
Supplementary Materials

TransComb: genome-guided transcriptome assembly via combing junctions in splicing

graphs

Juntao Liu1,2, †, Ting Yu1, †, Tao Jiang2,3,4,*, Guojun Li1, †,*

1. Supplementary Notes

1.1 Parameter setup for the compared assemblers

The parameters of each genome-guided assembler were set up as their defaults with the same

input file produced by Tophat2. All the assemblers were tested on a server with 96GB of

RAM. In order to adjust the default filtering parameter of each assembler, we use the

following settings. For TransComb (version 1.0), we set –f to be 2, 3 and 4 on simulated

dataset; on human K562-cells dataset, this parameter was set to be 1 and 2; on human

H1-cells dataset, it was set to be 1 and 2; on mouse dendritic-cells dataset, it was set to be 2, 3,

4 and 5. For StringTie (version 1.1.2), we set –c to be 1.5, 3.5 and 4.5 on simulated dataset;

on human K562-cells dataset, this parameter was set to be 1.5, 3.5, 4.5 and 5.5; on human

H1-cells dataset, it was set to be 1.5 and 3.5; on mouse dendritic-cells dataset, it was set to be

0, 1.5 and 3.5. For Cufflinks (version 2.1.1), we set –F to be 0.05 and 0.15 on simulated

dataset and three real datasets. For Bayesembler (version 1.2.0), we set –c to be 0.3, 0.4, 0.6

and 0.7 on simulated dataset and three real datasets. For Traph (version 0.5), we set

--expressionratio to be 0.1 and 0.2 on simulated dataset.

1.2 Tophat2 index files downloaded for real datasets.

Index files are needed for tophat2 mapping, so we downloaded the human index files from

ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/Ensembl/GRCh37/Homo_s

apiens_Ensembl_GRCh37.tar.gz

And the mouse index files are downloaded from

ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Mus_musculus/Ensembl/NCBIM37/Mus_

musculus_Ensembl_NCBIM37.tar.gz

ftp://igenome:g3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/Ensembl/GRCh37/Homo_sapiens_Ensembl_GRCh37.tar.gz
ftp://igenome:g3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/Ensembl/GRCh37/Homo_sapiens_Ensembl_GRCh37.tar.gz

1.3 Reference transcripts downloaded for real datasets

In order to evaluate the performances of the assemblers on real datasets, we downloaded the

reference transcripts of human and mouse from the Ensemble Genome Browser. The human

reference transcripts are downloaded from

http://ftp.ensembl.org/pub/release-73/gtf/homo_sapiens/Homo_sapiens.GRCh37.73.gtf.gz

and the mouse reference transcripts from

http://ftp.ensembl.org/pub/release-67/gtf/mus_musculus/Mus_musculus.NCBIM37.67.gtf.gz

1.4 Simulated data downloading websites

This simulated data was used in CIDANE. The Tophat2 alignment file can be downloaded

from

https://uchicago.app.box.com/v/CIDANE-FluxSim/1/5654933313

and the ground truth of the simulated data from

https://uchicago.app.box.com/s/fj5g566nar2evwjl3qpbtrgaeuftt12x/1/8607781925

2. Supplementary Methods

2.1 Construction of splicing graphs

The splicing graphs are constructed based on mapping the RNA-seq reads to a reference

genome by Tophat2. Generally speaking, if the reference genome is well resolved and most

RNA-seq reads are of high sequencing quality, the mapping results of Tophat2 could be

highly reliable. Then TransComb could effectively and efficiently construct splicing graphs

based on the mapped results detailed as follows.

1) Clustering reads into gene loci

Since the mapped reads in the output bam file of Tophat2 have been sorted according to their

mapping positions from 5’ to 3’, one can easily cluster the mapped reads into their

corresponding gene loci. To do so, by Max_Pos we denote the most right position of the

current cluster of mapped reads in the reference genome, which is initialized by the 3’ end of

the first read. TransComb then determines the end-positions of the successive mapped read in

http://ftp.ensembl.org/pub/release-67/gtf/mus_musculus/Mus_musculus.NCBIM37.67.gtf.gz
https://uchicago.app.box.com/v/CIDANE-FluxSim/1/5654933313

the reference genome, which are represented respectively by 5’_end and 3’_end. If 5’_end is

not larger than Max_Pos, TransComb clusters this read into the current gene locus, and

updates Max_Pos by 3’ _end if and only if 3’ _end is larger than Max_Pos. TransComb

repeats the procedure until it encounters a read with its 5’_end larger than Max_Pos, with

which it resumes next gene locus, until all reads exhausted.

2) Identification of exons and splicing junctions in each gene locus

For each gene locus constructed above, we use all the reads clustered into this locus to detect

exons and splicing junctions in this gene. To do so, we denote by Gene_Exon a zero vector

with the same length as this gene locus, with its components corresponding to the positions of

this locus, and by Gene_Junction a 3-column matrix to represent splicing junctions in this

locus. For the matrix Gene_Junction, its first two columns store the start and end positions of

corresponding junction, and the third column stores the number of reads supporting the

junction. Then for each read clustered into this locus, if it is not a junction read, we then add

1/n to each aligned components of Gene_Exon, where n represents the number of different

mappings of this read; otherwise, i.e. this read is a junction read, TransComb updates the

matrix Gene_Junction by adding a row consisting of start and end positions of the junction as

well as the number 1/n, if this junction has not been detected yet. However, if the junction has

already existed, TransComb directly updates the matrix Gene_Junction by adding 1/n to the

number of reads supporting this junction. TransComb Repeats the procedure until all mapped

reads belonging to this locus have been exhausted. Then the zero components of Gene_Exon

constitute the introns and the others the exons with their values representing the coverage of

reads supporting this position.

3) Updating of gene loci

We remove those junctions from Gene_Junction of their coverage less than 1 because such

junctions are not reliable. Notice that a gene locus may be split into two or more gene loci

after the updating operation and the following analysis is subjected to updated gene loci.

4) Updating exons and junctions in a gene locus

Biologically, most introns are actually quite long in mammalian genomes. Therefore, for each

two adjacent exons in a gene locus, TransComb combines them into one if either their

distance is no more than a prespecified number (the default is set to 100 bp) or there are two

or more paired-end reads supporting these two exons (see Figure S2A) and meanwhile the

distance between them is more than 100 bp but less than the value of average pair-gap length

(the default is set to 200 bp).

5) Updating exons and junctions between two gene loci

For two adjacent gene loci, TransComb merges them into one if either the distance between

the two gene loci is no more than a prespecified number (the default is set to 100 bp), or they

are supported by at least two paired-end reads if the distance between them is more than 100

bp but less than the value of average pair-gap length (the default is set to 200 bp).

6) Dividing wrongly merged exons

Some reads may be wrongly mapped to intron areas, leading to wrongly merged exons.

TransComb attempts to solve this problem by dividing one exon into two exons through

sliding a window as follows. For an exon with length L longer than 200, TransComb

computes the average coverage of the first 50 bp, denoted by Ave-left, and that of the last 50

bp, denoted by Ave-right. Then it slides a 50-bp-length widow from left to right by one bp at a

time (See Figure S3) and computes the average coverage of each sliding window, and finally

picks the minimum one, denoted by Ave-min. If Ave-min is no more than 25% of the smaller

one of Ave-left and Ave-right, then this exon is divided into two exons from the middle of the

corresponding window of Ave-min.

7) Generation of splicing graphs

For each gene locus, an exon recorded in Gene_Exon is represented by a node and any two

nodes are connected by a directed edge from 5’ end to 3’ end if and only if there is a splicing

junction recorded in Gene_Junction supporting it. The coverage of each node is computed as

the average coverage of each base in the corresponding exon recorded in Gene_Exon and the

coverage of each edge is recorded in the third column of Gene_Junction. By Pair_Edges we

denote a 2-column matrix to record pair supporting information between two edges in the

splicing graph, which is useful and important in extracting paths from the splicing graphs. For

each two edges in a splicing graph, if they are supported by at least two mate pairs (see Figure

S2A), Pair_Edges will be updated by adding a row with its two entries being the indexes of

these two edges.

2.2 Recovery of full-length transcripts from weighted junction graphs

To do so, by Nodes_Unused we denote the dynamic set of nodes in the junction graph J =

(V(J), E(J)) that have not been covered by assembled paths and by filter a parameter for

determination. Initially, Nodes_Unused is set to V(J). Each transcript-representing path in a

splicing graph is extracted by recurrently extending a current path in the corresponding

weighted junction graph originating from a seed node in Nodes_Unused. In the procedure, by

nl and nr we respectively denote the left and right ends of the current path which is being

extended in the junction graph. By NL (resp. NR) we denote the set of left/in (resp. right/out)

neighbors of nl (resp. nr) in the junction graph, i.e. NL ={v∈V(J) | (v, nl)∈E(J)} (resp. NR ={v∈

V(J) | (nr, v)∈E(J)}). We further set NL1= {v∈NL | w(v, nl) = 1}, NL2= {v∈NL | w(v, nl) = 2}; NR1

= {v∈NR | w(nr, v) = 1}, NR2 = {v∈NR | w(nr, v) = 2}. Then TransComb iteratively extracts

transcript-representing paths in a splicing graph through the operations on the corresponding

junction graph that are pseudo-coded by the following steps.

Step 1. If Nodes_Unused ≠ Ø, TransComb chooses from Nodes_Unused a seed node v of

largest weight cov_max (n l = nr = v at the moment); or else, it terminates.

If cov_max < filter, it removes from Nodes_Unused the node v, returns to Step 1;

or else, goes to Step 2;

Step 2. If N L2 ≠ Ø , TransComb extends from nl to a node nl’ in NL2 of maximum weight,

resets nl = nl’, updates the current sets NL, NL2 and NL1 accordingly, and returns to

Step 2; or else

if NL1≠ Ø , TransComb extends from nl to a node nl’ in NL1 of maximum

weight, resets nl = nl’, updates the current sets NL, NL2 and NL1 accordingly,

and returns to Step 2; or else, goes to Step 3;

Step 3. If N R-1≠ Ø , TransComb extends from nr to a node nr’ in NR-1 of maximum weight,

resets nr = nr’, updates the current sets NR, NR-1 and NR+1 accordingly, and returns

to Step 3; or else

if NR1 ≠ Ø , TransComb extends from nr to a node nr’ in NR1 of maximum

weight, resets nr = nr’, updates the current sets NR, NR2 and NR1 accordingly,

and returns to Step 3; or else, goes to Step 4;

Step 4. TransComb removes from Nodes_Unused the nodes of the path obtained by Steps 1, 2

and 3, and returns to Step 1.

The default value of filter is set to 0 by TransComb, implying that it will not terminate

until all the nodes in the junction graph have been covered by the assembled paths. It is worth

mentioning that nodes removed from Nodes_Unused can still be used for extension of other

paths.

2.3 Estimation of expression levels of the recovered transcripts

Intuitively, expression level of each recovered transcript would have been estimated by

allocating the coverage of each edge to the expressed transcripts if the expressed transcripts

were uniformly sampled and fragmented. However, the fragmentation and sequencing process

may cause a lot of biases and even errors, and moreover, the process of mapping RNA-seq

reads to a reference genome may also bring in many unexpected errors. On the other hand, the

assembled transcripts are not necessarily the true expressed ones. So it may not be a good idea

to estimate the expression levels for assembled transcripts based on allocation of the coverage

of all the edges. To diminish the impact of the errors and biases mentioned above on

estimating expression levels for the assembled transcripts, we would prefer to rely on those

edges used as seed nodes in the corresponding junction graph during the path extraction

procedure rather than all of them, and from now on such edges are called seed edges. Seed

edges would be quite reliable because each of them has the highest coverage in the unused

nodes during the process of extracting a set of paths from a junction graph. We found that the

edges with higher (lower) coverage are less (more) impacted by mapping and sequencing

errors. In addition, all assembled transcripts must be covered by these seed edges. Therefore,

the expression levels would be better estimated by allocating the coverage only for a few of

seed edges to the assembled transcripts. Notice that assembled transcripts one-to-one

correspond to those seed nodes used in the extraction procedure. By E = {e1, e2, …, en} we

denote the set of n seed edges, and T = {t1, t2, …, tn} the set of n assembled transcripts. It can

be achieved by solving the following quadratic programming:

njxts

xwf

j

ni njte
ji

ji

,,10..

)(min
,,1

2

,,1,


 



  
 

where wi (i = 1, 2 ,…, n) represents the coverage of the seed edge ei, and xj (j = 1, 2, … , n)

the expression level of transcript tj.

3. Supplementary Results

3.1. Comparison of correctly identified genes

A reference gene is considered to be correctly identified if at least one isoform in the gene is

exactly matched by a predicted transcript in a predicted gene. On the simulated dataset, the

comparison results showed that TransComb correctly identified 8948 genes, vs. StringTie

8734, Cufflinks 8281, Traph 7131, and Bayesembler 7814 (see Figure S5A). On the three real

datasets, TransComb still performed the best among the other compared assemblers in terms

of correctly identified genes while only slightly inferior to StringTie on human H1-cells

dataset. For example, the numbers of correctly identified genes of TransComb on human

K562-cells, human H1-cells and mouse datasets are respectively 8610, 8762 and 8540, vs.

StringTie 8591, 8780 and 8411, Cufflinks 6649, 7532 and 4953, and Bayesembler 8593, 8710

and 8471 (see Figure S6 A, B and C).

3.2. Comparison of detecting unique true positives

To compare two assemblers in terms of their ability of correctly recovering novel isoforms,

we define another true positive, termed unique true positive, which is a reference transcript

recovered by exactly one of the two compared assemblers. Obviously, the more unique true

positives an assembler recovers, the better it performs than others.

We compared the unique true positives between TransComb and each of the other four

compared assemblers on the simulated dataset, and found that TransComb assembles much

more unique true positives compared to each of them. For example, the unique true positives

are 1385 and 845 between TransComb and StringTie, 2855 and 608 between TransComb and

Cufflinks, 2889 and 660 between TransComb and Traph, and 1787 and 1094 between

TransComb and Bayesembler (see Figure S5B and Table S5). Overall, TransComb

substantially outperforms all the compared assemblers in terms of their unique true positives

even in the case where it assembles fewer candidates than others.

The competition in unique true positives between two assemblers was also carried out on

real datasets. The competition results show that TransComb assembled much more unique

true positives than each of the compared assemblers (see Figure S7 and Table S6, S7 and S8).

Overall, we conclude that TransComb consistently and overwhelmingly outperforms each of

the compared assemblers in terms of unique true positives on both synthetic and real datasets.

3.3 Results of processing wrongly merged exons

If some reads were wrongly mapped to intron areas, then this intron and its two neighboring

exons may be wrongly assembled into a single exon, which could result in two transcripts

merged into one. TransComb attempts to solve this problem by dividing the whole exon into

two as mentioned in the supplementary methods section. Successfully handling this problem

significantly improves the performance of TransComb, especially in real datasets. On the

simulated dataset, RNA-seq reads are indeed from the reference genome, which will be used

as the mapping template, so the error mapping rates may be quite lower than on real datasets,

which may contain mutations, indels, individual differences and some other unknown factors

resulting from the sequencing process. So much fewer exons in simulated datasets will be

divided than in real datasets. For example on the simulated dataset, the number of exons

divided is 52. While in real datasets, the numbers are 5739, 3760 and 2096 on human

K562-cells, human H1-cells and the mouse datasets, respectively. Then we computed the

number of assembled true positives resulting from those divided exons on both simulated and

real datasets. On the simulated dataset, the number of such true positives is 32 (Figure S5C

and Table S9), while on the real datasets, the numbers are 1627, 1079 and 650 (Figure S8 and

Table S9) on human K562-cells, human H1-cells and the mouse datasets, respectively. We can

see that the exon-splitting tip indeed makes a great contribution to the performance of

TransComb, especially on real dataset.

3.4 Comparison of expression level estimations

After assembling the RNA-seq reads into transcripts, another challenging task is to estimate

the expression abundance of each assembled transcript in original cells. To evaluate the

estimators, we compared the estimated abundances with the genuine ones for those correctly

assembled transcripts only by all the five assemblers. The distribution of the simulated

transcripts against their expression levels is shown in Figure S9A. For each estimator, we

used the Spearman correlation coefficient between the simulated and estimated FPKMs to

measure the estimators. As shown in Figure S9, the correlation coefficient of TransComb is

0.97, against 0.98 of StringTie, 0.97 of both Bayesembler and Cufflinks, and 0.87 of Traph.

The comparison results showed that it reaches comparable accuracy level to the existing tools

of same kind, e.g. StringTie, Cufflinks and Bayesembler, while it is much better than Traph.

From the design of our method and then its performance, it seems that the expression levels of

encoded transcripts would be mainly determined by several key junction edges in the splicing

graph. As this method is really unusual and very simple, it may hopefully provide a hint for

scientists who are interested in developing more powerful estimator.

4. Supplementary Figures

Figure S1. Transcriptome assembly pipeline for TransComb.

Figure S2. Examples for paired end reads supporting information and partial exons. (A) Paired end

reads colored red indicates that Node 2 and Node 3 are supported by 3 paired end reads. Paired end

reads colored green indicates that Edge 1 and Edge 2 are supported by 2 paired end reads. (B) An

example for showing partial exons.

Figure S3. Wrongly merged exons resulting from wrongly mapping reads (black bars representing

reads wrongly mapped to intron areas) and TransComb attempting to divide these merged exons by

sliding windows.

Figure S4. A splicing graph containing ambiguity in exon 3 illustrating those greedy algorithms for

searching for paths like StringTie may easily fail. The transcripts expressed in the splicing graph are

actually the path-cover in (A) predicted by TransComb. If we use a greedy algorithm such as StringTie,

the predicted transcripts may be the paths in (B).

Figure S5. Corresponding results on simulated dataset. (A) Correctly identified genes of the five

assemblers. (B) Pairwise unique true positives between TransComb and the other assemblers. For each

assembler in this figure, the Y-coordinate represents its unique true positives, while the X-coordinate

represents the unique true positives of TransComb. (C) Comparison of assembled true positives

illustrating the parts of TransComb resulting from divided exons on simulated datasets. The red bar

(assembled true positives from non-divided exons) plus the brown bar (assembled true positives from

divided exons) constitute the entire assembled true positives of TransComb.

Figure S6. Correctly identified genes of the five assemblers on (A) human K562-cells dataset. (B)

human H1-cells dataset. (C) mouse dendritic-cells dataset.

Figure S7. Pairwise unique true positives between TransComb and the other three assemblers on (A)

human K562-cells, (B) human H1-cells and (C) mouse dataset. For each assembler in this figure, the

Y-coordinate represents its unique true positives, while the X-coordinate represents the unique true

positives of TransComb.

Figure S8. Comparison of assembled true positives illustrating the parts of TransComb resulting from

divided exons on real datasets. The red bar (assembled true positives from non-divided exons) plus the

brown bar (assembled true positives from divided exons) constitute the entire assembled true positives

of TransComb. (A) Assembled true positives of the four compared assemblers on human K562-cells

dataset. (B) Assembled true positives of the four compared assemblers on human H1-cells dataset. (C)

Assembled true positives of the four compared assemblers on mouse dataset.

Figure S9. The distribution of simulated isoform expression levels and Correlation between simulated

(y-axis) and estimated (x-axis) expression levels on simulated dataset using only transcripts that were

correctly assembled by the five assemblers. ρ represents the Spearman correlation coefficient between

simulated and estimated FPKM values..

5. Supplementary Tables

Table S1 Candidates and true positives of the assemblers on the simulated dataset.

Assemblers Filter settings Candidates True positives

TransComb
default 16755 10528

2 14919 10178
3 14111 9968

StringTie

4 13389 9725
default 18131 9988
1.5 18591 9996
3.5 17274 9962
4.5 16222 9933

Cufflinks default 15816 8281

0.05 16561 8562
0.15 15355 8071

Bayesembler

default 14447 9835
0.3 15357 9966
0.4 14893 9893
0.6 14080 9755
0.7 13714 9667

Traph
default 19608 8299
0.1 17669 8108
0.2 15361 7821

Table S2 Candidates and true positives of the assemblers on human K562-cells dataset.

Assemblers Filter settings Candidates True positives

TransComb
default 52855 12948

1 49437 12700
2 45863 12409

StringTie

default 58818 10407
1.5 69806 10545
3.5 49616 10243
4.5 42645 10092
5.5 37690 9923

Cufflinks
default 58232 7823
0.05 63357 8422
0.15 55263 7286

Bayesembler

default 49320 10507
0.3 61052 11079
0.4 54390 10757
0.6 45271 10135
0.7 41983 9853

Table S3 Candidates and True positives of the assemblers on human H1-cells dataset.

Assemblers Filter settings Candidates True positives

TransComb
default 50077 12135

1 45461 11835
2 40572 11400

StringTie
default 50081 10336
1.5 76141 10734
3.5 38108 9912

Cufflinks
default 57757 8852
0.05 63005 9425

0.15 54564 8338

Bayesembler

default 45671 10832
0.3 55271 11392
0.4 49906 11077
0.6 42324 10509
0.7 39525 10205

Table S4 Candidates and True positives of the assemblers on mouse dataset.

Assemblers Filter settings Candidates True positives

TransComb

default 34693 11117
2 29320 10769
3 26756 10524
4 24394 10289
5 22654 10079

StringTie

default 24896 9525
0 50134 9838
1.5 33634 9714
3.5 21546 9343

Cufflinks
default 25025 8245
0.05 28786 8669
0.15 22953 7910

Bayesembler

default 35033 9874
0.3 43013 10186
0.4 38476 9987
0.6 32241 9655
0.7 29959 9488

Table S5 Unique true positives and common detected reference transcripts between

TransComb and the other assemblers on the simulated dataset.

Assemblers Detected by both Unique true positives
TransComb

9143
1385

StringTie 845
TransComb

7673
2855

Cufflinks 608
TransComb

8741
1787

Bayesembler 1094
TransComb

7639
2889

Traph 660

Table S6 Unique true positives and common detected reference transcripts between

TransComb and the other assemblers on human K562-cells dataset.

Assemblers Detected by both Unique true positives
TransComb

8367
4581

StringTie 2040
TransComb

6255
6693

Cufflinks 1568
TransComb

7762
5186

Bayesembler 2745

Table S7 Unique true positives and common detected reference transcripts between

TransComb and the other assemblers on human H1-cells dataset.

Assemblers Detected by both Unique true positives
TransComb

8236
3899

StringTie 2100
TransComb

6863
5272

Cufflinks 1989
TransComb

8034
4101

Bayesembler 2798

Table S8 Unique true positives and common detected reference transcripts between

TransComb and the other assemblers on mouse dataset.

Assemblers Detected by both Unique true positives
TransComb

8602
2515

StringTie 923
TransComb

7406
3711

Cufflinks 839
TransComb

8487
2630

Bayesembler 1387

Table S9 Number of exons, devided exons and correctly assembled transcript based on

divided exons in the simulated dataset and three real datasets.

Datasets Exon counts Divided exon counts
Correctly assembled transcript

based on divided exons

Simulation 106273 52 232

Human K562-cells 418116 5739 1627

Human H1-cells 670358 3760 1079

Mouse 275707 2096 650

Table S10 Running time and memory usage by the assemblers on human K562-cells dataset.

Assemblers CPU time (min) Min_mem (G) Max_mem (G) Ave_mem (G)

TransComb 56 3.25 4.38 3.83

StringTie 23 3.88 4.56 4.02

Cufflinks 429 3.61 4.25 3.84

Bayesembler 537 3.51 9.64 4.69

	1. Supplementary Notes
	2. Supplementary Methods
	3. Supplementary Results
	Supplementary Figures
	5. Supplementary Tables

