriate 
concentration for sequencing. Indexed libraries were pooled and sequenced at a final concentration of 
1.6 pM on an Illumina NextSeq 500 high-output run using paired-end chemistry with 75 bp read lengths. 
 
Processing, quality control and filtering of RNA-sequencing data 
Sequence reads were aligned towards the human genome (hg19 assembly) using STAR (v2.3.0e) and 
uniquely aligned reads within RefSeq gene annotations were used to quantify gene expression as reads 
per kilobase transcript and million mapped reads (RPKMs) using rpkmforgenes (Ramsköld et al., 2009). 
The requirements for retaining cells in the analysis were: ≥ 50,000 sequenced reads, ≥ 40% of reads 
aligning uniquely to the genome and ≥ 40% of them aligning within annotated RefSeq exons and 
detection of at least 1,000 genes at the expression threshold of RPKM ≥ 1. Samples that failed to meet 
these criteria were considered of low quality and therefore excluded from the downstream analysis. 
 
Correlation between single-cell and whole-islet expression data 



Spearman’s correlation (ρ) between single-cell and bulk expression data was computed for H3, H4, H6 
and all T2D donors. Gene expression was averaged across single cells of the same individual and 
correlated against the corresponding whole-islet RNA-sequencing data. The correlations were computed 
using log2-transformed expression data. Only the genes with expression greater than zero either in bulk 
or in at least one single cell (Mean>0) were included in the calculations and in the graphs of Figure S4. 
For the down-sampling procedure, Spearman’s correlation coefficients were computed as described 
above, but using a subset of single cells for each individual. For each different number of cells tested, 
200 iterations were performed in which cells were selected at random from each individual donor and 
correlated against the corresponding bulk data.  
 
Identification of highly variable genes 
Gene expression was ranked in descending order of variance across cells, while controlling for the 
relation between the expression magnitude and the variability arising from technical noise (Brennecke 
et al., 2013). For this purpose, we used an in-house implementation of the method in R with the additional 
option of specifying the number of cells considered as outliers (winsorization). The winsorization 
parameter was set to 1 in order to prevent genes with extreme expression values in only one cell from 
being high in the ranking. Ranked lists of genes for the different cell groups analyzed are included in 
Table S1. 
 
Dimensionality reduction 
The t-Distributed Stochastic Neighbor Embedding (t-SNE) method was employed to reduce the 
dimensions of the gene expression data and project the cells onto a two dimensional space (using the 
MATLAB implementation of t-SNE). The normalized expression values (log2RPKM) were used as input 
to the algorithm, while the number of principal components employed internally for the reduction was 
adjusted at every different run to retain the 60% of the total variability of the input data. The perplexity 
parameter was set to 50 when the number of cells exceeded 800, 30 for sample sizes up to 800 and 15 in 
the cases where the number of cells was less than 60.  
 
Cell-type classification 
The basic approach for the cell-type classification was the projection of cells with t-SNE onto the two 
dimensional space spanned by a set of genes adequate to capture the overall variability within the dataset. 
The assignment of the formed clusters to cell classes was obtained based on the expression levels of 
hormones or other known marker genes. The cell-type classification of all cells analyzed is included in 
Table S1.   
 
Differential expression analysis of the endocrine and exocrine cell types 
For the differential expression analysis among the six major cell types (α, β, γ, δ, acinar and ductal cells) 
we performed one-way Analysis of variance (ANOVA) using the log2-transformed expression data from 
the five healthy male donors. The analysis was followed by multiple comparisons testing to further 
identify the cell types that displayed significant differences in their expression out of all the possible 
pairwise combinations. The reason for using only a subset from the available samples was to rule out 
any variations introduced in the data due to the sex and disease associated differences. Although such 
factors of variation could be modeled with a multifactorial design, the existence of small and unequal 
sample sizes arising from the different donors in each cell class would reduce the power of the statistical 
analysis. The criteria to include a gene in the differential analysis were based on the average magnitude 
(Mean log2RPKM >= 1 in at least 1 cell type) and variation of the expression in the cell types tested. To 
further reduce the risk of erroneously reporting individual donor differences as cell-type differential 
expression, we added two more requirements that every gene should meet in order to be tested. The first 
was that the expression detected in each cell type should come from cells belonging to at least two 
different individuals of the same cell type (Mean log2RPKM >= 1 in at least 2 donor groups of the same 
cell type).. Based on the second, the variation in at least two different donor groups of the same cell type 
should not be greater than the overall variation across the cell type. The Bonferroni adjustment was 
applied in order to correct for the multiple comparisons performed for each of the genes tested. Also, the 
Benjamini-Hochberg method was used to control the false discovery rate at significance level α=0.01. 
Similar results were obtained using a non-parametric test, but the results from the ANOVA differential 
expression analysis are summarized in Table S2. The exact same procedure was repeated including the 
ε-cells from the five healthy male donors in order to identify cell type specific expression in this rare 
population. The non-parametric one-way ANOVA (Kruskal Wallis) test was additionally performed due 



to the difference in size of the samples being compared. The two tests gave similar results and we report 
the genes identified as up-regulated in ε-cells based on both analyses in Table S2. 
 
Single-molecule mRNA FISH 
mRNAs were visualized by single molecule FISH (smFISH) using the RNAscope Fluorescent Multiplex 
Kit (Advanced Cell Diagnostics, Inc.) according to the manufacturer’s instructions. SmFISH stainings 
were performed on formalin-fixed, paraffin-embedded (FFPE) sections of pancreas from 4 healthy 
donors. The following RNAscope probes were used: Hs-GCG (ACD556741), hs-SST (ACD310591), 
hs-FAP (ACD411971) and hs-LEPR (ACD406371). Images were acquired on a Nikon A1R confocal 
microscope. The DAPI and probe signals within islets cells were manually appointed to either of four 
groups; i) negative for both hormone and gene of interest (GOI) ii) hormone positive and GOI negative, 
iii) hormone negative and GOI positive iv) hormone positive and GOI positive (Table S3). Detailed 
information on cell counting and statistics per slide and donor are included in TableS3. 
 
Differential expression analysis between the pancreatic stellate cells and endothelial cells 
In order to identify the genes that are differentially expressed between the clusters consisting of 
pancreatic stellate and endothelial cells, the R/Bioconductor package SCDE (Kharchenko et al, 2014) 
was used. All genes expressed within the two cell classes were tested and the analysis was performed 
with the raw read counts as input. The grid of expression magnitude was set to 450 for increased 
sensitivity and the independent fit was selected for the error modeling. The results are summarized in 
Table S2. 
 
Comparison between single-cell and whole-islet RNA-sequencing cell-type enriched expression. 
In order to assess the performance of previously used strategies in identifying cell type specific gene 
expression, we correlated the differentially expressed genes from the single-cell analysis with the cell 
type hormones or marker genes using the expression data published in Taneera et al. 2012. The genes 
were selected based on the magnitude of mean expression in each cell type. Spearman’s correlation 
coefficients and p-values (adjusted) were calculated for the 25 strongest genes in each cell type with the 
corresponding hormone or marker gene: GCG for α, PPY for γ, SST for δ, REG1A for acinar and KRT19 
for ductal top genes. Data for INS was not available in the study. The rank of each gene was obtained 
from sorting all the genes measured in the study in decreasing magnitude of correlation coefficient. 
 
Analysis of heterogeneity in the cell types 
To further explore the heterogeneity of the identified cell types, we analyzed their transcriptomes in 
isolation following the procedure as described above. The expression data of each cell type was ranked 
based on biological variability and using this as input the cells were projected onto two dimensions with 
the t-SNE. In all cases the obtained embedding was dominated by donor differences (Figure S6). In order 
to correct for such effects that might confound biological differences, we used ComBat (Johnson et al, 
2007), more specifically a Python implementation of the ComBat function in R/Bioconductor package 
SVA. The method provides a robust adjustment even for small sample sizes as in the case of our dataset. 
We used the parametric empirical Bayesian framework, setting the adjustment variable to denote the 
donor individuals. The t-SNE dimensionality reduction was repeated with input the adjusted expression 
values. Following batch correction, the donor effect was completely removed from the resulting clusters 
in each cell type. 
 
Differential expression analysis within the cell types 
We performed differential expression analysis to identify the genes that are responsible for the resulting 
sub-clusters in each cell type: α, β and acinar cells. SCDE method was applied as previously described. 
The results obtained from the analysis in each cell type are summarized in Table S4. 
 
Relationship of BMI and gene expression in different cell types 
The relationship between body mass index (BMI) and gene expression in each cell type was measured 
using rank correlation statistics. Spearman’s ρ coefficients were calculated separately for each gene 
based on the log2-transformed expression values of the samples in each cell class. Since multiple tests 
were performed (one for every gene), the results were adjusted with the Benjamini-Hochberg method to 
control the false discovery rate at significance level α=0.01. Only the samples from the healthy male 
donors were used, since there is a positive correlation between BMI and sex in our donors (ρ=0.49). The 
lists containing genes with an absolute correlation coefficient with BMI greater than 0.5 are included in 



Table S5. We also generated correlations per gene using all cells (not separated per cell type) from the 
same five male donors to simulate the correlations one would obtain in “whole-islet” analyses. 
 
Differential expression analysis between cells from healthy and T2D donors 
We compared the expression between the healthy and T2D samples in order to identify disease associated 
genes for the major cell types: α, β, γ, δ, acinar and ductal cells. For this purpose, we conducted non-
parametric one-way Analysis of variance (Kruskal-Wallis test) using the samples from all donors in each 
cell type tested. The samples were divided into four groups based on the status (healthy or T2D) and sex, 
resulting into the four groups being compared: healthy male, healthy female, T2D male and T2D female. 
We also performed the analysis using a parametric multifactorial design: two-way Analysis of variance 
with the first factor indicating the status (healthy or T2D) and the second the sex of the samples. 
Bonferroni adjustment was used for the multiple comparison correction and the Benjamini-Hochberg 
method to control the false discovery rate at significance level α=0.01. The genes that showed significant 
differences in respect to sex were excluded from the results in both tests in order to identify the 
differentially expressed genes related to T2D. The two tests yielded overlapping results, but the gene sets 
obtained from the non-parametric design were less affected by the non-normal distributions of gene 
expression, reflecting more robust disease related differences. Therefore, we report and use in the 
downstream analysis the results provided by the non-parametric test. In the case of δ-cells, both tests 
reported no significant results due to the existence of a group with a very small sample size (healthy 
female group consisting of only two cells). To overcome this limitation, we performed one-way Analysis 
of variance (parametric and non-parametric) using only the cells from the male donors, but no interesting 
genes were reported (SNORD110 and COL6A2). The differentially expressed genes between the healthy 
and T2D cells for each cell type are listed in Table S6. 
 
Gene set enrichment analysis in cell types 
Gene set enrichment analysis (GSEA) was used to examine whether the genes identified as differentially 
expressed between the healthy and T2D cells for each cell type are members of categories with specific 
functions. We used the pre-ranked version, providing the difference in median expression values between 
the healthy and T2D cells as the gene ranking metric. For each cell type, the ranked list of genes was 
tested for overlaps with all the gene sets belonging to four major collections of the Molecular Signatures 
Database: curated gene sets (C2), GO gene sets (C5), oncogenic signatures (C6) and immunologic 
signatures (C7). The significant categories (FDR≤1%) that are enriched in each cell type for the two 
conditions are reported in Table S7. 
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