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This document gives details of the methods and results of a validation of the analytic solutions for
the initial abstract/simplified ensemble learning model (the voter ensemble model) by numerical
simulation.

Validation of Analytic Solutions by Numerical Simulation

In order to validate the analytic solutions of the voter ensemble network, we compared its
results, as derived in the first part of the Results Section of the main paper, with a numerical
simulation that simply iterated through all the underlying equations of the same model. This
validation was deemed worthwhile because the simplified analytical model is based on Bernoulli
random variables that simulate per sample firing events. The numerical simulation of the model
allowed us to check that the long-term trends and statistics matched those predicted by the
analytical solutions. The simulation was performed by a two-step process: a learning phase was
followed by a measuring phase. Since this initial simplified model is for illustrative purposes (to
determine if the ITDP and ensemble learning dynamics are as expected), for convenience and
ease of analysis, abstract automatically generated data was used for the simulation. First, we
defined the posterior probability tables as in Figure 3 (in the main paper) for every ensemble
voter and the gating voter by randomly drawing their values using a certain distribution. After
defining the posterior probabilities for an input dataset of size M , the learning phase trains
the connection weights using ITDP until they are sufficiently converged by running the system
for multiple rounds of dataset presentation. This is followed by the measuring phase which
measures the performance of the final voter using these fixed weights. The performance of a
single voter was measured using normalised conditional entropy (NCE) [1], which is suitable
for measuring the performance of a multi-class discrimination task where the explicit relation
between the neuronal index and the corresponding class is unavailable. NCE has a value in
the range 0≤NCE≤0.5, with lower conditional entropy indicating that each neuron fires more
predominantly for one class, hence giving better performance (See Methods for the details of
the simulation procedure and the NCE calculation).

Comparison with Numerical Simulation

Both the learning and measuring phases in the numerical simulation were run for T = M×R
steps, where R is the number of rounds of dataset presentation which was set to 10 or 100, de-
pending on the experiment. Using 4 input classes (NC = 4) the total number of input samples
was set to M = 400 which consists of 100 samples for each class. The pre-determined firing
probabilities of the ensemble and the gating voter can be set arbitrarily under the constraint∑NC

i=1 p(m
j
i |x) = 1. In order to easily test and understand the broad picture of the ensemble

behaviour (as well as to aid performance visualisation), let us represent the system by a few
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Figure S1.1. Illustrative descriptions of the changes of the analytically calculated NCEs
for a single voter and the final voter under various values of Pmax and ensemble sizes NE. For
illustration purpose, the neuron firing probabilities of a voter were fixed to Pmax for the dominant
firing neuron and r for the rest (See text for details). Average ensemble voter NCE was simply
controlled by using identical parameters for all ensemble voters. (Left) The NCE of a voter vs.
Pmax. (Right) Bivariate plots of the final voter NCEs vs. average ensemble NCEs with different
ensemble sizes 3≤NE≤10. The gating voter NCE is fixed to 0.4 by setting PG

max = 0.7.

parameters describing the presynaptic voters. Since the final voter performance is affected dir-
ectly by the performance of the ensemble and gating voters, and therefore cannot be objectively
measured independently of them, we consider the three key factors to be: the overall perform-
ance of the ensemble voters, the gating voter performance, and the ensemble size. Controlling
the overall performance of the ensemble voters is achieved by using statistically identical voters
for the entire ensemble. The performance of a voter can be adjusted by varying a parameter
which changes all of its firing probabilities as follows.

For NC = 4, the mean firing probabilities of the neurons in each voter for the samples from
each class can be considered as a 4×4 matrix where each column is set to the average firing
probabilities of a voter for the samples in the corresponding input class. We can see that the
voter performance is maximum (lowest NCE) when this matrix is the identity matrix. Also the
performance of a voter is analytically the same under the permutation of rows (i.e. switching
neuron indices) as can be seen in Equations 27 and 28 (main paper). Thus in order to easily
assign various performance values to the voters, we defined a parameter 1

NC
≤Pmax≤1 such that

every diagonal element of the matrix is set to Pmax, and all other elements are set equally to
r = (1− Pmax)/(NC − 1). The probability matrix of a voter for NC = 4 is written as:⎛

⎜⎜⎝
Pmax r r r
r Pmax r r
r r Pmax r
r r r Pmax

⎞
⎟⎟⎠ , r =

1− Pmax

3
,

1

4
≤Pmax≤1 (S1.1)

This probability matrix can be used to design a voter such that its NCE has the desired value.
The simple case would be to assign these class-dependent firing probabilities identically for all
samples within the corresponding class, which results in the NCE ranging from 0.5 (worst) to
0 (best) by setting Pmax accordingly. Using this setting, an initial illustrative picture of voter
ensemble behavior is shown in Figure S1.1 which describes the analytically calculated voter NCE
for different Pmax values and the final NCEs of combined output for different average ensemble
NCEs and its sizes. However, having identical firing probabilities for entire sample subsets is
not realistic. Thus we assign the firing probabilities of every sample for each subsets randomly
by using the elements of the above probability matrix as the means of normal distributions
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Figure S1.2. Time evolution of weights by numerical ITDP and their analytic solution for
different ensemble performances (48 connections run for 40000 time steps (100 rounds with
400 samples), NC = 4 and NE = 3). (A-C) The horizontal lines show the expected level of
convergence calculated from the analytic solution. (D-F) The final value of numerical weights
vs. analytic weights, each corresponds to A-C. The analytic solution matches the weight values
converged by numerical simulation. In order to see the distribution of weight values under higher
sample dependent variability of ensemble statistics, the sample-wise firing probabilities of each
voter were drawn uniformly randomly in the range PL < Pmax < PH (for the dominantly firing
neurons for corresponding classes) and 0.2R < r1,2 < 0.8R (the rest of probabilities) where
R = (1 − Pmax)/(NC − 2). The gating voter firing probabilities were similarly set in the range
0.5 < Pmax < 0.6. The min/max values (PL, PH) for Pmax were set as: (A,D): (0.3,0.9), (B,E):
(0.5,0.9), (C,F): (0.7,0.9).

with certain variances. For example, when NC = 4, the firing probabilities for four neurons
for a sample from class 1 are set as (p, r1, r2, r3) where p = N (Pmax, σ

2
p), r1,2 = N (r, σ2

r ), and
r3 = 1−(p+r1+r2). Probability assignment using uniform distributions is also possible to assess
wider diversity on the posterior probabilities of samples by defining the range as U(PL, PH).

Using these parameter settings, the ensemble system was tested with different performances
of the ensemble voters and the gating voter. First the weight convergence by ITDP was examined
by comparing the analytic solution of the expected values of weights and the weights learnt by
numerical simulation. Figure S1.2 shows clear separation of weight values into groups according
to the discriminability of the ensemble voters, indicating that the ITDP learning reflects the
history of presynaptic voter behaviours, which influences the final voter performance. After
learning with sufficient guidance from the gating voter, the decision from the better performing
ensemble neurons influences the final voter output more by developing relatively stronger weights
than the other neurons. Thus the spike from one strongly weighted synaptic projection can
overwhelm several other weakly weighted ‘wrong’ decisions, achieving the weighted vote learnt
from the previous history of ensemble behaviour (exactly the behaviour we desire in this kind of
ensemble learning). Plotting numerical vs. analytic weights, as in Figure S1.2 D-F, shows that
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Figure S1.3. Analytic illustration of outgoing connection weights from an ensemble neuron
to final voter neurons, depicted on (PE

max, P
G
max) space. (Left) Weight delivering the right class.

(Right) The other weight which does not match the current presented class. See text for further
details.

the two solutions match well, validating our analytic formulation of expected weight values, and
demonstrates that the system performs very well under appropriate parameter settings.

The main role of the gating voter is to guide the spike-evoked EPSPs from the ensemble
neurons which represent the same class onto one of the postsynaptic neurons of the final voter
via topographic distal signals. The analytic model allows us to, for example, easily gain insight
into the distribution of the outgoing weights from an ensemble neuron to each of final voter
neurons. For tractability, let us assume that each voter neuron has a constant firing probability
for all samples in the same class. Using the firing probabilities of presynaptic voters defined by
the diagonal matrices as in Equation S1.1, the probabilities of the ensemble voter and the gating
voter can be defined by the parameters PE

max and PG
max respectively. Assuming the probabilities

of input class presentations (p(cn)) are all the same, the analytic solution of the weight from
one of the ensemble voter neurons (mi) to the final voter neuron fk can be rewritten using
class-conditional probabilities p(m|c) as

wki = log(a)− log

(∑NC
n=1{p(mi|cn) + p(gk|cn)}∑NC

n=1 p(mi|cn)p(gk|cn)
− 1

)
(S1.2)

Setting a = e5, NC = 4, NE = 3, and substituting p(mi|cn) and p(gk|cn) for the elements of
the corresponding 4×4 diagonal probability matrices as in Equation S1.1, with parameters PE

max

and PG
max gives:

wki =

⎧⎨
⎩
5− log

(
5+B
1−B

)
, if k = 1

5− log
(
16−B
2+B

)
, otherwise

(S1.3)

B = PE
max + PG

max − 4PE
maxP

G
max. (S1.4)

We can see that the most enhanced connection weight from the presynaptic neuron mi to the
postsynaptic neuron fk (i = k in the current setting) has an inverse relationship with the rest of
the outgoing weights (connections to fk where i�=k) in (PE

max, P
G
max) space. Figure S1.3 shows

(when i = 1) that a low PG
max (i.e. low gating voter performance) results in less difference between

outgoing weights from the presynaptic neuron m1, hence giving equal EPSPs to all postsynaptic
neurons (i.e. w11 = w21 = w31 = w41, resulting in no capability of weighted voting). The same
holds for the ensemble voter parameter (PE

max). Therefore, in our ensemble voter system, both
the gating voter and at least one ensemble voter must have positive discriminability (NCE<0.5)
in order to learn to perform weighted voting.
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Figure S1.4. Numerical simulation of final voter firing probabilities for each class presentation
after learning (NC = 4, NE = 3). The sample-wise firing probabilities of voter neurons were set
by a normal distribution of variance 0.1, with the means PE

max = 0.5, 0.6, 0.7 for each ensemble
voter, and PG

max = 0.6 for the gating voter. (A-D) Each plot shows the time course of the firing
probabilities of each final voter neuron for different class presentations. Each coloured plot
shows the time span 0≤t≤10000, where the highest firing probabilities of each final voter neuron
appear densely plotted at the corresponding class presentations through learning, as indicated
by the grey boxes. (E) Analytic solution of the possible values of each final voter neuron firing
probabilities, obtained from the same numerically learnt weights as in A-D. (F) The average
firing probabilities of each neuron during each class presentation (the average of each coloured
value in the left graphs).

The performance of the final voter depends on the performances of every voter in the en-
semble, the gating voter, and the ensemble size. The combined output of the ensemble voter
network can be understood by measuring the long-term behavior of the momentary output of
the final voter. Figure S1.4 illustrates an example of the final voter probabilities iteratively cal-
culated using the numerical simulation (with fixed weights after learning) with NC = 4, NE = 3.
The firing probabilities of voters for each sample was randomly set by a normal distribution with
variance 0.1, where the means were set by the parameters PE

max = (0.5, 0.6, 0.7) for each ensemble
voter and PG

max = 0.6 for the gating voter. The EPSP for the final voter neuron was calculated
simply by using the weighted sum of presynaptic spikes, resulting in 43 = 64 possible states of
the presynaptic spikes. Thus the maximum number of probability values that each final voter
neuron can have is 64, where their individual values depend on the synaptic weights (Figure S1.4
E). At each time instance, the firing probability of each final voter neuron belongs to one of the
corresponding set of values, only differing by their frequency of appearance (as shown in Figure
S1.4 A-D). The average firing behaviour (Figure S1.4 F) shows that each neuron dominantly
fires for a corresponding class, which indicates that the ensemble network successfully achieved
weighted voting.

Figures S1.5 shows the relationship between the final voter performance and the presynaptic
voter performances, indicating the bidirectional dependence both on the ensemble and the gating
voters, as well as illustrating the close correspondence of the analytic solutions and numerical
simulations of the logical model. The sample-wise neuron firing probabilities of all voters in the
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Figure S1.5. Analytic (A-C) and numerical (D-F) long-term performances of the final voter
vs. ensemble and gating voters (NC = 4). The parameters for the ensemble (PE

max) and the
gating (PG

max) voters vary in the range [0.25, 1.0] with the interval of 0.025. Each column shows
the result using different ensemble sizes, where (A,D) NE = 3, (B,E) NE = 4, and (C,F) NE = 5.

ensemble are set by sampling from identical gaussian distributions of N (PE
max, 0.05) in order

to easily assign various overall average ensemble performances (and PG
max for the gating voter).

The results show a very good match between the numerical simulations and their analytic
solutions over the different combinations of the ensemble and gating voter parameters (0.25 <
PE
max, P

G
max < 1.0). The pairs of graphs in each column show the effect of increased ensemble size,

which improves the weighted vote performance as analytically predicted in Figure S1.1-right.
These validation tests showed that the logical model of a spiking voter ensemble system and

its analytic solutions are capable of performing efficient spike-based weighted voting, driven by
ITDP, and gives us important insights into how that is achieved. They also demonstrated how
the seemingly complex network of interactions between stochastic processes within a population
of voters can be effectively described by a series of probability metrics.
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