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METHODS 

 

Identification of Genetic Alterations 

Tumor DNA was extracted from 40-µm thickness of formalin-fixed, paraffin-

embedded (FFPE) tissue sections, which had been histologically confirmed to contain 

predominantly tumor tissue. Two hundred ng was used for library construction and 

hybrid capture. Among a total of 302 samples from which evaluable next-generation 

sequencing (NGS) data were obtained, about 80% were analyzed by sequencing the 

exons of a panel of 182 cancer-related genes and the rest by an expanded panel 

containing 236 genes (Supplemental Table 2). Deep sequencing of the exons of 

prespecified cancer-related genes was conducted using Illumina HiSeq2000 at 

Foundation Medicine Inc. (Cambridge, MA).1 Samples with a minimum unique coverage 

of 250 were included in the subsequent analysis. Nucleotide sequence alterations 

were identified by comparison against the corresponding National Center for 

Biotechnology Information (NCBI) reference sequence, and then queried against known 

alterations in the Catalogue of Somatic Mutations in Cancer (COSMIC; available at 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) and in the Single Nucleotide 

Polymorphism Database (dbSNP; available at http://www.ncbi.nlm.nih.gov/snp/). Non-

synonymous sequence alterations recorded in COSMIC but not in dbSNP were 

designated as known somatic mutations, those recorded in dbSNP were designated as 

germline mutations, and those with no match in either COSMIC or dbSNP were 

designated as novel mutations. In addition, copy number variations were assessed, 
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including amplifications (defined as genes with copy number ≥6 copies) and bi-allelic 

deletions. 

The numbers of somatic mutations and the types of alteration are shown in 

Supplemental Fig 2. In summary, after filtering out known germline mutations, 1,572 

missense mutations, 197 nonsense and frameshift mutations, and 136 splice variants, 

and small insertions and deletions were identified. Among them, 473 were known 

somatic variations. The remaining 1,432 were novel sequence variations not previously 

described.  

Filtering for germline mutations using public databases such as dbSNP tends to 

include germline mutations that have high population frequency, but may not rule out 

novel or rare/unique germline mutations in the patients. To estimate the fraction of 

germline changes among the novel mutations, we sequenced 71 germline DNA 

samples (23.5% of NGS population) with matching tumor samples. Among the novel 

mutations detected in these 71 tumor samples, 65% were found to be germline 

mutations. On the other hand, only five (4%) known mutations (ie, mutations present in 

COSMIC but not in dbSNP) from tumor samples were also found in the matching 

germline samples. Based on these results, novel short-variant mutations	 (ie, SNVs and 

INDELs) were not included in our analysis as the majority of these mutations are likely 

to be of germline origin. All copy number variations, both known and novel, were 

included in the correlative analyses. 
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mTOR and FGFR2 Mutations 

Mutations reported in the mTOR gene were mostly novel (ie, not reported in 

either dbSNP or COSMIC databases). Only four mutations—namely H640R, I2500N, 

D1224Y, and P2141L—were confirmed somatic mutations (ie, not found in their 

matching germline DNA samples among the 71 samples sequenced). The remaining six 

mutations (R1905S, R1482C, A949P, A1134V, Y1974H, and R1482H) were present in 

the tumor samples for which germline DNA samples were not sequenced, and therefore 

cannot be reliably classified into germline or somatic mutations. Of these 10 mutations, 

four were present in the kinase or FAT domains, where mutations often result in higher 

mTOR activity.2 Three of these four patients received everolimus and had a longer PFS 

(8.2–19.4 months) than the median PFS (7.0 months) of the everolimus arm in the NGS 

cohort (Supplemental Fig 3A). In addition, one everolimus-treated patient whose PFS 

was 14.1 months had a confirmed somatic mutation (H640R near the N-terminus of the 

HEAT domain), which potentially could disrupt the interaction between mTOR and 

Raptor.3 However, PFS benefits from everolimus were variable in the patients with 

mutations in other mTOR domains (Supplemental Fig 3A). 

The genetic alterations detected in FGFR2 were more diverse and included 

missense and nonsense mutations, gene amplifications, and rearrangements. Of the 

nine patients with unequivocal genetic alterations, one patient had a genomic 

rearrangement leading to a truncation in the C-terminal region	 with no clear evidence of 

FGFR2 hyperactivity (because of an intact kinase domain),4 five patients had copy-

number amplification, and three patients had point mutations (a known N549K mutation, 

a nonsense Y769* mutation, and a novel T32A mutation). Excluding the two patients 
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with genetic alterations of no clear gain of function effect (ie, FGFR2 rearrangement 

with noncoding DNA at the C-terminal region, and a novel T32A mutation),	 the median 

PFS of remaining seven patients	 was only 2.7 months (range, 1.3–3.9 months), 

significantly shorter than the 7.0-month median PFS for everolimus-treated patients in 

the NGS population. These seven patients all had at least one additional known 

oncogenic alteration in PIK3CA, CDK4, CDKN2A/2B, IGF1R, KDR, or Myc 

(Supplemental Fig 2). We also detected N549K mutations in two patient samples (one 

in each treatment arm), with very low mutation allele frequency of only 2%, suggesting 

that these tumors are heterogeneous, with the vast majority of their cells having wild-

type FGFR2. Interestingly, the everolimus-treated patient whose PFS was 14.1 months 

also had a confirmed somatic mutation in mTOR and in PIK3CA exon 9. 

 

TCGA HR+, HER2– Breast Cancer Cohort  

The HR+, HER2– breast cancer subpopulation of 477 patients was selected from 

The Cancer Genome Atlas network (TCGA) complete breast cancer cohort based on 

the immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) status of 

hormone (progesterone and estrogen) receptors and HER2.5 For comparing mutation 

frequencies in TCGA HR+, HER2– breast cancer cohort against the BOLERO-2 NGS 

population, we included the somatic short-variants (non-synonymous missense, 

nonsense, INDELs, and frame-shift mutations), and copy-number aberrations as 

reported using GISTIC scores in TCGA.6 Because copy-number variants in the 

BOLERO-2 NGS population only comprised bi-allelic loss and copy-number variants of 

high-level amplifications (≥6 copies), we only included the copy-number variants with 
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GISTIC scores –2 (corresponding to bi-allelic loss) and +2 (corresponding to high-level 

amplification) for the TCGA cohort.  

For CIN-score calculations on the TCGA cohort, raw gene-level copy-number 

values instead of GISTIC scores were used. All the genetic alteration data for TCGA 

samples were downloaded from cBioPortal using the R-package cgdsr (http://cran.r-

project.org/web/packages/cgdsr). 

 

CIN Metric for Scoring Chromosomal Instability: Establishment on BOLERO-2 

Data and Validation on TCGA Data  

For each tumor sample from the BOLERO-2 NGS cohort, genes were first sorted 

according to their genomic location. The number of switches or breakpoint events, as 

represented by genomic rearrangements and copy-number mismatches between 

neighboring genes on each chromosome, was then calculated. The magnitude of copy-

number changes was summarized by summing the absolute difference in copy numbers 

between neighboring genes on each chromosome. The number of switches and 

magnitude of switches across all the samples in the cohort were then ranked 

separately, and the sum of the ranks was used to define the chromosomal instability 

metric (CIN) for each sample in the cohort (Supplemental Fig 1).  

We established the robustness of the CIN score for estimating chromosomal 

instability using a targeted gene panel by evaluating the CIN score on 477 HR+, HER2– 

breast cancer samples in TCGA for which the whole-exome copy-number calls were 

available. The CIN scores were calculated for TCGA samples using the same method 

as described in Supplemental Fig 1. We calculated CIN scores using the raw copy-
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number data for all the genes covered in the whole-exome TCGA data, or a subset of 

genes comparable in number with the targeted cancer gene panel used in the NGS 

assay on samples from BOLERO-2. For the CIN scores calculated using a random set 

of genes (Supplemental Fig 4), the numbers of genes similar to those present on the 

targeted panel were drawn randomly from the genes covered by the whole-exome 

TCGA data, and CIN scores were calculated for each sample using these random sets 

of genes. All analyses comparing random gene sets with targeted panel or whole-

exome were performed on at least 100 different random gene sets.  

While all the genes present on our targeted gene panel have biologic significance 

in cancer, we found that CIN calculations using random gene sets (CINRand) provide an 

equally good estimate of chromosomal instability (with an average correlation coefficient 

of 0.95 between CINPanel and CINRand, Supplemental Fig 6). Furthermore, the 

comparison of the targeted gene panel CIN scores to CIN calculated from whole-exome 

data shows a very high correlation between the two (correlation coefficient of 0.96 for 

CINPanel  vs CINWE, and correlation coefficient of 0.92-0.98 for CINRand vs CINWE). These 

two datasets demonstrate that, although the whole-genome and transcriptome assays 

are presently preferred methods for measuring chromosomal instability, developing an 

equally valid scoring metric using data acquired from a medium-sized pan-cancer gene 

panel such as ours provides a beneficial expansion of the utility of the NGS data 

increasingly collected in oncology practice. 

 



	 9

PTEN Immunohistochemistry Assay 

Tissue slides were stained with hematoxylin and eosin (H&E) and evaluated for 

the presence of tumor. PTEN expression was assessed by immunohistochemistry using 

clone 138G6 antibody (Cell Signaling Technology, Danvers, MA). Both the staining 

intensity (0, 1+, 2+, and 3+) and the percentage of positive tumor cells at each intensity 

and cellular location (cytoplasm) were evaluated and reported as Histo-scores. 

 

Analysis of AKT and pS6 Activation in Cell Lines 

Reverse Phase Protein Array (RPPA) analyses of phospho-AKT (Serine 473) 

and phopsho-S6 (Serine 240/244) were conducted in 422 cancer cell lines of various 

lineages at the RPPA Core Facility at MD Anderson Cancer Center according to 

standard procedure.7 The RPPA expression levels were Z-score transformed. Alteration 

of the PIK3CA gene was determined as part of the Cancer Cell Line Encyclopedia 

(CCLE) project.8  

 

Statistical Analyses 

Known genetic alterations were summarized using descriptive statistics.  Progression-

free survival (PFS) for patients whose tumors harbored altered versus wild-type status 

for the indicated gene was compared using Kaplan-Meier estimates. In addition, for 

individual genes, the Cox proportional hazards model was used to compute the hazard 

ratio for PFS and its associated 95% confidence interval. For assessments of each 

gene or combinations of genes within a specific signaling pathway, PFS comparisons 

were made using a Cox model adjusted for clinical covariates that were significantly 
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imbalanced between treatment arms and varied by comparison. The covariates (prior 

chemotherapy, Eastern Cooperative Oncology Group (ECOG) status, age, and race) 

were checked between the two treatment arms of each biomarker-defined 

subpopulation.		
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SUPPLEMENTAL TABLES 

Supplemental Table 1. Median PFS and HR at Different CIN Score Cut-offs. CIN Score Cut-off of 75th Percentile and 
Higher Show No Benefit of Everolimus in CIN High Subgroup as Compared to CIN Low Subgroup. 

Cut point Group N Events Median PFS (95% CI) HR (95% CI) 

25% 
CIN Low 

PBO.low 30 25 4.21 (2.53–6.93) 0.49 (0.29–0.82) 
RAD.low 57 35 8.41 (5.13–11.07)  

CIN High 
PBO.high 63 53 2.79 (1.51–4.17) 0.41 (0.29–0.58) 
RAD.high 152 92 6.93 (5.78–8.05)  

50% 
CIN Low 

PBO.low 49 41 4.14 (2.63–5.55) 0.42 (0.28–0.63) 
RAD.low 104 59 8.48 (6.8–11.07)  

CIN High 
PBO.high 44 37 2.79 (1.45–4.17) 0.44 (0.29–0.66) 
RAD.high 105 68 6.83 (5.55–7.13)  

60% 

CIN Low 
PBO.low 55 46 4.11 (2.53–5.49) 0.43 (0.3–0.63) 

RAD.low 127 74 8.31 (6.8–10.87)  

CIN High 
PBO.high 38 32 2.79 (1.48–4.21) 0.43 (0.28–0.68) 

RAD.high 82 53 6.77 (5.49–7.13)  

65% 

CIN Low 
PBO.low 59 49 4.11 (2.63–5.42) 0.41 (0.28–0.59) 
RAD.low 137 76 8.48 (6.93–11.1)  

CIN High 
PBO.high 34 29 2.79 (1.45–4.37) 0.5 (0.31–0.79) 
RAD.high 72 51 5.59 (4.44–6.9)  

70% 

CIN Low 
PBO.low 65 55 2.86 (2.63–5.26) 0.39 (0.28–0.55) 
RAD.low 146 81 8.41 (6.93–11.07) 

 

CIN High 
PBO.high 28 23 4.14 (1.45–5.52) 0.57 (0.34–0.95) 
RAD.high 63 46 5.78 (4.53–6.93)  

75% 
CIN Low 

PBO.low 71 60 2.86 (2.63–5.26) 0.39 (0.28–0.54) 
RAD.low 155 86 8.41 (6.93–11.07)  

CIN High 
PBO.high 22 18 4.14 (1.41–5.52) 0.62 (0.35–1.08) 
RAD.high 54 41 5.59 (4.11–6.83)  
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Supplemental Table 1. Median PFS and HR at Different CIN Score Cut-offs. CIN Score Cut-off of 75th Percentile and 
Higher Show No Benefit of Everolimus in CIN High Subgroup as Compared to CIN Low Subgroup. 

Cut point Group N Events Median PFS (95% CI) HR (95% CI) 

80% 
CIN Low 

PBO.low 76 64 4.01 (2.63–5.26) 0.42 (0.3–0.57) 
RAD.low 165 94 8.25 (6.8–10.87)  

CIN High 
PBO.high 17 14 4.14 (1.18–4.37) 0.49 (0.26–0.94) 
RAD.high 44 33 6.7 (4.53–7.03)  

85% 
CIN Low 

PBO.low 81 69 2.86 (2.63–4.21) 0.41 (0.3–0.56) 
RAD.low 175 98 8.25 (6.8–10.87)  

CIN High 
PBO.high 12 9 4.17 (0.92–8.94) 0.56 (0.26–1.21) 
RAD.high 34 29 6.7 (4.53–7.03)  

`
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Supplemental Table 2. Panel of Evaluated Cancer-Related Genes  

ABL1 CDK6 FGFR1 MAP2K4 PIK3CA TSC2 STAT3 FANCE MYCL1 

AKT1 CDK8 FGFR2 MCL1 PIK3CG VHL TBX22 FANCF MYD88 

AKT2 CDKN2A FGFR3 MDM2 PIK3R1 WT1 TNKS FANCG NFE2L2 

AKT3 CDKN2B FGFR4 MDM4 PRKDC ABL2 TNKS2 FANCL NFKBIA 

ALK CDKN2C FLT1 MEN1 PTCH1 BCL2A1 USP9X FGF10 NOTCH2 

APC CEBPA FLT3 MET  PTEN  BCL2L1 ARID2 FGF14 NUP93 

AR CHEK1 FLT4 MITF PTPN11 BCR  ASXL1 FGF19 PALB2 

ARAF CHEK2 GATA1 MLH1 RAF1 CDH2 ATRX  FGF23 PBRM1 

ARFRP1 CRKL GNA11 KMT2A RARA CDH20 AXL  FGF3 PDK1 

ARID1A CRLF2 GNAQ MPL RB1 CDH5 BARD1 FGF4 PIK3R2 

ATM CTNNB1 GNAS MRE11A RET EPHA6 BCOR  FGF6 PPP2R1A 

ATR DDR2 GPR124 MSH2 RICTOR EPHA7 BCORL1 FOXL2 PRDM1 

AURKA DNMT3A HRAS MSH6 RPTOR EPHB4 BLM GATA2 PRKAR1A 

AURKB DOT1L IDH1 MTOR RUNX1 EPHB6 BRIP1 GATA3 RAD50 

BAP1 EGFR IDH2 MUTYH SMAD2 ERCC2 BTK GID4 RAD51 

BCL2 EPHA3 IGF1R MYC SMAD4 FOXP4 CBFB GNA13 RNF43 

BCL2L2 EPHA5 IKBKE MYCL SMARCA4 GUCY1A2 CDC73 GRIN2A ROS1 

BCL6 EPHB1 IKZF1 MYCN SMARCB1 HOXA3 CDK12 GSK3B SETD2 

BRAF ERBB2 INHBA NF1 SMO HSP90AA1 CDKN1B HGF SF3B1 

BRCA1 ERBB3 IRS2 NF2 SOX10 IGF2R CIC IL7R SOCS1 
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Supplemental Table 2. Panel of Evaluated Cancer-Related Genes  

BRCA2 ERBB4 JAK1 NKX2-1 SOX2 INSR CREBBP IRF4 SPEN 

CARD11 ERG JAK2 NOTCH1 SRC LRP6 CSF1R KAT6A SPOP  

CBL ESR1 JAK3 NPM1 STK11 LTK CTCF KDM5A STAG2 

CCND1 ETV1 JUN NRAS SUFU MLL CTNNA1 KDM5C STAT4 

CCND2 ETV4 KDM6A NTRK1 TET2 MYCL1 DAXX KEAP1 TNFRSF14

CCND3 ETV5 KDR NTRK2 TGFBR2 PHLPP2 EMSY KLHL6 TSHR 

CCNE1 ETV6 KIT  NTRK3 TMPRSS2 PKHD1 EP300 MAP3K1 WISP3 

CD79A EWSR1 KRAS PAK3 TNFAIP3 PLCG1 FAM123B MED12 XPO1 

CD79B EZH2 LRP1B PAX5 TOP1 PTCH2 FAM46C MEF2B ZNF217 

CDH1 FANCA MAP2K1 PDGFRA TP53 PTPRD FANCC MLL ZNF703 

CDK4 FBXW7 MAP2K2 PDGFRB TSC1 SMAD3 FANCD2 MLL2  

Gene names in Red are only present on the 182-gene panel. 
Gene names in Blue are only present on the updated 236-gene panel. 
Gene names in black were common to both the gene panels (and were included in the current analysis). 
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Supplemental Table 3. Concordance of Samples With Mutations in p53 Pathway 
Genes (TP53, MDM2, and MDM4) by CIN Subgroups 

CIN 

p53 Pathway (TP53, MDM2, and MDM4 genes) 

Mutated Wild-Type 

High 

Low 

57 

60 

19 

166 

Likelihood of p53 pathway mutation (high vs low CIN): 
Odds ratio = 8.23 (95% CI, 4.41–5.92); P = 1.423e-13 (Fisher’s exact test). 

 

 

Supplemental Table 4. PFS by Treatment Arm in Patient Subsets Categorized by Alterations in Key Genetic Pathways 

 Description Group n 
PFS 

Events
Median PFS, mo

(95%CI) 
Hazard Ratio 

(95%CI) 

PIK3CA, FGFR1/2, and 
CCND1 variations 

Mutation in ≤1 genes  
(PIK3CA, FGFR1/2, 
CCND1) 

PBO.Sing.≤1
EVE.Sing.≤1

66 
161

55 
94 

4.1 (2.7–5.6) 
8.1 (6.8–10.2) 

0.44 (0.32–0.62) 

 Mutation in ≥2 genes  
(PIK3CA, FGFR1/2, 
CCND1) 

PBO.Mult.≥2 
EVE.Mult.≥2 

27 
48 

23 
33 

2.8 (1.4–4.2) 
5.6 (3.9–6.9) 

0.44 (0.25–0.77) 

P53 pathway variations Wild-type TP53, 
MDM2, and MDM4 
genes 

PBO.WT 
EVE.WT 

54 
133

45 
74 

4.0 (2.6–6.8) 
8.1 (6.8–10.9) 

0.43 (0.30–0.63) 

 Mutation in TP53, 
MDM2, or MDM4 
genes 

PBO.ALT 
EVE.ALT 

39 
76 

33 
53 

2.9 (1.5–4.2) 
6.8 (5.2–8.5) 

0.45 (0.29–0.70) 

Abbreviations: ALT, alteration; CI, confidence interval; EVE, everolimus; Mult, multiple (ie, alteration in ≥2 relevant genes); PBO, placebo; 
PFS, progression-free survival; Sing, single (ie, alteration in ≤1 relevant gene); WT, wild-type. 

 



	 16

REFERENCES 

 
 1. Frampton GM, Fichtenholtz A, Otto GA, et al: Development and validation 

of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. 

Nat Biotechnol 31:1023-31, 2013 

 2. Grabiner BC, Nardi V, Birsoy K, et al: A diverse array of cancer-associated 

MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer 

Discov 4:554-63, 2014 

 3. Knutson BA: Insights into the domain and repeat architecture of target of 

rapamycin. J Struct Biol 170:354-63, 2010 

 4. Wu YM, Su F, Kalyana-Sundaram S, et al: Identification of targetable 

FGFR gene fusions in diverse cancers. Cancer Discov 3:636-47, 2013 

 5. Cancer Genome Atlas Network: Comprehensive molecular portraits of 

human breast tumours. Nature 490:61-70, 2012 

 6. Beroukhim R, Getz G, Nghiemphu L, et al: Assessing the significance of 

chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl 

Acad Sci U S A 104:20007-12, 2007 

 7. Tibes R, Qiu Y, Lu Y, et al: Reverse phase protein array: validation of a 

novel proteomic technology and utility for analysis of primary leukemia specimens and 

hematopoietic stem cells. Mol Cancer Ther 5:2512-21, 2006 

 8. Barretina J, Caponigro G, Stransky N, et al: The Cancer Cell Line 

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 

483:603-7, 2012 

 



	 17

SUPPLEMENTAL FIGURES 

 

 

 

Supplemental Fig 1. CIN score calculation based on copy-number and genomic 

arrangements. n, number of copy-number switches/rearrangements; m, magnitude of 

copy-number changes. 
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Supplemental Fig 2. Genetic alterations observed in patient tumors. Known 

amplifications (Amp), deletions (Del), rearrangements (Rearr) and somatic variations 

(SV) are shown. The 40 most frequently altered genes are included in the display 

above. 
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Supplemental Fig 3. Mutations reported in (A) mTOR and (B) FGFR2 in the BOLERO-

2 next-generation sequencing (NGS) population. Mutations reported here are either 

confirmed somatic (daggers; where matching germline samples were sequenced), or 

potentially somatic (samples for which matching germline samples were not sequenced, 

and somatic status is reported based on COSMIC, dbSNP database, and other 

germline samples sequenced in this study; see Methods). The minor allelic fractions of 

the short-sequence variants are reported as percentage of total number of reads at that 

position. For copy-number amplifications in FGFR2 (Amp), numbers of copies observed 

in the tumor samples are reported. Progression-free survival (PFS) is reported in 

months; dashed vertical line represents the median PFS in the placebo arm (~4 months; 

95% CI, 2.6-4.2 months), and the solid vertical line represents the median PFS in the 
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treatment arm (~7 months; 95% CI, 6.7-8.5 months) for the NGS population. 

Abbreviations: EVE, everolimus; EXE, exemestane. 

 

 

 

 

 

 

Supplemental Fig 4. CIN score: Whole-exome versus targeted panels on The Cancer 

Genome Atlas (TCGA) hormone receptor (estrogen and/or progesterone receptors)-

positive, human epidermal growth factor receptor-2–negative cohort. For box-plots 

comparing random gene sets to whole-exome or the genes on our targeted panel (red 

and blue), 100 different simulations were performed with random gene sets. Pearson 

correlation was calculated between CIN scores from random gene sets and targeted-

panel (blue) (or whole-exome [red]) on the TCGA samples. (See supplemental methods 

for additional details.) 
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Supplemental Fig 5. Data from eight cell lines with PIK3CA exon 20 mutations and 11 

cell lines with exon 9 mutations from Cancer Cell Line Encyclopedia (PTEN mutants 

were removed to avoid confounding factors) showed significantly higher phospho-AKT 

levels in those with exon 20 mutations versus exon 9 mutations, whereas their 

mammalian target of rapamycin (mTOR) activities (indicated by phospho-S6 level) were 

very similar. 
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Supplemental Fig 6. Comparison of CIN score with number of mutations in these three 

frequently mutated genes (FGFR1, PIK3CA, and CCND1) shows the trend that samples 

with higher CIN score have higher number of mutations. However, the correlation is not 

perfect, as many samples with mutations in other genes can result in higher CIN scores. 


