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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The yeast strains used in this study can be grown and maintained using standard methods (e.g. YPD media

in test tubes, glycerol stocks for long term storage at −80◦C), but should be propagated in the selection

environment (glucose limited minimal media) for optimal phenotypic and fitness measurements.

METHOD DETAILS

Sampling Clones

Evolved yeast clones were isolated by plating for single colonies from frozen samples of the generation-

88 time point of a previously reported serial batch transfer evolution experiment seeded by a population of

individually genome-barcoded yeast cells (500,000 barcodes total); each batch cycle consisted of 8 generations

of growth with glucose as the known limiting nutrient at an initial concentration of 1.5% (Levy et al., 2015).

We selected 3,840 colonies from replicate experiment E1 and 960 colonies from replicate E2 for a total of

4,800 individual evolved clones. A portion of each colony was resuspended in 20% glycerol in 96 well plates

and immediately frozen at -80◦ C; the remaining portion was used to identify the barcode residing in that

clones genome. To identify the barcode, we amplified the genomic region carrying the barcode with PCR

using the following primers:

PS1 - CCCGCAGAGTACTGCAATTT

PS2 - TGCACGAAAAGCAAACAAAC

The PCR products were purified using ExoSap-It (Affymetrix # 78200) and sequenced by Sanger technology,

using PS2 as the sequencing primer, and then identified from among the set of 500,000 barcodes described

in Levy et al. (2015).

Pairwise fluorescence competition assay measurements

Fluorescence-based fitness assays were conducted as in Levy et al. (2015). Briefly, the individual clone to be

assayed was grown in liquid culture and then mixed with a YFP-tagged ancestral clone in a 1:9 ratio. This



mixture was sampled over 32 generations (four 8-generation batch cycles) in conditions identical to the initial

evolution experiments of Levy et al. (2015). The relative frequencies of the sample and the ancestor were

estimated at each time-point using flow cytometry at the Stanford Shared FACS facility. An exponential

model was then fit to these data to estimate fitness.

Pooled-clone fitness measurement assay

Overview All 4,800 isolated clones were pooled into a single culture, then mixed with a clone with ancestral

fitness in a 1:9 ratio and competed by culturing the mixture under conditions identical to the initial evolution

for 32 generations (four 8-generation cycles), with samples being stored at every transfer. Barcode frequencies

were tracked using Illumina HiSeq technology, and fitness was estimated using these frequency trajectories.

We performed the fitness measurement assay a total of 11 times, in four independent batches, each time

with two or three replicate flasks (see below for complete details).

Design of the Fitness measurement assay The goal of the fitness measurement assay is to cheaply,

easily and accurately measure the fitness of many barcoded clones in parallel; any desired set of clones (as

long as each clone contains a unique barcode at the same genomic position) can be pooled and used in this

assay. In this protocol, we competed a pool of 4,800 clones sampled from generation 88 of the evolution

experiments of Levy et al. (2015) against a clone with ancestral fitness, for a period of 32 generations of

batch culture competition. We then estimated the frequencies of the clones at five timepoints by Illumina

amplicon sequencing of their DNA barcodes. The frequencies from four of these five timepoints (described

in section 3.4) were then used to estimate fitness (s). We used the same growth conditions as the evolution

experiments of Levy et al. (2015), where the population goes through a bottleneck of ≈ 5 · 107 cells every

48 hours, i.e., at the time it is transferred to fresh media (≈ 8 generations between transfers).

To accurately measure the fitness of many clones, each adaptive lineage must be at a large enough frequency

such that stochastic effects at the bottleneck process are mitigated. In addition, most of the initial population

must consist of the ancestral genotype, so that fitness is measured in a condition dominated by the ancestor.

To fulfill all of these criteria we first pooled 4,800 sampled clones, then seeded this pool at an initial frequency

of 10% in the population and competed against an ancestral strain that made up ≈ 90% of the initial

population. Each sampled clone thus had a population size in the bottleneck of ≈ 0.1 · 5 · 107/5000 = 1, 000

cells. However, there are biological fluctuations from stochasticity in the lag time before new growth after

dilution, in birth/death fluctuations near the bottleneck, and in the sampling induced by the dilution process

itself. These give rise to fluctuations in the bottleneck population from one cycle to the next of ±
√
βn. In

our experiments, we estimated β ≈ 10 (see: Quantification and Statistical Analysis) so that these effects are

relatively small. Furthermore, for beneficial mutations with s > 1%, the systematic increases in population

due to selection are larger than the stochastic fluctuations. Thus the stochastic effects are relatively small

for most adaptive lineages in our fitness assay.

The large population size and the short time for the assay (32 total generations) also ensured that any

new adaptive mutations that arose during the course of the assay had no significant impact on the fitness

estimates of any single clone. The fraction of lineages that will get taken over by new mutations with a

particular range of s can be approximately bounded byµ/s ·esT , for a representative s. In our fitness assays,

the total adaptive mutation rate per generation µ for mutations with s > 5% is ≈ 106 (Levy et al., 2015),

highly adaptive mutations have s = 10%, and the assay is conducted for T = 32 generations. This gives us

an upper bound of 104 for the expected fraction of lineages dominated by a mutant that came up during the



evolution. The effect of new adaptive mutations is thus negligible in our fitness assays.

Ideally, the fraction of the population that consists of mutant clones would remain a small fraction of the

total population throughout the 32 generations of growth in these assays. The dynamics of the limiting

resource depend on the physiology of the dominant type(s) in the population, and if a non-ancestral type

dominated it could change those dynamics in a way which affected different mutants differently. Additionally,

if the ancestral clone gets to a low frequency, it becomes challenging to estimate fitness of a mutant relative

to the ancestral type. As we describe in Figure S1, the mutant clones started at a higher frequency within

the barcoded class than planned and reached substantial frequency in the total pool at late timepoints.

This might be one of the sources of systematic variations of measured fitnesses between experiments that

we observe. Future experiments would be well served to minimize the effect of large populations of mutants

changing the environment.

Construction of a strain with ancestral fitness

We realized that if a barcoded ancestor was used in the competition experiments, a large number of reads (up

to 90% of reads for the initial timepoint) would be spent sequencing the ancestral clone, leading to a waste

of sequencing capacity when estimating the frequency of the 4,800 evolved clones in the pool. We attempted

to use a barcode-less clone for the ancestor, but found that the PCR reactions failed when the barcode

sequence was present in such a small proportion of the population. Therefore, we developed a barcoded

ancestral strain with a restriction site at the barcode locus to serve as the reference strain, allowing us to

remove the amplicons derived from the reference strain by restriction enzyme digestion after the PCR step,

saving us a significant amount of sequencing cost.

We used the following primers in constructing the modified ancestor:

RE-SbfI-F atcg cctgcagg aaacgaagataaatcatgtc

RE-ApaLI-2R atcg gtgcac ctgtcaacactgttccaact

RE-ApaLI-2F atcg gtgcac ataacttcgtataatgtatg

RE-XhoI-R atcg ctcgag tcatgtaattagttatgtca

We used the plasmid pBAR3 (Levy et al., 2015) as a template to generate two separate PCR products

from the above primers, which were then digested and ligated together to form the final construct for

transformation. Primers RE-SbfI-F and RE-ApaLI-2R were used to generate the one PCR product (amplicon

A), while primers RE-ApaLI-2F and RE-XhoI-R generated amplicon B. Amplicon A was then digested with

SbfI and ApaLI, amplicon B was digested with ApaLI and XhoI and the pBAR3 plasmid was digested with

SbfI and XhoI. These three digestion products were mixed and ligated simultaneously to generate complete

plasmids containing the ApaLI site in the barcode region. The ligation product was transformed directly into

SHA185 (Levy et al., 2015) to generate the modified ancestral clone. The presence of the ApaLI site in the

barcode locus was verified through amplification of the barcode locus of these transformants, digestion of the

resulting product by ApaLI and gel electrophoresis. A number of validated modified ancestral clones were

screened for ancestral fitness using the fluorescent pairwise-competition fitness assays (described in Levy et

al. (2015)), and the clone with the fitness closest to ancestral was selected for use in the sequencing based

fitness measurement assays.



Optimizing sequencing costs

We determined that we needed ≈ 1 million reads per timepoint for Illumina amplicon sequencing of the

4,800-pool barcodes in order to accurately estimate the frequency of the clones. For the initial timepoint,

we expect ≈ 200 reads per clone at this read depth. The frequencies of clones with large fitness effects

(either positive or negative) are expected to change the most between samples (taken every 8 generations).

A ≈ 20% fitness effect (the largest fitness effect observed in Levy et al. (2015)) would result in a four-fold

change in frequency over 8 generations, resulting in the subsequent sample having ≈ 800 reads for the clone

if it is adaptive and ≈ 50 reads for the clone if it is deleterious. These read depths are sufficient to have a

small amount of sampling noise during the amplicon sequencing process (Levy et al. (2015) Supplementary

Methods section 5), and thus ≈ 1 million reads per sample are adequate for our purposes. After allowing

for variation in read depth when multiplexing samples (one sample per timepoint), the presence of a small

amount of reads from the ancestral reference strain (due to low levels of undigested PCR products) and

the use of a 25% Phi-X library spike-in to properly calibrate the Illumina machines, we ended up pooling

9 assays worth of samples (≈ 40 samples) per lane of Illumina HiSeq 2000. As each lane results in ≈ 200

million reads, this gave us ≈ 4 million raw reads per sample. After removing reads from the reference strain

and PCR duplicates, we had 1-3 million reads per sample for our estimation.

As we sequenced 5 timepoints per fitness assay replicate, this protocol costs ≈ $0.06 USD to measure the

fitness of a single clone per replicate. It takes a single person about one month to conduct both the fitness

measurement assays and library preparation for amplicon sequencing, showing that this is truly a fast,

accurate and cost-effective way to estimate the fitness of thousands of clones in parallel.

Pooling the 4,800 clones sampled at generation 88

The 4,800 sampled clones from generation 88 of the two evolution replicates of Levy et al. (2015) were stored

in glycerol stocks in 50 96-well plates. As it was impractical to pool all of these clones together at once, we

constructed the pool in batches of 192 clones (2 plates). Each clone was grown from freezer stock in 800µL

of M3 medium (the medium used in the evolution experiments) in 96 well plate format at 30◦C for 2 days

so that all lineages reached saturation. 400µL 40% glycerol were added to each well and mixed, after which

400µL mixture from each well were pooled into a single vessel. Thus, for every two plates (192 total clones)

we had an 80mL pool stored in two 50mL tubes at -80◦C. This procedure was repeated for pairs of plates

over the course of a few weeks until we had 25 frozen pools, each of which represented two plates worth of

clones. As we used a multi-pronged pinner to take clones from frozen stock and pin them into 96-well plates,

a small percent of clones were not successfully recovered from frozen stock and therefore not included in the

pool. The 25 frozen pools were then thawed simultaneously at room temperature and mixed into a single

vessel. This vessel thus contained cells from ≈ 4, 800 clones (excluding those that were not recovered from

frozen stock). We dispensed 1 mL aliquots into 1.5mL eppendorf tubes, which were stored at -80◦C.

We found that the clones have a wide range of frequencies in the pool, spanning nearly 3 orders of magnitude.

To test whether this wide frequency range had a significant effect on fitness, we generated another pool of

500 of these clones where all clones were grown and pooled simultaneously, instead of in batches, and the

fitness assay was begun without any freeze-thaw cycles to minimize the number of generations of pooled

growth before the beginning of the fitness assay. Our fitness measurement results are highly consistent with

the results of the 4,800 clone pool (Figure 2), suggesting that the wide range of initial frequencies, freeze-

thaw effects nor the presence of additional generations of growth in the pool substantially change our fitness



estimates.

Conducting the fitness measurement assay

The fitness measurement assay was designed to assay the fitness of a large number of adapted clones in bulk

against a reference clone. We conducted the fitness measurement assay on the pool of 4,800 clones in four

batches with slightly different protocols.

To conduct the fitness assays, we first streaked the modified ancestral clone from frozen stock onto M3 agar

plates. We selected a single colony and inoculated it into 3mL fresh M3 media and grew it for 2 days so

that it reached saturation. 400µL of cell culture were then inoculated into 100mL M3 medium (the medium

used in the evolution experiments of Levy et al. (2015)) in 500mL DeLong flasks (Bellco # 2510-00500). We

also thawed out 1mL of the 4,800 clone pool, spun it down, removed supernatant, re-suspended the cells in

M3 medium (to remove glycerol) and then inoculated the entire volume into a separate flask of 100mL M3

medium. After 2 days of growth at 30◦C and 223 RPM in a shaking incubator, the cultures were saturated,

and we mixed the ancestral culture with the pool in a 1:9 ratio accounting for variation in particle counts

between the two cultures (Beckman Coulter) resulting in ≈ 100mL of mixture. 400µL of this mixture were

then used to inoculate 3 replicate fitness assay cultures. The replicate fitness assay cultures were grown

under conditions identical to the initial evolution conditions (Levy et al., 2015) for a total of 4 growth cycles

or 32 generations with 1:250 dilutions for every transfer. The remainder of the 100mL culture after the

initial mixture and each transfer was aliquoted in two 50mL conical tubes, spun down at 3000 rpm for 5

minutes, re-suspended in 6mL sorbitol solution (0.9M sorbitol, 0.1M Tris-HCL pH 7.5, 0.1M EDTA pH 8.0)

and frozen at -20◦C (-80◦C is also acceptable). This procedure was done for three different batches of assays

(batches # 1, # 3 and # 4). The 500 clone pool measurements followed a similar protocol except for not

conducting the recovery growth from the freezer stock, as the 500 clone pool fitness assays were conducted

without freezing the population (so one two-day growth cycle between the initial pooling and the mixing of

the pool with the ancestor to begin the fitness assay).

For the batch # 2 containing two replicates (the third replicate did not generate sufficient sequencing data

for analysis), after the initial 2 day growth of the separate ancestral and pool cultures in 100mL M3 media

performed as for the first batch of experiments, we transferred 5 · 107 cells from each culture into 100mL of

fresh M3 medium and grew them separately for 2 days before mixing and beginning the assay as before. This

second 48-hour growth was done to accustom the cells to the medium and to minimize the freezer effects

before beginning the assay. The number of cells/mL were determined using a Coulter particle counter to

transfer 5 · 107 cells for each transfer, rather than the 400µL transfers done by Levy et al. (2015). This was

done to ensure a more consistent dilution regime, and in practice worked out to nearly the same regime as

the evolution experiments as we transferred ≈ 400µL per cycle under these conditions.

In effect, while all three batches were tracked for 32 generations of growth, we used the data from generations

8-32 for fitness estimation in batches 1 and 3, and data from generations 0-24 in batch 2.

DNA extractions from each sample

For each sample (representing one time-point in one replicate), we conducted DNA extractions as follows

(starting from 50mL of cells spun down, then re-suspended and frozen in 5mL of sorbitol solution: 0.9M

sorbitol, 0.1M Tris-HCL pH 7.5, 0.1M EDTA pH 8.0). We thaw the frozen samples at room temperature,



resuspend the cells by vortex and transfer 750µL of cells to a 2mL screw cap tube. The cells are then

collected by high speed centrifugation, the supernatant is removed and the cells are washed in 500µL sterile

H2O. The water is again removed by centrifugation. We then add 200µL Triton SDS buffer (2% (v/v) Triton

X-100, 1% (w/v) SDS, 100mM NaCl and 1mM Na2 EDTA) to the cells, along with 200µL 25:24:1 phenol :

chloroform : isoamyl alcohol and ≈ 200µL 0.1mm glass beads. This mixture is vortexed at high speed for

15 minutes. We then add 200µL pH8.0 TE buffer to the tubes in a fume hood, then spin the tubes for 2

minutes in a microcentrifuge at high speed to collect the cellular debris. The aqueous layer is transferred

to a 2mL yellow phase lock tube (5 PRIME # 2302830), which is then spun for 5 minutes at high speed

in a microcentrifuge. The supernatant from the phase lock tube is transferred to a clean 2mL eppindorf

tube, along with 1mL cold 100% ethanol. This is mixed by inversion, which should visibly precipitate the

DNA. The DNA is collected by centrifugation for 2 minutes at high speed, after which the supernatant is

discarded. The DNA pellet is resuspended in 400µL TE buffer, to which we add 50µL 10mg/mL RNAse A

and incubate for 15 minutes at 37◦C. We add 10µL 4M ammonium acetate plus 1mL 100% ethanol to the

mixture and mix by inversion. The DNA is collected again by centrifugation for 2 minutes at high speed,

after which we remove the supernatant and let it air dry for 2 minutes before finally re-suspending the pellet

in 150µL EB buffer (10mM Tris-Cl, pH 8.5). We dilute this re-suspended DNA to 75ng/µL in EB for use in

the PCR reactions (lower yields are acceptable as long as the concentration is at least ≈ 40ng/µL).

PCR amplification of the barcode locus

We used a two-step PCR protocol to amplify the barcodes from the DNA that is very similar to the protocol

used in Levy et al. (2015).

We use barcoded primers for the first PCR cycle. Different combinations of forward and reverse primers

are used for each sample so that we can multiplex many samples together in a single HiSeq lane. The “N”

positions in these primers are random nucleotides used to uniquely index each amplicon product to remove

PCR duplicates from downstream analysis. All of these primers are HPLC purified to ensure that they are

the correct length.

Forward primers

FP1 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN CGATGTTT AATATG-

GACTAAAGGAGGCTTTT

FP2 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN ACAGTGTT AATATG-

GACTAAAGGAGGCTTTT

FP3 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN TGACCATT AATATG-

GACTAAAGGAGGCTTTT

FP4 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN GCCAATTT AATATG-

GACTAAAGGAGGCTTTT

FP5 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN ATCACGTT AATATG-

GACTAAAGGAGGCTTTT

FP6 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN CAGATCTT AATATG-

GACTAAAGGAGGCTTTT

FP7 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN GGCTACTT AATATG-

GACTAAAGGAGGCTTTT

FP8 ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNN TAGCTTTT AATATG-

GACTAAAGGAGGCTTTT



Reverse primers

RP1 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN TATATACGC TC-

GAATTCAAGCTTAGATCTGATA

RP2 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN CGCTCTATC TC-

GAATTCAAGCTTAGATCTGATA

RP3 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN GAGACGTCT TC-

GAATTCAAGCTTAGATCTGATA

RP4 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN ATACTGCGT TC-

GAATTCAAGCTTAGATCTGATA

RP5 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN ACTAGCAGA TC-

GAATTCAAGCTTAGATCTGATA

RP6 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN TGAGCTAGC TC-

GAATTCAAGCTTAGATCTGATA

RP7 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN CTGCTACTC TC-

GAATTCAAGCTTAGATCTGATA

RP8 CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT NNNNNNNN GCGTACGCA TC-

GAATTCAAGCTTAGATCTGATA

For the first cycle, for each sample, we performed 12 PCR reactions

Master Mix:

• 325µL OneTaq 2x master mix (NEB # M0482L)

• 13µL 10uM FP

• 13µL 10uM RP

• 156µL sample DNA (diluted to 75ng/µL or the entire DNA sample if between 40 - 75ng/µL DNA)

• 143µL dH2O

• 650µL total

50µL of master mix is aliquoted into 12 wells of a 96 well plate and the following PCR reaction is run on a

thermocycler:

1. 94◦C 10 minutes

2. 94◦C 3 minutes

3. 55◦C 1 minute

4. 68◦C 1 minute

5. Repeat steps 2-4 for a total of 3 cycles

6. 68◦C 1 minute

7. Hold at 4◦C



We then add 250µL of P1 buffer from QIAquick PCR purification kits (Qiagen # 28106) to each PCR

reaction and then perform PCR cleanups following the standard Qiagen protocol in two columns (6 PCR

reactions pooled into each column). This results in 50µL eluate of purified PCR product in two tubes for

each sample.

For the second step of PCR, we use the following HPLC purified primers (where x is a phosphothioate group)

PE2 - xAATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCxT (read1)

PE1 - xCAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCxT

(read2)

Master mix:

• 175µL PrimestarMAX 2x master mix (Clontech # R045B)

• 7µL 10µM PE1

• 7µL 10µM PE2

• 90µL purified PCR product

• 71µL dH2O

• 350µL total

50µL of this master mix is added to each of 6 wells in a 96 well PCR plate, and the following reaction is run:

1. 98◦C 2 minutes

2. 98◦C 10 seconds

3. 69◦C 15 seconds

4. 72◦C 15 seconds

5. Repeat steps 2-4 for a total of 24 cycles

6. 72◦C 1 minute

7. Hold at 4◦C

250µL of Buffer P1 from the Quiagen kit is again added to each of these PCR wells, and all 6 wells are used

in a single PCR purification protocol to generate a single tube with 50µL elutent with purified PCR product

from the sample.

Removal of the reference strain amplicons using restriction digestion and size

selection

We conducted the ApaLI digest of the reference strain reads as follows. We added 60µL H2O, 10µL

10XCutSmart buffer (NEB # B7204S), 5µL ApaLI enzyme (NEB # R0507S) and 25µL of the purified



PCR product to a single tube and digested for 2 hours at 37◦C. After digestion, we did a standard PCR

purification using the Qiagen QIAquick PCR purification kit (Qiagen # 28106) on the 100µL of digestion

mixture and eluted in 30µL of buffer EB. After digestion, we conducted size selection using E-Gels (Ther-

moFisher # G661002) with 25µL of the purified digestion product and selected the band at ≈ 350 bp for

sequencing.

Multiplexing and amplicon sequencing

We used Qubit HS kits (ThermoFisher # Q-33120) to quantify the concentration of our size-selected product

for each sample and mixed them in equimolar ratios into a single sample for high-throughput Illumina

sequencing. Our samples were submitted to the Stanford PAN facility (pan.stanford.edu) for Bioanalyzer

analysis and then sequenced either with NGX Bio www.ngxbio.com or at the Stanford Center for Genomics

and Personalized Medicine (scgpm.stanford.edu) with 2x101 paired end sequencing technology on Illumina

HiSeq 2000 machines. Samples were sequenced with 25% phi-X genomic library spike-in (provided by the

sequencing facility) to avoid calibration problems due to amplicon sequencing.

Initial processing of the amplicon sequencing data

Our initial processing of the sequencing data included de-multiplexing the sequencing data to separate reads

from different samples, removing PCR duplicates, and determining the number of reads in each sample for

each barcode. Complete source code can be found at https://github.com/sunthedeep/BarcodeCounter.

Briefly, the pipeline uses bowtie2 to identify the sample, pcr duplicate and lineage tag barcode sequences

from each read in the FASTQ file. After removing PCR duplicates from the data and demultiplexing the

data by sample, we identify all unique sequences in each sample and their number of occurrences using

a simple lookup table. We then map all of these unique sequences to the database of 500,000 barcode

sequences identified by Levy et al., (2015) using NCBI blastn with parameters (“-outfmt 6 -word size 12

-evalue 0.0001”) to count the number of reads mapping to each of the known 500,000 barcodes in each sample.

We account for barcodes known to be in the database with nearly identical sequences by considering such

barcode clusters as a single lineage, and provide scripts to identify previously undetected barcode clusters

from the sample data. These barcode counts provide the input for our fitness estimation procedure described

below.

Whole-genome sequencing

DNA extraction, Library Construction and whole-genome sequencing Clones selected for se-

quencing were streaked onto either M3 or YPD agar plates from freezer stocks for single colonies. One

single colony for each clone was inoculated into either 1mL M3 or YPD (in a 96 deep-well plate) and grown

overnight at 30◦ C without shaking. These cultures were used to perform DNA extractions using either the

BioBasic 96 yeast genomic DNA extraction kit (BioBasic # BS8357) or the Zymo YeaStar Genomic DNA kit

(Zymo # D2002). Libraries were constructed using Nextera technology with the protocol of Kryazhimskiy

et al. (2014). We multiplexed up to 96 libraries per Illumina HiSeq 2000 lane; samples were sequenced at

the Stanford Center for Genomics and Personalized Medicine with 2x101 paired end sequencing technology.

Libraries that generated less than 5x average genome-wide coverage were removed from further analysis.

pan.stanford.edu
www.ngxbio.com
scgpm.stanford.edu
https://github.com/sunthedeep/BarcodeCounter


Some lineages (defined by unique barcode IDs) were sequenced multiple times, either due to low coverage

in one library or due to sequencing multiple independent clones containing the same barcode ID. Variants

called from all libraries with the same barcode ID, regardless of origin, were combined together. Importantly,

please note that while the libraries were mapped to a non-reference genome which includes the barcode locus

sequence, all variants reported in this manuscript both in the main text and the supplemental files have been

lifted over to the coordinate system of the Saccharomyces Genome Database (SGD; www.yeastgenome.org)

R64 Saccharomyces cerevisiae reference genome for convenience.

FASTQ processing, GATK-based variant calling and filtering For each sample, we received two

fastq files, one for each read of the paired end sequencing (“forward.fastq” and “reverse.fastq”). We trimmed

the first 15 bases and the last 3 bases of each read as well as any adapter sequences using TrimGalore (version

0.3.7 Available at: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

1 perl trim galore −a CTGTCTCTTATACACATCT −a2 CTGTCTCTTATACACATCT −−length 50

↪→ −−clip R1 15 −−clip R2 15 −−three prime clip R1 3 −−three prime clip R2 3 −−
↪→ paired −o OUTPUTDIR forward.fastq reverse.fastq

Reads were mapped using Novoalign (version 3.02.02, Novocraft Technologies) to a modified version of the

sacCer3 S288C S. cerevisiae reference genome that includes the DNA barcode locus (Levy et al., 2015) in

the sequence.

1 novoalign −d referenceGenome.fasta −f forward.trimmed.fastq reverse.trimmed.fastq −l 75 −H

↪→ 22 −o SAM READGROUPINFO −r Random >library.novoalign.sam

The mapped reads were then sorted using PicardTools version 1.105(1632) (Broad Institute, http://

broadinstitute.github.io/picard)

1 java −Xmx2g −jar SortSam.jar INPUT=library.novoalign.sam OUTPUT=library.novoalign.bam

↪→ SORT ORDER=coordinate

We used PicardTools again to remove PCR duplicates

1 java −Xmx2g −jar MarkDuplicates.jar ASSUME SORTED=true REMOVE DUPLICATES=true

↪→ INPUT=library.novoalign.bam OUTPUT=library.novoalign.dedup.bam

After building an index for the bam file with PicardTools, we then got global coverage metrics with GATK

version 3.2.2 (McKenna et. al. 2010) DepthOfCoverage function and per base pair coverage statistics using

Bedtools v2.17.0 Quinlan et. al. 2010 genomecov. We plotted the per base pair coverage statistics to identify

whole chromosome aneuploidy events.

We genotyped the libraries using GATKs Unified Genotyper.

1 java −jar −Xmx2g GenomeAnalysisTK −T UnifiedGenotyper −R referenceGenome −I library.

↪→ novoalign.dedup.bam −ploidy 2 −−genotype likelihoods model BOTH −stand call conf

↪→ 30 −stand emit conf 10 −o library.gatk.vcf

We initially filtered variants from GATK as follows:

www.yeastgenome.org
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard


1 java −Xmx2g −jar GenomeAnalysisTK.jar −T VariantFiltration −R referenceGenome −−variant

↪→ library.gatk.vcf −−out library.gatk.filtered.vcf −−filterExpression ‘‘QD < 10.0 || FS >

↪→ 20.0 || MQ < 50.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0 || AN > 10 ||
↪→ AF<0.25’’ −−filterName ‘‘my filter’’

We also manually filtered all variants called by GATK by remapping them with the CLC genomics workbench

and manually validating variants using the resulting read pileups. This procedure eliminated 11% of our

GATK variant calls. We then tested the validity of 57 of these filtered variants using Sanger sequencing,

and identified no false positive calls. We combined all of the filtered variants across all of the libraries into

a single file (“allLibraries.gatk.filtered.vcf”) using GATK after lifting over the variant coordinates to the

standard UCSC sacCer3 reference genome. We then conducted additional variant filtering using custom

scripts, where we removed any mitochondrial variants, variants not passing the GATK filter and variants

annotated in reference genome as being in repetitive elements (telomeres, centromeres, replication origins,

transposable elements containing “Ty”, “delta”, “sigma” or “tau” in their name) or low complexity regions

defined by the Tandem Repeat Finder (Benson et al., 1999) with the recommended parameters (2 7 7 80 10 50

500 ngs). We also removed all variants with less than 3 reads of support for the derived allele. Heterozygous

calls by GATK were validated by first testing whether they had at least 3 reads of support for both ancestral

and derived alleles, and passed a binomial filter with p > 5% for deviation from an equal proportion of

ancestral and derived reads. Variants that failed either of these filters were reclassified as homozygous.

Heterozygous calls that did pass were then checked to see if they resided in homopolymer repeat regions or

in sites with multiple derived alleles across the entire dataset. Such variants were removed from the dataset

as likely mapping errors.

As we found that mutations in the nutrient sensing pathway were highly adaptive, we searched the raw

variant calls of clones with s > 5% but no nutrient sensing pathway mutations for filtered variants in this

pathway and added them back into our mutation list (the mutations reported in the main text include these

variants). This was done for a total of 3 clones (one IRA1, one IRA2 and one CYR1 ).

Copy number variant detection We tested for the presence of copy number variants using a number of

software packages, including CNVnator and SVDetect, along with specific manual surveys of the coverage

density around the HXT6/7 locus as amplifications of this locus have been shown to be adaptive in previous

chemostat laboratory evolution experiments. However, we were unable to detect any copy number events

either at this locus or genome-wide with high confidence.

Structural variant detection with CLC-Bio We systematically looked for the existence of structural

variation in our sequenced clones, i.e., for the presence of insertions and/or deletions larger than the max-

imum of 5-10 bp typically detected by our GATK-based variant calling pipeline, as well as chromosomal

inversions and translocations. We performed a workflow, described below, utilizing CLC Genomics Work-

bench version 8.5 (QIAGEN Aarhus A/S; www.clcbio.com; API version:850; Build number:20150904114350;

Build date:1509041143; Build rev:131279. Platform:Mac OS X 10.10.5; Architecture:x86 64 (64 bit); Pro-

cessor cores:24; Java version:1.8.0 60 (Oracle Corporation)). Note that we will call the program “CLC

Workbench” for brevity. First we imported the Illumina paired end fastq.gz files for each clone into CLC

Workbench, using the parameters “paired reads”, “remove failed reads”, “paired-end (forward-reverse)”,

minimum distance 25, maximum distance 1000, Illumina pipeline 1.8 and later quality scores.

www.clcbio.com


We then mapped the reads to the unmodified S. cerevisiae (strain S288C) reference genome (downloaded from

the Saccharomyces Genome Database (SGD; www.yeastgenome.org) R64-1-1 and then imported into CLC

Workbench). We did not use any masking during the mapping and used the following mapping parameters:

mismatch cost 2, lineage gap cost, insertion and deletion costs 3, length fraction 0.5, similarity fraction 0.5,

auto-detect paired distances, map randomly for non-specific matches.

Reads were then trimmed by using the “Trim Sequences” function; trimming was done based on quality scores

(limit 0.05); ambiguous nucleotides (maximum of 2) were also trimmed. Reads below 15 nucleotides in length

were discarded. Any Nextera adapter sequences were trimmed from reads using the following sequence and

parameters for trimming: sequence for adapter trimming CTGTCTCTTATACAC, strand “plus”, remove

adapter, mismatch cost 2, gap cost 3, allow internal matches with minimum score 4, allow end matches with

minimum score at end 1.

We then ran the “InDels and Structural Variants” function, using these mapped and trimmed reads, with the

parameters “p-value threshold 0.001” and “maximum number of mismatches 3”, and saved the “breakpoints”

output files in tab-delimited formats. These variants were filtered to remove structural variants with less than

3 reads of support, present in more than 3 strains or closer than 300bp from the ends of each chromosome.

The variants were annotated with gene annotations (file SGD features.tab) from the Saccharomyces Genome

Database (www.yeastgenome.org).

After structural variant calling was completed, we filtered out structural variants that occurred in previ-

ously known repetitive elements annotated in the SGD database (telomeres, centromeres, replication origins,

transposable elements containing “Ty”, “delta”, “sigma” or “tau” in their name) as before.

Determination of Mating Type and Ploidy

Mating type assays Mating type testing was conducted for 960 clones from replicate E2 and 192 clones

from replicate E1. Standard Nat+ URA3- tester strains of both MATa and MAT mating types were grown

as lawns on YPD agar plates, while the clones with unknown mating type (Nat-, URA3+) were arrayed

and grown on independent YPD agar plates. Replica plating was used to transfer the clones with unknown

mating type onto Nat+ Ura- SC-agar plates along with one of the tester strains. The presence of a colony

on this plate was used to determine successful mating.

Propidium Iodide and Flow Cytometry Ploidy was initially tested using a simplified propidium iodide

staining protocol designed for high throughput analysis, inspired by Cousin et al. (2009). Clones were grown

to saturation in YPD liquid media in 96 well plate format. 200 mL of saturated culture was transferred

to 96 well filter plates (Pall Life Sciences # 8039) and spun down to remove the spent media. These spun

down cells were resuspended in 200 µL 70% ethanol in the filter plates and allowed to fix for at least 1

hour at room temp. Plates were then centrifuged again to remove the ethanol. Cells were resuspended in

50 µL RNAse A buffer (1mg/mL RNAse A in PBS) and incubated at 37◦ C for at least 6 hours (at most

18 hours). Treated cells were diluted 1:100 into 200 L of propidium iodide staining solution (50 µg/ml PI,

50 µM sodium citrate) and analyzed along with standards of known ploidy using the BD LSR II with an

HTS attachment at the Stanford Shared FACS Facility (NIH grant # S10RR027431-01 for UV LSRII). We

note that the filter plates can be re-used for ploidy analysis by thoroughly washing them with distilled water

using a multichannel pipette.

www.yeastgenome.org
www.yeastgenome.org


High throughput benomyl assay A simpler high throughput ploidy test was developed using the drug

benomyl. Clones were grown from frozen stock in 1mL liquid YPD in 96 well plates until saturation at 30◦ C

without shaking. The saturated cultures were mixed by multichannel pipette, pinned onto YPD+20µg/mL

benomyl (in DMSO) and YPD+DMSO (control) rectangular agar plates using a multi-pronged pinner, grown

at 25◦ C for 48 hours, and then imaged. Under these conditions, diploid growth is strongly inhibited by

benomyl but haploid growth is less affected.

Construction of gene deletions in the Ras-cAMP-PKA pathway

Gene deletions were constructed using standard yeast transformation methods to replace the gene of interest

with a selectable marker cassette. IRA1, IRA2, GPB1, GPB2, PDE1, PDE2 and the pseudogene control

YFR059C were individually replaced with a selectable NatMX (nourseothricin) resistance marker in neutral

barcoded yeast strains. For each target gene, the resistance marker was amplified from the pBAR1 plasmid

(Levy et al., 2015) with primers flanked by 45 bp of sequence adjacent to each end of the appropriate yeast

gene. Transformations were performed to delete the gene of interest using the lithium acetate based protocol

of Gietz and Woods (2002). Each transformant was verified with gene-specific PCR reactions spanning both

the 5 and 3 insertion breakpoints. We assayed the fitness of each deletion using pairwise competition assays

described in Levy et al. (2015) and in the main text methods.

Primers for gene deletions:

IRA1 5’ CTTCAGCATATAACATACAACAAGATTAAGGCTCTTTCTAAAATGTGGAGGCCCAGAAT-

ACCCTCC

IRA1 3’ AAGGAAAAACGTATATAATCACTGCAATACTCTAATTTAAAATTATCGACACTGGATGGCGGC

IRA2 5’ TATCAACTAAACTGTATACATTATCTTTCTTCAGGGAGAAGCATGTGGAGGCCCAGAAT-

ACCCTCC

IRA2 3’ AGATAGATATTGATATTTCTTTCATTAGTTTATGTAACACCTCTATCGACACTGGATGGCGGC

GPB1 5’ CGGCTACTTTAAGGCTTTCCGTACCAATTCTTCTACATAAGAATGTGGAGGCCCAGAAT-

ACCCTCC

GPB1 3’ AATTTTCTCGTTTTCCTTTAGTCACTCTTGTCACATAAGGATTATTCGACACTGGATG-

GCGGC

GPB2 5’ GATTCATTGGCAGGTCCATTGTCGCATTACTAAATCATAGGCATGTGGAGGCCCAGAAT-

ACCCTCC

GPB2 3’ CTAAACAAAGTTTACAAAGTGAAAGCATTGAAAACTGCCTTTTTATCGACACTGGATG-

GCGGC

PDE1 5’ GGTTCTTCTTCTTCATCCCCTTTTTTACCAATATTCCTTTTTATGTGGAGGCCCAGAAT-

ACCCTCC

PDE1 3’ TAATGGAAAGAAGTTTCATTAGTTACTACTAGTATTTTGCTTGCTTCGACACTGGATG-

GCGGC

PDE2 5’ GAGATCACTACTACTTAATTGAAGAAAACATAACCTATTGATATGTGGAGGCCCAGAAT-



ACCCTCC

PDE2 3’ ATGTTTATACAATGAATGGTACAAGAAATTTTGATATTCTTGCTATCGACACTGGATGGCGGC

YHR095W 5’ CCATCAAATGTCGCAGCAGCTCATGTTTACGTTTGCTGTCTTCTGTGGAGGCCCA-

GAATACCCTCC

YHR095W 3’ AATAAGCCCTAGAAACCTTACACCCTAATTTGCACAAGAAAACTATCGACACTGGATG-

GCGGC

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the exact values of n, precision measures (mean ± SEM) and statistical

significance for various statistical tests are reported in the Main Text, Figures and the Figure Legends.

Introduction to fitness estimation methodology

The fitness of a barcoded lineage relative to the rest of the population determines how quickly it grows. If

the number of cells in a lineage is large at the bottleneck, then during the T = 8 generations from cycle i to

cycle i+ 1 the bottleneck population, n, grows close to deterministically:

ni+1 ≈ nie(s−µi)T (1)

with µi the mean fitness of the population at time i. The time-dependent mean fitness cannot be measured

directly, but the size of the total barcoded population that is neutral with respect to the ancestor, ρi, gives

µi from ρi+1/ρi as s is the fitness of the barcoded lineage relative to these neutral lineages.

The sequencing measurements give estimates of the relative sizes of a barcoded lineage from the numbers of

reads, ri, of the barcode at successive time points as a fraction of the total reads, Ri. Comparing with the

number of reads of the neutral barcodes, ρi, the fitness over cycle i is estimated by

ŝi =
1

T
[ln (ri+1/Ri+1)− ln (ri/Ri)] + µi

=
1

T
[ln (ri+1/ri)− ln (ρi+1/ρi)] (2)

However, there are several sources of deviations of such estimates from the actual fitness. The experiments

themselves contribute biological stochasticity in the growth and division of cells, sampling during the dilution

at the end of each cycle, and subtle variability in conditions. The measurement process contributes counting

noise from sequencing as well as potential variabilities and biases in DNA extraction and PCR amplification.

The biological noise, dilution sampling, and sequencing counting noise should all have variance proportional

to the mean numbers of cells and/or reads. We find that for typically sized barcode lineages (∼ 100 reads),

deviations from deterministic trajectories scale as the square root of the number of reads, i.e.

Var(ri) ≈ κi〈ri〉 (3)

where ri is the number of reads at time i, 〈ri〉 is the expected number of reads, and κi is a noise parameter

inferred from the data which depends on the cycle, the replicate and the batch. Furthermore, we show that



for the collection of neutral lineages, the distributions of changes in read numbers from one cycle to the next

are close to normal.

For large lineages (> 103 reads), however, the data exhibit larger than expected variations which do not

decrease with numbers of reads. The sources of these variations are currently unknown. They set a limit of

& 1% per generation on the resolution of our fitness assay.

We use the data to crudely fit a multiplicative noise parameter αi at each cycle in addition to the normal

variance. For the fitness inferred over one cycle,

ŝi = 〈si|ri, ri+1〉 (4)

the variance is then roughly of the form:

Var(si) =
1

T 2

(
κi
ri+1

+ α2
i

)
(5)

To infer fitnesses, we use a model assuming Gaussian additive noise at low frequency and multiplicative

noise at high frequency to combine the results from across the cycles, replicates and batches, weighted by

the inverse variances.

In the next we further elucidate the fitness estimation process and break down the contributions to κi. We

then carry out self-consistency checks and justify our noise model. Finally, we present the results of the

fitness assay broken down by batch and replicate, and further discuss the hypothesis testing done in the

main text.

Noise model

Read stochasticity From the dynamics of the numbers of cells in a lineage, we expect that the mean

number of reads at time i+ 1 will be

〈ri+1〉 =
Ri+1

Ri
rie

(s−µi)T (6)

and thus dependent on the total numbers of reads, Ri and Ri+1.

The stochasticity in the population dynamics and the counting variations from the sequencing both give

additive noise so that we expect

Var(ri+1) ≈ κi〈ri+1〉 (7)

where κi is a parameter fit from the data for many barcode families. For nearly neutral lineages, there is

only a weak dependance of κi on s. Lineages with large s quickly reach a size where the additive model

breaks down; we will use our multiplicative noise model to analyze their fluctuations.

The contributions to κi depend on the parameters of the particular measurement: the total number of

barcoded cells at the bottleneck, NB
i , and the number of reads, Ri both of which vary considerably. The

average number of reads per barcoded cell, the coverage ratio

Ci ≡
Ri
NB
i

(8)



strongly affects the noise magnitude: when the coverage ratio is low, read noise dominates; when the coverage

ratio is high, the biological noise dominates. The contributions to the noise parameter are

κi = 1︸︷︷︸
Read noise at i+ 1

+ Ci+1/Ci︸ ︷︷ ︸
Read noise at i

+ Ci+1(βi + 1)︸ ︷︷ ︸
growth+dilution

+ ξi(1 + Ci+1/Ci)︸ ︷︷ ︸
Extraction/PCR noise

(9)

The first term comes from Poisson read noise at time i+ 1 and the second term from the Poisson read noise

at time i, scaled from the coverage at i to the coverage at i+ 1. The third comes from the stochasticity in

the growth of the cells. For a single cell at a bottleneck, the number of descendants at the end of the cycle

averages 2T esT with a variance of βi2
2T . Almost all this variability is likely to come from the earliest stages

of the cycle as when the number of descendants becomes large, the fluctuations are averaged over. After

dilution the biological stochasticity contributes βi per cycle to the variance. In addition, there is a factor of

1 that comes from the Poisson dilution at the end of each cycle. The last term ξi accounts for the unknown

additive parts of the effects of DNA extraction and PCR amplification.

We assume that the variations are Gaussian in nature. This assumption was inspired by the additive nature

of the noise sources, and describe the data well. The assumption breaks down when ri is low or when Ci+1βi
is large, since the biological noise is likely to be non-Gaussian.

Number of mutants and coverage ratios In order to understand the balance between read noise and

biological noise, we need to know the coverage ratio, Ci, at each timepoint. We know the total number of

reads, Ri, at each timepoint; however, we do not have a direct measurement of the total number of barcoded

cells, NB
i , at the bottleneck of each cycle. Since the total population saturates at a size that is roughly

independent of the admixture of mutants and ancestral types, after dilution the total bottleneck population,

N , is roughly constant.

The barcoded portion can be inferred by noting that two portions of the total population, the unbarcoded

ancestral cells with population NU
i , and the barcoded types that are neutral relative to the ancestor at time

i, have the same fitness. Given fni the fraction of the barcoded cells without adaptive mutations, the ratio

of the neutral population sizes, fni NB
i /NU

i is thus constant.

If we know fni NB
i /NU

i at one timepoint, and fni at all other timepoints, we can solve for NB
i /NU

i . We can

then use NB
i /NU

i and NU
i = N − NB

i to approximate NB
i at each timepoint. Let fni NB

i /NU
i = q. Then

we have

fni NB
i

N −NB
i

= q

NB
i =

q

q + fni
N (10)

Initially, the fraction barcoded is formulated to be NB
0
∼= 10%N . This gives allows us to calculate q (≈ 0.03,

similar across batches). Using the sequencing reads, we can obtain fni at each timepoint and hence calculate

an estimate for NB
i at each timepoint.

Figure S1 shows this estimate of the barcoded fraction of the population. At late times, a considerable

fraction of the population is barcoded, and a significant fraction of this barcoded population has adaptive

mutations. The barcoded fraction increased rapidly as a consequence of its original diversity. Roughly 50% of

the barcoded cells had fitness > 6% at the first timepoint, and 25% are diploid. The rest were nearly neutral

haploids. By the end of the experiment, > 90% of barcoded cells were high fitness mutants. As barcoded



fraction of the pool increased, the read depth remained nearly constant. The coverage ratios decreased as a

function of time. They started at around 0.3-0.5, but fell to about 0.04-0.07 by the end of the experiment.

We will see that means by late times, the errors in fitness estimation are dominated by the read noise.

The beneficial mutants showed significant transient behavior in the first growth dilution cycle. In batches

1, 3, and 4, the barcoded fraction (and therefore the beneficial mutants) did not increase appreciably in

the first cycle. Batch 2 was grown for one growth/dilution cycle before timepoint 1 and does not display

transient behavior in its first cycle.

To remove the effect of transient behavior on the fitness assay, we used the sequencing data from timepoints

2-5 for batches 1, 3, and 4, and timepoints 1-4 for batch 2. The trajectories of the barcoded fractions are

very similar across batches for the timepoints chosen, and avoids the latest timepoint in batch 2 where the

barcoded types have nearly taken over the population.

While κi increases with increasing coverage ratio, the variance in the fitness estimate decreases with increasing

read depth. For large coverage ratios (Ci+1 & Ci >> 1), the variance reaches the minimal value

Var(si) ≈
1

T 2

(1 + βi)

ni
(11)

where ni is the number of cells in the barcode family at the bottleneck at timepoint i. In this regime the noise

is dominated by biological fluctuations. This sets a noise floor for the measurement. For our measurements,

only the first cycle (which was not included in the analysis) was near this regime.

Inferences of s In addition to the additive sources, there appears to be a roughly frequency independent

component of the noise. The source of this noise is unknown. For simplicity, as it does not affect much the

results, we parametrize this by a multiplicative gaussian noise parameter αi, fit within each batch for every

pair of timepoints. We find that αi ≈ 0.1/ cycle, largely independent of the cycle, replicate and batch. Then

the assumed variance of our estimator is

Var(si) =
1

T 2

(
κi
〈ri+1〉

+ α2
i

)
(12)

The fitness estimation algorithm proceeds in the following manner:

1. Identify lineages which are neutral relative to the ancestor for each replicate and batch individually.

2. Use the collection of these neutral lineages to estimate κi and µi.

3. Estimate αi for each batch and timepoint from lineages with a large number of reads.

We then carry out the follow steps for each barcode separately:

1. Use formulae for ŝi and Var(si) (Equations 2 and 12) to calculate fitness and error at each timepoint.

2. Average over timepoints, replicates, and batches, using inverse variance weighting by errors, to get an

overall estimate of the fitness s̄ of that barcode .

We give a more detailed account in the next two sections.



Checks on the noise model

We made a number of self-consistency checks to test the applicability of the simple additive noise model for

lineages at low read depth. We analyzed the following quantities:

• Distributions of within-replicate variations

• Scaling with read numbers of between replicate variations

• Comparison of within replicate to between replicate variations

Our analysis suggests that there is good agreement between within-replicate variation and between-replicate

variation for moderately sized (∼ 100 reads) lineages. At late timepoints, the noise is dominated by the

counting noise of sequencing. We show that this is due to the expansion of the barcoded lineages. We also

discuss the frequency-independent deviations for large (∼ 1000 reads) lineages, which limits the sensitivity

of fitness assay to 10%/cycle (1.2%/generation).

Estimating κ within replicate By considering the dynamics of large groups of lineages with identical

fitness together, we can test the noise model. The large set of lineages neutral relative to the ancestor

(∼ 1500) enables estimation of the noise parameter κi, with good enough statistics on the noise to test its

normality. It also lets us infer the time-dependence of the mean fitness, µi, which is needed to obtain the

fitness of the other lineages. We assume that the neutral lineages are virtually identical in both fitness and

the magnitude of their biological fluctuations.

The model assumes that the deviations of the read numbers ri+1 − 〈ri+1〉 are distributed as N (0, κi〈ri+1〉)
for ri+1 large enough. We define the normalized differences Zi as follows:

Zi =
ri+1 − 〈ri+1〉√

〈ri+1〉
(13)

Given a collection of lineages with identical phenotype, the Zi are identically distributed as N (0, κi). The

total frequency of a phenotype fi can be used to estimate µi. The distribution of scaled deviations can be

used to find κi and test the noise model.

We carried out the following procedure using the ∼ 1500 lineages which were neutral in the experiments of

Levy et al. (2015)

• Estimate mean fitness by µi = log(fi+1/fi)/T .

• Plot distribution of Zi. Remove outliers (likely adaptive or outside regime of additive noise)

• Re-estimate µi. Re-plot Zi.

• Set κi = Var(Zi).

The first two rows of Figure S2 shows the distributions of the scaled deviations for each pair of adjacent

timepoints in batch 1, replicate 1. The top row shows the histograms of Zi from the neutral haploids as a

function of time. The same analysis was carried out on the 1600 diploid lineages: the results are shown in

the second row and are very consistent with the haploid inferences.



The normal distribution predicted from theory is plotted in red over the empirical distribution histogram.

The counting noise limit is plotted in black. The noise starts off larger than the read counting noise limit,

but is dominated by counting noise at the end. This is in concordance with our observation that the coverage

ratio decreases at late times, and suggests that the extraction and amplification parts of the noise, ξi —

which would be expected also to scale with the read depth — is a small fraction of κi.

The model fits quite well over the range of 1-2 standard deviations. Only 10-20 lineages were removed from

each plot as outliers; most were a few standard deviations from the mean, and clearly adaptive. The normal

fit is worst at the earliest timepoints, when the cells are first experiencing the evolution condition, and the

latest timepoint, where the number of reads is smaller. Our analysis also showed that the noise parameter

inferred from lineages of different sizes did not vary significantly when different sized lineages were used

to infer it (from 30 reads up to 150). The diploids behaved similarly to the haploids in all these aspects,

including the number of outliers.

The values of κi tend to start around 10, and drop down to around 2 at late times. The values vary between

replicates and experiments as can be expected by the different coverage ratios. Two replicates have very low

coverage at one timepoint (batch 2 replicate 2 and batch 3 replicate 3), which decreases the quality of fitness

inferences for those datasets. The analysis for the diploids found similar κi values. The diploid κi tended to

be slightly higher than the haploid κi: by 5-10% at early times, nearly identical at late times.

The fact that the fluctuations are dominated by counting noise at the end of the experiment suggest that

ξi is small. If we set ξi to 0, and use the Ci estimated previously, we can calculate the biological noise

parameters βi using Equation 9. We get values βi in the 12-17 range at early times and in the 5-10 range at

late times.

Part of the difficulty estimating βi comes from the fact that coverage ratios are low (∼ 0.1−0.2). Therefore,

errors in estimation of order 0.5 (from the mean fitness estimate, coverage ratio, and ξi) propagate up to

errors in βi of order 2.5-5 at late times. More detailed analysis and measurements would need to be conducted

to yield a more quantitative estimate for βi and its uncertainty.

In previous experiments, the estimated values of βi started off low (around 4), but reached values as high as

15 at later times when there were more mutants in the population. Since our experiments start off with a

relatively high mutant fraction, our results are at least roughly consistent with previous work. Large values

of βi suggest that there is high variability when the populations are low: i.e. variations in viability (surviving

stationary phase), lag phase (time delay to start growth after dilution), and in the first rounds of division.

Replicate-replicate correlation As an independent test of the consistency of the noise model, we exam-

ined the correlation between replicates in the same batch and compared to the inferred within-replicate

noise parameters κi. Specifically, we looked at the sample standard deviation of the log slope σi =

ln(ri+1/Ri+1)− ln(ri/Ri). The log slope was chosen since its variance can be shown to be

Var(σi) ≈
κi
ri+1

(14)

if our additive noise model holds with our definition of κi.

The final row of Figure S2 shows the sample standard deviation δσi of the log slopes plotted against the

number of reads at the second timepoint of the cycle. The plots show the r
−1/2
i+1 scaling as expected for a

wide range of reads.



We can use the distribution of δσi to fit a κ parameter, and compare it to the expected value. The 3 curves

with the scaling r
−1/2
i+1 show 3 different fits. The within replicate κ from the variance of Zi is shown in red.

In blue is the inference κ̂ = E[
√
ri+1δσi]

2 (between replicate estimate). Black is the theoretical minimum

value that the noise parameter could take if there was only read noise (βi = 0).

For the first pair of timepoints, κ from within a replicate is larger by Ci+1

Ci
compared to the between replicate

κ. This is expected since the first measurement is common for all replicates in a single batch (see Method

Details). By late times, both estimates of κ are close to the being pure read noise.

Multiplicative noise regime For each batch and timepoint, we roughly fit a frequency independent part

of the noise by averaging δσi at high (∼ 103) read number (green line). We then modify the noise parameter

κi to be

κ̃i = κi + α2
i ri+1 (15)

The multiplicative noise varies little across timepoints and experiments, typically ∼ 10%/cycle corresponding

to uncertainties in estimates of s of & 1% per generation. For typical values of κi, the crossover between

multiplicative noise and read noise occurs at ∼ 103 reads. The multiplicative noise constant increases with

time in batch 2, which is dominated by mutants at late times.

Fitness assay

Basic procedure We used the fitness assay outlined earlier to calculate fitnesses and error estimates for

each lineage, between every pair of timepoints, replicates and batches. For each replicate, we combined

estimates across timepoints into an overall fitness estimate s̄ by an inverse variance weighted sum:

s̄ =

(∑
i

ŝi/Var(si)

)
/

(∑
i

1/Var(si)

)
(16)

Var(s̄) =

(∑
i

1/Var(si)

)−1

(17)

This method gives the correct weighting for the max posterior estimate of the mean of a collection of gaussian

random variables with equal means and unequal variances.

We averaged over timepoints within a replicate to obtain the fitness values reported for each replicate. We

averaged once more across replicates and batches to obtain the fitness values reported in the main text.

Distribution of fitness effects Figure S3 shows the distributions of fitness effects from all the replicates

and batches. The two colors correspond to the haploids and the diploids respectively. As can be seen, almost

all the lineages are either very close to neutral relative to the ancestor, or diploid. Both the neutral haploids

and diploids tend to have low coverage at late times, which gives broad peaks (typically in the 2% range)

compared to fitness differences (1.5%− 3.5%). Due to systematic variation between batches, the diploid and

main haploid peaks are well resolved only for some batches.



Replicate-replicate fitness correlation To test the data against our noise model we examined the

replicate-replicate fitness correlation. High fitness lineages tend to have lower errors due to higher read

counts. Their errors are dominated by the multiplicative noise. We can see that the errors inferred via the

noise model are very similar to the observed variation between replicates.

Figure S4 shows all of the replicate-replicate correlations. The scale of the inferred error bars is consistent

with the scale of the differences in fitness between replicates, but systematic differences are clearly noticeable.

Batch 1 shows good correlation across all replicates. Batches 2 and 3 show systematic deviations of both the

diploid and high fitness lineages. Some of the differences in batch 2 explained by the low coverage timepoints

in batch 2, replicate 2. The low coverage leads the inference to be dominated by a single slope. Batch 3

replicate 3 looks systematically different from the other replicates in batch even at high coverage timepoints.

Cross-batch fitness correlation We next examine the correlations between batches, and found that

these were worse than within-batch correlations. Figure S5 shows fitness-fitness correlations between the

best replicates in each batch. (This is in contrast with Figure 2 in the main text, which compares the

averages over each batch.)

Systematic differences between batches for specific mutation classes Both the diploid and high

fitness lineages exhibited systematic differences across batches. While the between replicate deviations were

in the 1− 2%/generation range, the between batch differences were as high as 5%/generation.

The last panel in Figure S5 compares the fitnesses across replicates and batches for the GPB2, PDE2, and

diploid classes. Estimated error bars from the fitness assay are plotted. The fitnesses within a batch correlate

well, with most deviations occurring in replicates with low coverage timepoints. The overall batch-batch

systematics are different for different types of mutations. For most pairs of classes, the relative ordering does

not change. However, some like PDE2 and GPB2 switch order in the different batches. These differences

suggest that the systematic deviations are not merely an artifact of the fitness estimation algorithm and

thus cannot be consistently corrected for statistically.

Within the best replicates, there is a very narrow spread of all but one of the GPB2 mutant lineages, and

all but one of the PDE2 lineages. This suggests that the intrinsic precision and potential accuracy of the

barcode fitness assay is . 1%.

Testing for differences in fitness effect between mutant classes The systematic cross-batch differ-

ences informed how we tested for differences in fitness effects between different mutation classes. We first

carried out a number of ANOVA tests, for differences between genes, mutation types, and paralogs.

To test if gene identity was at all significant, we treated the batch as a categorical variable and still ended up

with a P < 10−16. For our tests of fitness difference of particular pairs, we carried out tests separately for

each batch. We averaged over all timepoints and replicates within a batch to get a single fitness per lineage.

Within each batch we tested the hypothesis that the means of the fitness distributions for different classes

were different. We found significant differences in fitness between IRA1 and GPB1, IRA1 and IRA2, GPB1

and GPB2, and found that mutation type made a significant difference in the fitness of IRA1 mutants (test

was not significant for mutation type in IRA2 ). For the diploids, we found that a third copy of chromosome

11 gave significant fitness benefit, but a third copy of chromosome 12 did not. Additional coding mutations



did not significantly change the fitness of diploids.

We also tested the null hypothesis that the distribution of IRA1 mutants was the same as the distributions

of PDE2 and GPB2 mutants. We used the non-parametric Kolmogorov-Smirnov (KS) test to test for

any difference between distributions. The KS test compares the CDFs of two empirical distributions, and

compares the largest gap between them (which is distributed in a way independent of distribution). The

fact that the data pass the KS tests as well give us confidence that our results are not due to noise-modeling

assumptions.

The results are also robust to changes in the fitness inference algorithm. If we instead use a weighted

log-linear regression, choosing ŝ by

ŝ = arg min
s

∑
i

(log(ri+1/Ri+1)− log(ri/Ri) + µi − s)2

κi/ri+1
(18)

the fitness estimates change by ∼ 1% per generation at most. The differences in distributions and relative

orderings of fitnesses persist.

DATA AND SOFTWARE AVAILABILITY

All Illumina sequencing data (for both the whole-genome sequencing and the fitness measurement assays)

can be found under NIH BioProject PRJNA310010. The software repository for the barcode counting code

can be found at https://github.com/sunthedeep/BarcodeCounter

https://github.com/sunthedeep/BarcodeCounter
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