

Supporting Information

Extended O-Doped Polycyclic Aromatic Hydrocarbons

Daphné Stassen, Nicola Demitri, and Davide Bonifazi*

anie_201509517_sm_miscellaneous_information.pdf

Materials, methods and characterizations

Re	eferences	61
	1.7.NMR Analysis	38
	1.6.Synthesis	12
	1.5.X-Ray Analysis	. 9
	1.4. Mass spectrometry analysis	6
	1.3. Emission and absorption analysis	4
	1.2. Materials and methods	. 3
	1.1. Intrumentation	. 1

Materials, methods and characterizations

1.1. Intrumentation

layer chromatography (TLC) was conducted on pre-coated Thin aluminum sheets with 0.20 mm Machevery-Nagel Alugram SIL G/UV254 fluorescent indicator UV254. Column chromatography with was carried out using Merck Gerduran silica gel 60 (particle size 63-200 µm). Microwave reactions were performed on a Biotage AB Initiator microwave instrument producing controlled irradiation at 2.450 GHz. Melting points (M.p.) were measured on a Büchi Melting Point B-545 in open capillary tubes and have not been corrected. Nuclear magnetic resonance (NMR) ¹H, ¹³C and ¹⁹F spectra were obtained on a 400 MHz NMR (Jeol JNM EX-400) or 270 MHz (Jeol JNM EX-270) at rt otherwise stated. Chemical shifts were reported in ppm according to tetramethylsilane using the solvent residual signal as an internal reference (CDCl₃: $\delta H = 7.26$ ppm, $\delta C = 77.16$ ppm; DMSO-d6: $\delta H = 2.50$ ppm, $\delta C = 39.52$ ppm). Coupling constants (J) were given in Hz. Resonance multiplicity was described as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet) and broad (broad signal). Carbon spectra were acquired with a complete decoupling for the proton. Infrared spectra (IR) were recorded on (i) a BIO-RAD FTS-165 apparatus between 4000 and 600 cm⁻¹. Liquid samples have been prepared as film between two sodium chloride cells (NaCl) and solid samples were spread out in potassium bromide (KBr) before being pressed as a transparency 0.2 mm tablet or (ii) on a Perkin-Elmer Spectrum II FT-IR System with

Specac Silver Gate Evolution single-reflection ATR mounted with a diamond mono-crystal. Mass spectrometry was generally performed by the Centre de spectrométrie de masse at (i) the Université de Mons in Belgium were they performed ESI-MS and MALDI-MS, on using the following instrumentation. ESI-MS measurements were performed on a Waters QToF2 mass spectrometer operating in positive mode. The analyte solutions were delivered to the ESI source by a Harvard Apparatus syringe pump at a flow rate of 5 μ L/min. Typical ESI conditions were, capillary voltage 3.1 kV; cone voltage 20-50 V; source temperature 80 °C; desolvation temperature 120°C. Dry nitrogen was used as the ESI gas. For the recording of the singlestage ESI-MS spectra, the quadrupole (rf-only mode) was set to pass ions from 50 to 1000 Th, and all ions were transmitted into the pusher region of the time-of-flight analyzer where they were mass analyzed with 1 s integration time. MALDI-MS were recorded using a Waters QToF Premier mass spectrometer equipped with a nitrogen laser, operating at 337 nm with a maximum output of 500 mW delivered to the sample in 4 ns pulses at 20 Hz repeating rate. Time-of-flight analyses were performed in the reflectron mode at a resolution of about 10,000. The matrix solution (1 μ L) was applied to a stainless steel target and air-dried. Analyte samples were dissolved in a suitable solvent to obtain 1 mg/mL solutions. 1 μ L aliquots of those solutions were applied onto the target area already bearing the matrix crystals, and air-dried. For the recording of the single-stage MS spectra, the quadrupole (rf-only mode) was set to pass ions from 100 to 1000 Th, and all ions were transmitted into the pusher region of the time-of-flight analyzer where they were analyzed with 1 s integration time or (ii) The "Fédération de Recherche" ICOA/CBM (FR2708) platform of Orléans in France. High-resolution ESI mass spectra (HRMS) were performed on a Bruker maXis Q-TOF in the positive ion mode. The analytes were dissolved in a suitable solvent at a concentration of 1 mg/mL and diluted 200 times in methanol (\approx 5 ng/mL). The diluted solutions $(1\mu L)$ were delivered to the ESI source by a Dionex Ultimate 3000 RSLC chain used in FIA (Flow Injection Analysis) mode at a flow rate of 200 μ L/min with a mixture of CH₃CN/H₂O+0.1% of HCO₂H (65/35). ESI conditions were as follows: capillary voltage was set at 4.5 kV; dry nitrogen was used as nebulizing gas at 0.6 bars and as drying gas set at 200°C and 7.0 L/min. ESI-MS spectra were recorded at 1 Hz in the range of 50-3000 m/z. Calibration was performed with ESI-TOF Tuning mix from Agilent and corrected using lock masses at m/z 299.294457 (methyl stearate) and 1221.990638 Data were processed using Bruker DataAnalysis (HP-1221). 4.1 Electron Paramagnetic resonance (EPR) software. spectra were recorded using a Bruker Elexsys E500 CW spectrometer at а frequency of 9.414 GHz. The spectra were recorded on CH₂Cl₂ solution. Magnetic meaurements as a function of the field (0-5 T) and of the temperature (2-300 K) were performed using a QD MPMS SQUID Magnetometer. Raw data were corrected for diamagnetic contribution of the sample holder and the intrinsic diamagnetism of the sample estimated by Pascal's constants.

1.2. Materials and methods

Chemicals were purchased from Sigma Aldrich, Acros Organics, TCI and ABCR and were used as received. C60 was purchased from Bucky-USA (99 %). Solvents were purchased from Sigma Aldrich, while deuterated solvents from Eurisotop. Diethyl ether and THF were distilled from sodium-benzophenone-cetyl, toluene was refluxed over calcium hydride and dichloromethane (CH₂Cl₂) was refluxed over phosphorous pentoxide. Anhydrous DMF was purchased from Acros Organics. Sulfuric acid (H_2SO_4 95%) and hydrochloridic acid (HCl purchased from Fischer Scientific. 32%) were Pyridine was Organics. MeOH, CHCl₃ and purchased from Acros acetone were purchased as reagent-grade and used without further purification. were prepared using different solvent Low temperature baths depending desired temperature: -78°C mixtures on the with acetone/dry ice, -40 °C with CH₃CN/liquid N₂, -10 °C with ice-H₂O/NaCl, and 0 °C with ice/H₂O. Anhydrous conditions were achieved

3

by drying Schlenk tubes or 2-neck flasks by flaming with a heat qun under vacuum and then purging with Argon. The inert atmosphere was maintained using Argon-filled balloons equipped with a syringe and needle that was used to penetrate the silicon stoppers used to close the flasks' necks. Additions of liquid reagents were or performed using dried plastic glass syringes. 6,7-Dibromonaphthalene-2,3-diol $\mathbf{1}^{[1S]}$ and 2-(3,5-di-*tert*-butylphenyl)-**6**[2S] 4,4,5,5-tetramethyl-1,3,2-dioxaborolane were prepared according to literature procedure.

1.3. Emission and absorption analysis

Fig. SI1. Normalised emission spectra of fused system PXX, 17^x and 21^x (X = H or tBuPh) recorded in CH₂Cl₂ solution at room temperature.

Fig. SI2. Normalised UV-vis absorption spectra of $17^{\tt H}$ and $21^{\tt H}$ in CH_2Cl_2 at the NIR region.

Fig. SI3. Variable temperature UV-Vis absorption spectra of 21^{H} recorded in a toluene solution (C = 0.72 ¹⁰⁻³ M) at different temperature (from r.t. to 80 °C).

Fig. SI4. HRMS-MALDI mass spectrum of 17^{H} in the positive ion mode (matrix: DTCB, N2-laser: 337 nm).

Fig. SI5. Low-resolution and HRMS-MALDI mass spectra (in the inset) of $21^{\rm H}$ in the positive ion mode (matrix: DTCB, N2-laser: 337 nm). The peak at 1002 correspond to an HCl adduct while at 1940 a dimeric specie.

mode (matrix: DTCB, N2-laser: 337 nm).

Fig. SI7. HRMS-MALDI mass spectrum of 21^{tBuPh} in the positive ion mode (matrix: DTCB, N2-laser: 337 nm).

Fig. SI8. a) HRMS-MALDI spectrum for 17^{H} ; b-e) calculated mass spectra and isotopic patterns for the covalent and non-covalent dimeric and tetrameric species; f-g) MSMS isotopic patterns for the dimeric species; h) a MSMS spectrum.

1.5. X-Ray Analysis

Data collections for $cis-19^{tBuPh}$ and 17^{H} were performed at the X-ray diffraction beamline (XRD1) of the Elettra Synchrotron, Trieste (Italy), with a Pilatus 2M image plate detector. Complete datasets were collected at 100 K (nitrogen stream supplied through an Oxford Cryostream 700) with a monochromatic wavelength of 0.700 Å through the rotating crystal method. The crystals of the compounds were dipped in N-paratone and mounted on the

goniometer head with a nylon loop. Complete dataset for the triclinic crystal **cis-19^{tBuPh}** form has been obtained merging two different data collections done on the same crystal, mounted with different orientations.

The diffraction data were indexed, integrated and scaled using XDS.^[3S] The structures were solved by direct methods using SIR2014,^[4S] Fourier analyzed and refined by the full-matrix least-squares based on F^2 implemented in SHELXL-2014.^[5S] The Coot program was used for modeling.^[6S]

Anisotropic thermal motion modeling as then been applied to atoms with occupancy greater than 60% for $cis-19^{tBuPh}$. Several crystals have been tried for 17^{H} and all of them show poor diffraction limit (~1.2 Å); to avoid overrefinement, thermal motion parameters have been modeled anisotropically only for oxygen atoms in this structure. Hydrogen atoms were included at calculated positions with isotropic $U_{factors} = 1.2 U_{eq}$ or Ufactors = 1.5 U_{eq} for methyl groups. Restrain on bond lengths, angles and thermal motion (DFIX, DANG and SIMU) for disordered fragments and solvent molecules have been applied. Two independent molecules for $cis-19^{tBuPh}$ and 17^{H} are present in the asymmetric units (ASUs).

For all the molecules, weak hydrophobic interactions keep compounds packed: several C-H - π interactions can be found and the **17^H** model show nicely stacked planes of almost flat molecules, with an average distance of 3.3 Å. Disordered solvent has been removed from *cis*-**19^{tBuPh}** model with the SQUEEZE routine of PLATON.^[7S] The formula mass and unit-cell characteristics reported for *cis*-**19^{tBuPh}** do not take into account this disordered solvent (the contribution of this region to the scattering was estimated as ca. 198 electrons/cell, in a volume of ca. 1173 Å³). Five isopropanol molecules have been located in molecule **17^H** crystal channels (aligned with crystallographic *c* axis), four of them disordered in two different orientations. Essential crystal and refinement data are reported below.

X-Ray Analysis of (±) $trans-19^{tBuPh}$ CCDC Number 1415364 10

Empirical Formula: C₁₁₂H₁₁₈O₆ Crystal Size: 0.11 x 0.13 x 0.25 mm Formula Weight: 1560.06 Radiation: 1.54184 Å Temperature: 293 K θ Range for data collection: 4.1 to 66.6 ° Crystal system: monoclinic Dataset: -20: 18 ; -23: 23 ; -27: 27 space group: $P 2_1/c$ Total, Unique Data, R(int): 47369, 10520, 0.044 Observed data [I > 2.0]a (Å): 17.0940(3) Å, $\alpha = 90^{\circ}$ sigma(I)]: 7679 b (Å): 19.9020(3) Refinement method: F² using SHELXL-97 software c (Å): 23.1182(5) Nref, Npar: 10520, 556 R, wR2, S: 0.0769, 0.2660, 1.06 α (°): 90° $P = (Fo^2^+2Fc^2^)/3$ β (°): 130.591(1)° γ (°): 90° V (Å³): 5972.4(2) Max. and Av. Shift/Error: 0.00, 0.00 z: 2 Min. and Max. Resd. Dens: -0.22, 0.60 Å⁻³ ρ (g·cm⁻³): 0.868 g/cm³ F(000): 1676

X-Ray Analysis of (±) cis-19^{tBuPh} CCDC Number 1416668

Moiety Formula: C₁₁₂H₁₁₈O₆ θ min,max (°):0.9, 18.6 Resolution (Å): 1.1 Sum Formula: C112H118O6 Formula weight (Da): 1560.06 Total refl. Collctd: 47861 Temperature (K): 100(2) Independent refl.: 15860 [R(int) = 0.045] Wavelength (Å): 0.700 Obs. Refl. [Fo>4 σ (Fo)]: 10394 Crystal system: Triclinic $I/\sigma(I)$ (all data): 12.2 Space Group: P - 1 $I/\sigma(I)$ (max resltn): 6.1 a (Å): 21.014(4) Completeness (all data): 0.97 b (Å): 21.930(4) Completeness (max resltn): 0.97 c (Å): 24.956(5) Rmerge (all data): 0.044 Rmerge (max resltn,): 0.133 α (°): 68.14(3) Multiplicity (all data): 3.0 β (°): 89.85(3) Multiplicity (max resltn): 3.1 γ (°): 77.47(3) V (Å³): 10380(4) Data/restraint/parameters: 15860/2625/1728 Z: 4 Goof: 1.734 ρ (g·cm⁻³): 0.998 $R[I>2.0\sigma(I)]$, wR2 [I>2.0 $\sigma(I)$]: 0.1718, 0.4051 F(000): 3352 R (all data), wR2 (all data): 0.2154, 0.4326 μ (mm⁻¹): 0.058

X-Ray Analysis of 17^{H} CCDC Number 1416669

```
Moiety Formula: C<sub>58</sub>H<sub>52</sub>O<sub>4</sub>·2.5C<sub>3</sub>H<sub>8</sub>O
                                          θ min, max (°):1.0, 16.9
Sum Formula: C<sub>65.50</sub>H<sub>72</sub>O<sub>6.50</sub>
                                          Resolution (Å): 1.2
                                          Total refl. Collctd: 11488
Formula weight (Da): 963.23
                                          Independent refl.: 6196 [R(int)
Temperature (K): 100(2)
                                          = 0.2021
Wavelength (Å): 0.700
                                          Obs. Refl. [Fo>4σ(Fo)]: 2959
Crystal system: Triclinic
                                          I/\sigma(I) (all data): 3.4
Space Group: P - 1
                                          I/\sigma(I) (max resltn): 1.8
a (Å): 13.695(3)
                                          Completeness (all data): 0.95
b (Å): 19.931(4)
                                          Completeness (max resltn): 0.93
c (Å): 21.870(4)
                                          Rmerge (all data): 0.135
                                          Rmerge (max resltn,): 0.250
\alpha (°):68.32(3)
                                          Multiplicity (all data): 1. 9
\beta (°):87.44(3)
                                          Multiplicity (max resltn): 1.9
\gamma (°):75.84(3)
V (Å<sup>3</sup>): 5372(2)
                                          Data/restraint/parameters:
                                          6196/145/688
                                          Goof: 0.983
Z: 4
\rho (g·cm<sup>-3</sup>): 1.191
                                          R[I>2.0\sigma(I)], wR2 [I>2.0\sigma(I)]:
                                          0.1614, 0.3535
F(000): 2068
                                          R (all data), wR2 (all data):
                                          0.2525, 0.4183
\mu (mm<sup>-1</sup>): 0.072
```

1.6. Synthesis.

2-(3,5-Di-tert-butylphenyl)-6-methoxynaphthalene 7

To a 5 mL microwave vial, **6** (380 mg, 1.20 mmol), 2-bromo-6methoxynaphthalene **5** (237 mg, 1.00 mmol), Cs_2CO_3 (652 mg, 2.00 mmol) and Pd(PPh_3)_4 (60 mg, 0.05 mmol) were added. This was followed by the addition of toluene (2 mL), EtOH (1 mL) and DMF (1 mL) under argon and the resulting mixture was placed under microwave conditions for 1 h and at 100 °C. The resulting mixture was dissolved in EtOAc (10 mL). The organic layer was then washed with H₂O (3 × 20 mL) and the aqueous phase extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over MgSO₄ and evaporated *in vacuo*. The residue was purified by silica gel column 12 chromatography (eluents: cyclohexane/CH₂Cl₂, 1:1) affording **7** as a white solid (382 mg, 91%). C₂₅H₃₀O; MW: 346.51 g/mol; M.p.: 170-171 °C; IR (cm⁻¹): v 475.05, 680.38, 712.73, 823.09, 855.34, 876.08, 1029.85, 1163.23, 1204.74, 1237.53, 1361.84, 1389.18, 1454.25, 1478.73, 1591.73, 2951.67; ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.96 (d, J = 1.37 Hz, 1H, H_c), 7.83-7.80 (m, 2H, $H_{b,f}$), 7.74-7.71 (m, 1H, H_d), 7.53 (d, J = 1.83 Hz, 2H, H_h), 7.45 (t, J = 1.83 Hz, 1H, H_i), 7.19-7.17 (m, 2H, $H_{e,g}$), 3.95 (s, 3H, H_a), 1.41 (s, 18H, H_j).); ¹³C-NMR (100.5 MHz, CDCl₃) $\delta_{\rm C}$: 157.77, 151.32, 140.78, 137.83, 133.78, 129.80, 129.32, 127.23, 126.70, 125.85, 121.94, 121.42, 119.20, 105.73, 55.49, 35.18, 31.72; EI-HRMS: ([M]⁺ C₂₅H₃₀O⁺) calc. 346.2297, found 346.2283.

6-(3,5-Di-tert-butylphenyl)naphthalen-2-ol 8

To a solution of 7 (1.34 g, 3.00 mmol) in anhydrous CH₂Cl₂ (30 mL), BBr₃ (9 mL, 9.00 mmol, 1M in CH₂Cl₂) was added at 0 °C under argon. The resulting mixture was stirred overnight at room temperature. Finally, H_2O (30 mL) was added and the solution stirred for additional 30 min. The mixture was washed with H_2O (2 × 25 mL) and the aqueous layer extracted with EtOAc (3 \times 25 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by precipitation in cold pentane affording 8 as a white solid (930 mg, 93%). C₂₄H₂₈O; MW: 332.48 g/mol; M.p.: 148-151 °C; IR (cm⁻¹): v 477.65, 496.63, 678.69, 711.04, 814.72, 865.96, 897.76, 1124.07, 1181.95, 1247.29, 1362.39, 1385.84, 1453.06, 1593.05, 2948.79, 3527.24; ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.95 $(s, 1H, H_c)$, 7.83 $(d, J = 8.93 Hz, 1H, H_b)$, 7.76 (d, J = 8.47 Hz)1H, H_e), 7.71 (dd, J = 8.47, 1.83 Hz, 1H, H_d), 7.52 (d, J = 1.83Hz, 2H, H_h), 7.46 (t, J = 1.83 Hz, 1H, H_i), 7.18 (d, J = 2.52 Hz, 1H, H_g), 7.13 (dd, J = 2.52, 8.70 Hz, 1H, H_f), 4.89 (s, 1H, H_a),

1.41 (s, 18H, H_j); ¹³C-NMR (100.5 MHz, CDCl₃) δ_c : 153.44, 151.33, 140.72, 137.90, 133.76, 130.26, 129.32, 126.95, 126.85, 125.93, 121.93, 121.46, 118.20, 109.46, 35.16, 31.71; EI-HRMS: ([M]⁺ C₂₄H₂₈O⁺) calc. 332.2140, found 332.2133.

6,6'-Bis(3,5-di-*tert*-butylphenyl)-[1,1'-binaphthalene]-2,2'-diol 12

To a mixture of CuCl₂ (270 mg, 2.00 mmol) in anhydrous MeOH (10 mL), (±)-1-phenylethylamine (320 μ L, 2.50 mmol) was added at 0 °C and the resulting blue-green mixture was degassed under argon for 30 min. A solution of 8 (332 mg, 1.00 mmol) in anhydrous CH_2Cl_2 (10 mL) was added and the resulting solution stirred overnight at room temperature. A 1M aqueous solution of HCl (10 mL) was added and the mixture extracted with CH_2Cl_2 (3 × 15 mL). The organic layer was then washed with H_2O (2 × 15 mL). The combined organic layers were dried over $MgSO_4$ and evaporated *in vacuo*. The residue by silica gel column chromatography (eluents: purified was $CH_2Cl_2/cyclohexane$, 1:1 with a gradient to CH_2Cl_2) affording 12 as a white solid (176 mg, 53%). C48H54O2; MW: 662.94 g/mol; M.p.: 265-267 °C; IR (cm⁻¹): v 520.23, 561.77, 716.12, 819.04, 825.92, 875.24, 1123.78, 1142.77, 1157.78, 1214.16, 1245.79, 1361.93, 1391.35, 1477.95, 1590.00, 2955.65, 3463.15; ¹H-NMR (400 MHz, C₆D₆) $\delta_{\rm H}$: 8.16 $(d, J = 1.60 \text{ Hz}, 2H, H_c), 7.69-7.67 \text{ (m, 6H, } H_{b,g}), 7.58 \text{ (t, } J = 1.83$ Hz, 2H, H_h), 7.51 (dd, J = 1.83, 8.70 Hz, 2H, H_d), 7.37 (d, J =8.70 Hz, 2H, H_e), 7.32 (d, J = 9.02 Hz, 2H, H_f), 4.96 (s, 2H, H_a), 1.36 (s, 36H, H_i); ¹³C-NMR (100.5 MHz, C₆D₆) $\delta_{\rm C}$: 153.39, 151.56, 141.39, 138.95, 133.27, 131.88, 130.30, 126.91, 125.50, 122.42,

14

121.56, 118.59, 111.65, 35.10, 31.69 (One peak is missing due to overlap with C_6D_6); MALDI-HRMS: ([M]⁺ $C_{48}H_{54}O_2^+$) calc. 662.4124, found 662.4117.

2,8-Bis(3,5-di-tert-butylphenyl)xantheno[2,1,9,8-klmna]xanthene 13

To 12 (66 mg, 0.10 mmol), CuI (57 mg, 0.30 mmol) and pivalic acid (20 mg, 0.20 mmol), anhydrous DMSO (1 mL) was added and the resulting mixture heated to 130 °C for 2 h under open-air condition. The solution was filtered, washed with CH_2Cl_2 and evaporated under vacuum. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1) followed by precipitation in MeOH affording 13 as a yellow solid (62 mg, 94%). C₄₈H₅₀O₂; MW: 658.91 g/mol; M.p.: > 300 °C; IR (cm⁻¹): v 711.84, 852.97, 1064.13, 1077.53, 1225.18, 1246.56, 1261.27, 1361.2, 1458.34, 1579.81, 1594.21, 1631.26, 2854.10, 2923.29, 2957.97; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 256 (63329), 282 (104172), 340 (11228), 396 (7691), 420 (15427), 448 (20566); ¹H-NMR (400 MHz, C₆D₆) $\delta_{\rm H}$: 7.65 (d, J = 1.83 Hz, 4H, ArH), 7.60 (t, J = 1.83 Hz, 2H, ArH), 7.40 (d, J = 1.14 Hz, 2H, ArH), 7.23 (d, J = 1.37 Hz, 2H, ArH), 7.03 (d, J = 8.93 Hz, 2H, ArH), 6.81 (d, J =8.93 Hz, 2H, ArH), 1.36 (s, 36H, CCH₃); ¹³C-NMR (100.5 MHz, C₆D₆) $\delta_{\rm C}$: 153.61, 151.61, 144.79, 142.63, 141.38, 132.04, 126.94, 122.19, 121.93, 121.14, 118.94, 117.96, 111.99, 109.51, 35.11, 31.69; MALDI-HRMS: ([M]⁺ C₄₈H₅₀O₂⁺) calc. 658.3811, found 658.3813.

3-(Benzyloxy)-6'-(3,5-di-*tert*-butylphenyl)-2,2'-dimethoxy-1,1'binaphthalene 10^H

To a mixture of CuCl₂ (537 mg, 4.00 mmol) in anhydrous MeOH (25 mL), (±)-1-phenylethylamine (640 μ L, 5.00 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon during (664 2.00 30 min. A solution of 8 mg, mmol) and 3-(benzyloxy) naphthalen-2-ol (600 mg, 2.40 mmol) in anhydrous CH_2Cl_2 (25 mL) was added and the resulting solution stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was added and the solution stirred for another 30 min. CH_2Cl_2 (20 mL) was added and the mixture washed with H_2O (3 × 25 mL). The aqueous phase was then extracted with CH_2Cl_2 (2 × 25 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: $CH_2Cl_2/cyclohexane$, 1:1 with a gradient to CH_2Cl_2) affording 9^{H} in a mixture of the three possible cross-coupling products as a white solid (1.05 g - no yield reported). C₄₁H₄₀O₃; MW: 580.75 g/mol; M.p.: 166-168 °C; MALDI-HRMS: ([M]⁺ C₄₁H₄₀O₃⁺) calc. 580.2977, found 580.2973. To a solution of the obtained mixture (970 mg, 1.68 mmol) and K_2CO_3 (3.60 g, 26.08 mmol) in anhydrous acetone (50 mL), (2.16 mL, 34.68 mmol) was added under MeI arqon at room temperature. The resulting mixture was refluxed during 2 h and further stirred overnight at room temperature. A 1M aqueous solution of HCl (30 mL) and EtOAc (30 mL) were added to the solution. The mixture was washed with H_2O (2 × 50 mL) and the aqueous layer extracted with EtOAc (2 \times 50 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents:

CH₂Cl₂/pentane, 1:1) affording **10^H** as a white solid (560 mg, 46% over 2 steps). $C_{43}H_{44}O_3$; MW: 608.81 g/mol; M.p.: 105-107 °C; IR (cm⁻¹): v 698.00, 712.20, 735.65, 825.10, 873.80, 1019.03, 1037.39, 1046.83, 1092.93, 1114.60, 1151.01, 1248.25, 1267.74, 1329.84, 1362.77, 1423.56, 1442.81, 1462.62, 1590.50, 2960.97; ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.19-8.17 (m, 2H, $H_{c,d}$), 7.88 (d, J = 8.24 Hz, 1H, H_k), 7.66-7.58 (m, 6H, $H_{e,g,n,q}$), 7.55-7.41 (m, 6H, $H_{1,1,o,P,r}$), 7.28 (d, J = 8.70 Hz, 1H, H_f), 7.22-7.14 (m, 2H, $H_{h,j}$), 5.39 (s, 2H, H_m), 3.88 (s, 3H, H_b), 3.74 (s, 3H, H_a), 1.48 (s, 18H, H_s); ¹³C-NMR (100.5 MHz, CD₂Cl₂) $\delta_{\rm C}$: 155.24, 152.08, 151.76, 148.25, 140.91, 137.96, 137.43, 133.51, 131.80, 130.30, 129.69, 129.46, 129.06, 128.46, 128.02, 127.20, 127.08, 126.88, 126.29, 125.93, 125.79, 125.67, 124.55, 122.20, 121.79, 119.12, 114.19, 109.01, 70.86, 60.92, 56.68, 35.35, 31.77; MALDI-HRMS: ([M]⁺ $C_{43}H_{44}O_{3^+}$) calc. 608.3290, found 608.3304.

6'-(3,5-Di-*tert*-butylphenyl)-2,2'-dimethoxy-[1,1'-binaphthalen]-3ol 11^H

To a suspension of Pd/C (700 mg, 6.58 mmol) in CHCl₃ (20 mL) at 0 °C under argon, a solution of $10^{\rm H}$ (400 mg, 0.66 mmol) in CHCl₃ (20 mL) and AcOH (2 mL) was added. The solution was degassed with H₂ for 40 min and the resulting dark solution stirred during 24 h at room temperature, under H₂ atmosphere. The solution was filtered and the solvent evaporated *in vacuo*. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/pentane, 1:1 with gradient to CH₂Cl₂) affording $11^{\rm H}$ as a white solid (310 mg, 91%). C₃₆H₃₈O₃; MW: 518.69 g/mol; M.p.: 226-228 °C; IR (cm⁻¹): v 694.64, 712.44, 736.29, 825.71, 873.51, 1001.14, 1040.77, 1087.79,

1109.21, 1147.63, 1171.44, 1203.33, 1244.67, 1267.09, 1362.41, 1427.7, 1450.89, 1464.23, 1589.75, 2961.05, 3508.60; ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.14 (d, J = 8.16 Hz, 1H, H_c), 8.09 (d, J = 1.83Hz, 1H, H_d), 7.76 (d, J = 8.24 Hz, 1H, H_k), 7.55-7.52 (m, 2H, $H_{e,g}$), 7.50 (d, J = 1.83 Hz, 2H, H_n), 7.45 (t, J = 1.83 Hz, 1H, H_o), 7.42 (s, 1H, H_1), 7.37-7.33 (m, 1H, H_i), 7.17 (d, J = 8.70 Hz, 1H, H_f), 7.12-7.04 (m, 2H, $H_{h,j}$), 6.19 (s, 1H, H_m), 3.85 (s, 3H, H_b), 3.44 (s, 3H, H_a), 1.38 (s, 18H, H_p); ¹³C-NMR (100.5 MHz, CD₂Cl₂) δ_c : 155.39, 151.75, 148.38, 146.56, 140.66, 138.06, 133.29, 132.00, 130.84, 129.66, 129.14, 127.30, 126.99, 126.25, 125.77, 125.69, 125.55, 124.40, 124.10, 122.10, 121.82, 118.28, 114.04, 109.95, 61.12, 56.68, 35.30, 31.65; MALDI-HRMS: ([M]⁺ [C₃₆H₃₈O₃]⁺) calc. 518.2821, found 518.2832.

2-(3,5-Di-*tert*-butylphenyl)-10-(6-(3,5-di-*tert*-butylphenyl)-2methoxynaphthalen-1-yl)-11-methoxyxantheno[2,1,9,8-*klmna*]xanthene 15^H

To a mixture of CuCl₂ (180 mg, 1.34 mmol) in anhydrous MeOH (15 mL), (±)-1-phenylethylamine (215 μ L, 1.66 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon for 30 min. This was followed by the addition of a solution of $11^{\rm H}$ (345 mg, 0.66 mmol) and 8 (332 mg, 1.00 mmol) in anhydrous CH₂Cl₂ (15 mL), and the resulting solution was stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was added and the solution stirred for additional 30 min. CH₂Cl₂ (20 mL) was added and the mixture washed with H₂O (3 × 20 mL). The aqueous

phase was then extracted with CH_2Cl_2 (3 × 25 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/pentane, 1:1 with a gradient to CH₂Cl₂) affording the mixture the 3 possible compounds that were used without further of purification. To the obtained mixture (140 mg, 0.16 mmol), CuI (95 mg, 0.49 mmol) and pivalic acid (34 mg, 0.33 mmol), anhydrous DMSO (2 mL) was added and the resulting mixture heated to 145 $^\circ\text{C}$ for 4 The resulting crude was filtered, washed with CH₂Cl₂ and h. evaporated in vacuo. The black residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 3:7 with a gradient to CH_2Cl_2) followed by precipitation in MeOH affording 15^{H} as a yellow solid (30 mg, 5% over two steps). $C_{60}H_{60}O_4$; MW: 845.12 g/mol; M.p.: decomposition before reaching melting point; IR (cm⁻ ¹): v 799.42, 848.42, 1054.78, 1070.27, 1141.81, 1209.70, 1235.49, 1248.53, 1328.73, 1362.15, 1403.96, 1453.35, 1503.83, 1593.57, 1629.45, 2961.06; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 227 (64248), 262 (82561), 396 (7004), 419 (12503), 447 (15509); ¹H-NMR (400 MHz, C₆D₆) $\delta_{\rm H}$: 8.25 (s, 1H, ArH), 7.83 (d, J = 8.93 Hz, 1H, ArH), 7.74-7.59 (m, 8H, ArH), 7.42 (d, J = 0.69 Hz, 1H, ArH), 7.28(d, J = 0.92 Hz, 1H, ArH), 7.10 (d, J = 9.16 Hz, 1H, ArH), 7.04(d, J = 8.93 Hz, 1H, ArH), 6.82 (d, J = 8.93 Hz, 1H, ArH), 6.74-6.60 (m, 3H, ArH), 3.57 (s, 3H, OCH₃), 3.37 (s, 3H, OCH₃), 1.37-1.34 (m, 36H, CCH₃); ¹³C-NMR (100.5 MHz, C₆D₆) $\delta_{\rm C}$: 155.30, 153.29, 153.25, 151.59, 151.51, 147.41, 144.77, 142.51, 141.77, 141.32, 139.55, 138.76, 133.54, 132.91, 131.88, 130.23, 130.06, 128.90, 126.94, 126.62, 126.30, 125.12, 122.56, 122.17, 121.92, 121.42, 121.07, 119.11, 119.09, 118.96, 118.89, 117.96, 114.18, 113.56, 112.13, 109.50, 108.14, 60.83, 55.97, 35.11, 31.71, 31.68 (one aromatic peak is missing probably due to overlap with the solvent and one CCH₃ is missing due to overlap); MALDI-HRMS: ([M]⁺ $[C_{60}H_{60}O_4]^+$) calc. 844.4492, found 844.4478.

8-(3,5-Di-*tert*-butylphenyl)-4-(6-(3,5-di-*tert*-butylphenyl)-2hydroxynaphthalen-1-yl)xantheno[2,1,9,8-*klmna*]xanthen-5-ol 16^H

To a solution of 15^{H} (30 mg, 0.036 mmol) in anhydrous CH₂Cl₂ (10 mL), BBr₃ (110 μ L, 0.11 mmol, 1M in CH₂Cl₂) was added at 0 °C under argon. The resulting mixture was stirred overnight at room temperature. As the starting material was still present, BBr₃ (200 μ L, 0.20 mmol, 1M in CH₂Cl₂) was added and the solution stirred 3 h. H_2O (10 mL) was added and the solution stirred 30 min. The mixture was washed with H_2O (2 x 15 mL) and the aqueous layer extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1) affording 16^{H} as a yellow solid (24 mg, 82%). $C_{58}H_{56}O_4$; MW: 817.06 g/mol; M.p.: decomposition before reaching melting point; IR (cm⁻¹): v 712.44, 751.45, 852.12, 873.63, 1132.49, 1170.96, 1232.38, 1248.44, 1362.42, 1441.74, 1476.95, 1508.12, 1594.13, 1630.75, 2960.86, 3062.56, 3492.89; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ε_{max}, mol⁻¹ L cm⁻¹) 227 (64076), 262 (83784), 396 (6534), 419 (12494), 447 (15186); ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.09-8.03 (m, 2H, ArH), 7.64 (dd, J = 1.83 Hz, 8.70 Hz, 1H, ArH), 7.63-7.38 (m, 10H, ArH),7.04-7.01 (m, 2H, ArH), 6.92 (t, J = 8.24 Hz, 1H, ArH), 6.56-6.40(m, 2H, ArH), 5.56-5.52 (m, 2H, OH), 1.38 (s, 36H, CCH₃); ¹³C-NMR (100.5 MHz, CD_2Cl_2) δ_c : 171.10, 153.07, 152.73, 152.46, 151.77, 144.98, 142.18, 140.58, 140.19, 138.24, 132.61, 132.04, 131.83, 131.67, 130.12, 128.97, 127.93, 127.62, 126.73, 124.91, 122.34, 122.09, 121.90, 121.85, 120.57, 119.24, 118.68, 118.20, 117.57,

116.88, 114.18, 111.75, 110.90, 109.59, 107.97, 35.29, 31.65 (three aromatic C peaks are missing probably due to overlap and the CCH_3 are overlapping); MALDI-HRMS: $([M]^+ [C_{58}H_{56}O_4]^+)$ calc. 816.4179, found 816.4168.

2,13-bis(3,5-di-tert-butylphenyl)-tetraoxa-pentaphenopentaphene 17^H

To 16^{H} (20 mg, 0.024 mmol), CuI (15 mg, 0.073 mmol) and pivalic acid (5 mg, 0.049 mmol), anhydrous DMSO (2 mL) was added and the resulting mixture heated at 140 °C for 4 h. The resulting crude was filtered, washed with CH₂Cl₂ and evaporated *in vacuo*. The darkred residue was purified by silica gel column chromatography (eluents: CH₂Cl₂) followed by precipitation in MeOH, affording 17^{H} as a red solid (6 mg, 31%). C₅₈H₅₂O₄; MW: 813.03 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 699.92, 737.82, 802.19, 858.03, 1072.12, 1261.28, 1362.82, 1461.87, 1595.20, 1727.31, 2851.98, 2921.51, 2956.20; UVvis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 226 (37924), 262 (42227), 495 (2710), 542 (1691); MALDI-HRMS: ([M]⁺ C₅₈H₅₂O₄⁺) calc. 812.3866, found 812.3848. 6,6'''-Bis(3,5-di-*tert*-butylphenyl)-2,2',2''',3''-tetramethoxy-[1,1':4',1'':4'',1'''-quaternaphthalene]-2'',3'-diol 18^H

To a mixture of $CuCl_2$ (135 mg, 1.00 mmol) in anhydrous MeOH (10 mL), (\pm) -1-phenylethylamine (161 μ L, 1.25 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon for 30 min. This was followed by the addition of a solution of 11^{H} (250 mg, 0.48 mmol) in anhydrous CH_2Cl_2 (10 mL), and the resulting solution was stirred overnight at room temperature. A 1M aqueous solution of HCl (10 mL) was added and the solution stirred for additional 30 min. CH_2Cl_2 (20 mL) was added and the mixture washed with H_2O (3 × 20 mL). The aqueous phase was then extracted with CH_2Cl_2 (2 × 25 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was precipitated in MeOH affording 18^H as a white solid as a mixture of diastereoisomers (210 mg, 85%). C₇₂H₇₄O₆; MW: 1035.35 g/mol; M.p.: decomposition before reaching melting point; IR (cm⁻¹): v 481.81, 712.46, 758.58, 799.43, 824.44, 873.74, 906.74, 1002.27, 1055.69, 1087.98, 1110.99, 1153.14, 1249.29, 1269.39, 1345.19, 1361.29, 1398.73, 1448.84, 1589.45, 2957.92, 3492.50; ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.20 (d, J = 8.93 Hz, 2H, ArH), 8.14 (d, J = 1.83 Hz, 1H, ArH), 7.64-7.61 (m, 4H, ArH), 7.54 (d, J = 1.60 Hz, 4H, ArH), 7.47-7.14 (m, 12H, ArH), 6.26 (s, 2H, OH), 3.97 (s, 6H, OCH₃), 3.60 (s, 6H, OCH₃), 1.39 (s, 36H, CCH₃); ¹³C-NMR (100.5 MHz, CD₂Cl₂) $\delta_{\rm C}$: 155.43, 151.69, 146.69, 146.55, 140.66, 138.01, 133.37, 131.12, 130.82, 22

129.60, 129.33, 127.36, 126.25, 126.04, 125.94, 125.38, 124.84, 124.36, 122.11, 121.77, 118.31, 115.10, 114.00, 61.23, 56.68, 35.25, 31.61 (one peak is missing probably due to overlap); MALDI-HRMS: ([M]⁺ [C₇₂H₇₄O₆]⁺) calc. 1034.5485, found 1034.5461.

4,10-Bis(6-(3,5-di-*tert*-butylphenyl)-2-methoxynaphthalen-1-yl)-5,11-dimethoxyxantheno[2,1,9,8-*klmna*]xanthene 19^H

To a solution of 18^{H} (210 mg, 0.20 mmol), CuI (115 mg, 0.61 mmol) and pivalic acid (42 mg, 0.41 mmol), anhydrous DMSO (2 mL) was added and the resulting mixture heated at 145 °C for 5 h. The resulting crude was filtered, washed with CH₂Cl₂ and evaporated in vacuo. The residue was purified by silica qel column chromatography (eluents: CH_2Cl_2 /pentane, 3:7 with a gradient of 1:1) affording **19^H** (118 mg, 57%). C₇₂H₇₀O₆; MW: 1031.32 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 712.60, 756.76, 800.36, 834.51, 873.15, 1037.41, 1073.14, 1148.32, 1219.16, 1252.64, 1270.94, 1344.99, 1361.26, 1445.17, 1461.74, 1592.21, 2900.30, 2964.20; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 231 (101091), 291 (116348), 393 (9624), 416 (19586), 444 (22985);

(±) Trans-like diastereoisomer

¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.12-8.10 (m, 4H, ArH), 7.63 (d, J = 8.93 Hz, 2H, ArH), 7.55-7.53 (m, 6H, ArH), 7.46 (s, 2H, ArH), 7.38 (d, J = 8.70 Hz, 2H, ArH), 6.97 (t, J = 8.47 Hz, 2H, ArH), 6.74 (d, J = 7.56 Hz, 2H, ArH), 6.39 (d, J = 8.47 Hz, 2H, ArH), 3.91 (s, 6H, OCH₃), 3.73 (s, 6H, OCH₃), 1.40 (s, 36H, CCH₃); ¹³C-NMR 23

(100.5 MHz, CD₂Cl₂) δ_{c} : 155.15, 152.71, 151.74, 146.96, 140.71, 139.29, 137.97, 133.02, 132.41, 130.50, 129.74, 128.02, 127.24, 126.31, 125.51, 124.88, 122.10, 121.78, 119.01, 118.43, 118.10, 114.18, 113.36, 108.47, 61.33, 56.78, 35.30, 31.66; MALDI-HRMS: ([M]⁺ [C₇₂H₇₀O₆]⁺) calc. 1030.5172, found 1030.5190.

(±) Cis-like diastereoisomer

¹H-NMR (400 MHz, CD₂Cl₂) 8.13-8.10 (m, 4H, ArH), 7.63 (dd, J = 1.60, 8.93 Hz, 2H, ArH), 7.56-7.53 (m, 6H, ArH), 7.47 (m, 2H, ArH), 7.39 (d, J = 8.70 Hz, 2H, ArH), 6.97 (t, J = 8.47 Hz, 2H, ArH), 6.75 (d, J = 7.56 Hz, 2H, ArH), 6.40 (d, J = 8.47 Hz, 2H, ArH), 3.91 (s, 6H, OCH₃), 3.74 (s, 6H, OCH₃), 1.40 (s, 36H, CCH₃); ¹³C-NMR (100.5 MHz, CD₂Cl₂) δ_{c} : 155.18, 152.73, 151.75, 146.97, 140.73, 139.30, 138.00, 133.03, 132.42, 130.50, 129.75, 128.03, 127.23, 126.34, 125.52, 124.90, 122.11, 121.79, 119.03, 118.44, 118.12, 114.22, 113.35, 108.48, 61.33, 56.80, 35.31, 31.67; MALDI-HRMS: ([M]⁺ [C₇₂H₇₀O₆]⁺) calc. 1030.5172, found 1030.5204.

4,10-Bis(6-(3,5-di-tert-butylphenyl)-2-hydroxynaphthalen-1yl)xantheno[2,1,9,8-klmna]xanthene-5,11-diol 20^H

To a solution of 19^{H} (60 mg, 0.058 mmol) in anhydrous CH₂Cl₂ (10 mL), BBr₃ (290 µL, 0.29 mmol, 1M in CH₂Cl₂) was added at 0 °C under argon. The resulting mixture was stirred overnight at room temperature. H₂O (10 mL) was then added and the solution stirred for 30 min. The mixture was washed with H₂O (2 × 15 mL) and the aqueous layer extracted with CH₂Cl₂ (2 × 15 mL). The combined 24

organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by precipitation in cold pentane affording 20^{H} as a green solid (44 mg, 78%). C₆₈H₆₂O₆; MW: 975.22 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 713.11, 746.38, 798.14, 845.08, 874.55, 1135.10, 1216.03, 1245.08, 1362.33, 1394.11, 1434.65, 1462.42, 1477.96, 1508.06, 1594.19, 2961.87, 3520.70; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 229 (99459), 260 (103430), 288 (57196), 334 (13185), 391 (8918), 415 (16727), 443 (18128); ¹H-NMR (400 MHz, THF- d_6) 8.30 (s, 2H, OH), 8.03 (d, J = 1.60 Hz, 2H, ArH), 7.96 (s, 2H, OH), 7.93 (d, J = 8.93 Hz, 2H, ArH), 7.54-7.52 (m, 6H, ArH), 7.44 (t, J = 1.60 Hz, 2H, ArH), 7.34 (d, J = 8.93 Hz, 2H, ArH), 7.28 (d, J = 8.93 Hz, 2H, ArH), 6.92-6.88 (m, 2H, ArH), 6.62 (d, J= 7.56 Hz, 2H, ArH), 6.38 (d, J = 8.70 Hz, 2H, ArH), 1.39 (s, 36H, CCH₃); ¹³C-NMR (100.5 MHz, THF- d_6) δ_c : 154.35, 153.31, 151.51, 145.79, 141.70, 137.60, 136.62, 134.01, 133.52, 130.51, 130.12, 127.98, 126.82, 126.54, 125.61, 122.24, 121.43, 119.75, 118.74, 116.59, 115.78, 114.17, 112.78, 106.95, 35.40, 31.71; MALDI-HRMS: ([M]⁺ [C₆₈H₆₂O₆]⁺) calc. 974.4546, found 974.4564.

2,12-bis(3,5-di-*tert*-butylphenyl)-hexaoxanaphtotetraphenopyranthrene 21^{H}

To a solution of 20^{H} (40 mg, 0.040 mmol), CuI (47 mg, 0.25 mmol) and pivalic acid (17 mg, 0.16 mmol), anhydrous DMSO (2 mL) was added and the resulting mixture heated at 145 °C for 3 h. The resulting crude was filtered, abundantly washed with CH₂Cl₂, EtOAc, MeOH and pyridine and evaporated *in vacuo*. The black residue was 25 purified by silica gel column chromatography (eluents: CH_2Cl_2 to EtOAc) affording desired 21^{H} as a black residue (14 mg, 36%). $C_{68}H_{54}O_6$; MW: 967.15 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 534.90, 711.46, 736.71, 804.89, 873.88, 1073.44, 1246.92, 1261.46, 1362.14, 1454.82, 1505.21, 1592.70, 1725.60, 2852.57, 2922.45, 2956.79; UV-vis (CH_2Cl_2 , r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 263 (16070); MALDI-HRMS: ([M]⁺ $C_{68}H_{54}O_6^+$) calc. 966.3920, found 966.3935.

3-(Benzyloxy)-6,7-dibromonaphthalen-2-ol 2

To a solution of 1 (1.59 g, 5.00 mmol) in anhydrous DMF (10 mL), NaHCO₃ (420 g, 5.00 mmol) was added under arqon at room temperature. The resulting mixture was heated at 100 °C for 1 h. Benzyl bromide (535 μ L, 4.50 mmol) was then added and the resulting mixture heated at 100 °C overnight. After cooling down, the mixture was washed with H_2O (3 \times 10 mL). The combined aqueous layers were then extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂) affording **2** as a white solid (800 mg, 39%). C₁₇H₁₂Br₂O₂; MW: 408.08 g/mol; M.p.: 164-165 °C; IR (cm⁻¹): v 539.45, 695.35, 736.30, 887.28, 941.85, 1023.66, 1104.08, 1150.63, 1250.59, 1292.16, 1352.4, 1383.68, 1403.54, 1453.27, 1498.08, 3515.9; ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.94 (s, 2H, $H_{d,e}$), 7.47-7.40 (m, 5H, $H_{j,k,l}$), 7.16 (s, 1H, H_f), 7.08 (s, 1H, H_c), 6.03 (s, 1H, H_a), 5.23 (s, 2H, H_h); ¹³C-NMR (100.5 MHz, CDCl₃) δ_c : 147.55, 146.98, 135.45, 130.87, 130.66, 129.82, 129.05, 128.95, 128.17, 120.19, 119.52, 108.68, 106.00, 71.35 (one peak is missing probably due to overlap); ESI-HRMS: $([M+H]^+ C_{17}H_{13}Br_2O_2^+)$ calc. 406.9277, found 406.9272.

3-(Benzyloxy)-6,7-bis(4-(tert-butyl)phenyl)naphthalen-2-ol 4^{tBuPh}

To a 5 mL microwave vial were added 2 (204 mg, 0.50 mmol), (4-(tert-butyl)phenyl)boronic acid 3 (196 mg, 1.10 mmol), Cs₂CO₃ (489 mg, 1.50 mmol) and Pd(PPh₃)₄ (58 mg, 0.05 mmol). This was followed by the addition of toluene (2 mL), EtOH (1 mL) and DMF (1 mL) under argon and the resulting reaction mixture was heated under microwave conditions for 1 h at 100 °C. The resulting mixture was then dissolved in CH_2Cl_2 (5 mL) and the organic layer washed with H_2O (3 × 10 mL). The resulting aqueous phase was then extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: cyclohexane/CH₂Cl₂, 1:1) affording **4^{tBuPh}** as a white solid (255 mg, 99%). C₃₇H₃₈O₂; MW: 514.29 g/mol; ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 7.71-7.70 (d, 2H, $H_{c,i}$), 7.51-7.37 $(m, 5H, H_{m,n,o})$, 7.31 $(s, 1H, H_b)$, 7.25-7.23 $(m, 5H, H_{e,h,k})$, 7.14-7.11 (m, 4H, H_{d,i}), 5.99 (s, 1H, H_a), 5.27 (s, 2H, H₁), 1.31 (s, 18H, $H_{f,q}$; ¹³C-NMR (100.5 MHz, CDCl₃) $\delta_{\rm C}$: 149.24, 149.20, 146.87, 146.16, 138.87, 138.82, 137.86, 137.29, 136.01, 129.72, 129.10, 128.95, 128.71, 128.25, 128.20, 128.10, 127.97, 124.71, 109.46, 107.02, 71.19, 34.54, 31.50 (four peaks are missing probably due to overlap); ESI-HRMS: ([M+H]⁺ [C₃₇H₃₉O₂]⁺) calc. 515.2944, found 515.2946.

3-(Benzyloxy)-6,7-bis(4-(*tert*-butyl)phenyl)-6'-(3,5-di-*tert*butylphenyl)-2,2'-dimethoxy-1,1'-binaphthalene 10^{tBuPh}

To a mixture of $CuCl_2$ (520 mg, 3.89 mmol) in anhydrous MeOH (25 mL), (\pm) -1-phenylethylamine (626 μ L, 4.86 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon for 30 min. This was followed by the addition of a solution of $\mathbf{4}^{\mathtt{tBuPh}}$ (500 mg, 0.97 mmol) and 8 (390 mg, 1.17 mmol) in anhydrous CH₂Cl₂ (25 mL), and the resulting solution was stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was added and the reaction mixture stirred for additional 30 min. This was followed by the addition of CH_2Cl_2 (20 mL) and the mixture was washed with H_2O (2 × 20 mL). The resulting aqueous phase was then extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was directly gel column chromatography (eluents: subjected to a silica $cyclohexane/CH_2Cl_2$, 1:1 to CH_2Cl_2) affording an unseparable mixture of the 3 possible products, amongst which desire $\mathbf{9^{tBuPh}}$ (870 mg). To a solution of the obtained mixture (845 mg, 1.00 mmol) and K_2CO_3 (2.07 g, 15.00 mmol) in anhydrous acetone (50 mL), MeI (1.25 mL, 20.00 mmol) was added under argon at room temperature. The resulting mixture was refluxed for 2 h and further stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was added to the solution, and the mixture extracted with H_2O $(2 \times 30 \text{ mL})$. The aqueous layer was washed with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica qel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1) affording desired 10^{tBuPh} (210 mg, 25% over two steps) as white solids. C₆₃H₆₈O₃; MW: 872.52 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 596.85, 695.93, 711.72, 734.71, 834.73, 873.16, 1027.56, 1048.32, 1093.59, 1141.33, 1201.60, 1249.09, 1361.90, 1461.38, 1476.68, 1590.71, 2960.03; ¹H-NMR (270 MHz, CD_2Cl_2) δ_{H} : 8.12-8.09 (m, 2H, $H_{d,e}$), 7.85 (s, 1H, ArH), 7.63-7.39 (m, 12H, ArH), 7.32-7.27 (m, 2H, ArH), 7.17-7.08 (m, 5H, ArH), 6.90-6.88 (m, 2H, ArH), 5.38 (s, 2H, Ha), 3.91 (s, 3H, Hc), 3.68 (s, 3H, H_b), 1.41 (s, 18H, H_f), 1.33 (s, 9H, H_g), 1.22 (s, 9H, H_h); ¹³C-NMR (68 MHz, CD₂Cl₂) δ_c : 155.23, 152.32, 151.70, 149.78,

28

149.52, 148.54, 140.90, 139.17, 138.83, 137.93, 137.77, 137.41, 133.44, 130.99, 130.31, 129.93, 129.84, 129.64, 129.05, 128.83, 128.66, 128.44, 127.99, 127.12, 127.08, 126.82, 126.27, 125.85, 125.08, 124.89, 122.19, 121.72, 118.93, 114.15, 108.79, 70.89, 60.93, 56.77, 35.31, 34.73, 34.59, 31.71, 31.51, 31.40 (one peak is missing probably due to overlap); MALDI-HRMS: ([M]+ [C₆₃H₆₈O₃]+) calc. 872.5168, found 872.5159.

6,7-Bis(4-(*tert*-butyl)phenyl)-6'-(3,5-di-*tert*-butylphenyl)-2,2'dimethoxy-[1,1'-binaphthalen]-3-ol 11^{tBuPh}

To a suspension of 10% Pd/C (112 mg, 1.06 mmol) in $CHCl_3$ (5 mL) at 0 °C under argon, a solution containing **10^{tBuPh}** (185 mg, 0.21 mmol) in $CHCl_3$ (5 mL) and AcOH (0.5 mL) was added. The solution was degassed with H_2 for 40 min and the resulting dark solution stirred for 24 h at room temperature, under H_2 atmosphere. The solution was filtered and the solvent evaporated under vacuum. The residue was purified by silica gel column chromatography (eluents: $CH_2Cl_2/cyclohexane$, 1:1 with gradient to CH_2Cl_2) affording **11^{tBuPh}** as a white solid (110 mg, 67%). C₅₆H₆₂O₃; MW: 783.09 g/mol; M.p.: 162-165 °C; IR (cm⁻¹): v 833.99, 874.09, 1016.58, 1041.34, 1087.94, 1224.83, 1250.93, 1268.63, 1362.49, 1416.94, 1462.12, 1479.15, 1591.28, 2904.11, 2961.00; ¹H-NMR (270 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.17-8.12 $(m, 2H, H_{d,e})$, 7.83 $(s, 1H, H_{i})$, 7.65-7.49 $(m, 6H, H_{f,h,i,r,s})$, 7.35-7.28 (m, 3H, $H_{g,o}$), 7.18-7.11 (m, 5H, $H_{k,l,p}$), 6.92-6.89 (m, 2H, H_m), 6.30 (s, 1H, H_a), 3.94 (s, 3H, H_c), 3.49 (s, 3H, H_b), 1.43 (s, 18H, H_t), 1.34 (s, 9H, H_q), 1.23 (s, 9H, H_n); ¹³C-NMR (68 MHz, CD₂Cl₂) δ_c : 155.46, 151.76, 149.79, 149.50, 148.75, 146.93, 140.78, 139.24, 139.16, 139.00, 138.14, 137.46, 133.33, 131.30, 130.97, 129.93, 29

129.85, 129.74, 128.67, 128.44, 127.41, 127.02, 126.34, 125.84, 125.08, 124.89, 124.46, 122.19, 121.83, 118.20, 114.08, 109.80, 61.21, 56.80, 35.34, 34.73, 34.60, 31.73, 31.53, 31.43; MALDI-HRMS: ([M]⁺ [C₅₆H₆₂O₃]⁺) calc. 782.4699, found 782.4675.

1,2-Bis(4-(*tert*-butyl)phenyl)-8-(3,5-di-*tert*-butylphenyl)-4-(6-(3,5-di-*tert*-butylphenyl)-2-methoxynaphthalen-1-yl)-5methoxyxantheno[2,1,9,8-klmna]xanthene 15^{tBuPh}

To a mixture of $CuCl_2$ (171 mg, 1.28 mmol) in anhydrous MeOH (15 mL), (\pm) -1-phenylethylamine (205 μ L, 1.60 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon for 30 min. This was followed by the addition of a solution of 11^{tBuPh} (250 mg, 0.32 mmol) and 8 (220 mg, 0.64 mmol) in anhydrous CH₂Cl₂ (15 mL), and the resulting solution stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was added and the solution stirred for another 30 min. CH_2Cl_2 (20 mL) was added and the mixture washed with H_2O (3 \times 20 mL). The aqueous phase was then extracted with CH_2Cl_2 (3 × 25 mL) and the combined organic layers dried over $MgSO_4$ and evaporated in vacuo. The residue was purified by silica qel column chromatography (eluents: CH_2Cl_2 /pentane, 1:1 with a gradient to CH_2Cl_2) affording 14^{tBuPh} in a mixture of the 3 possible compounds (250 mg). C₈₀H₈₈O₄; MW: 1113.55 MALDI-HRMS: ([M]+ $[C_{80}H_{88}O_4]^+)$ calc. 1112.6683, q/mol; found 1112.6677. To the obtained mixture (250 mg, 0.22 mmol), CuI (128 mq, 0.67 mmol), pivalic acid (46 mq, 0.45 mmol) and anhydrous DMSO (5 mL) were added and the resulting mixture heated to 145 °C for 2 h. The resulting crude was filtered, washed with CH₂Cl₂ and 30

evaporated in vacuo. The black residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 3:7 with a gradient to CH₂Cl₂) followed by precipitation in MeOH affording 15^{tBuPh} as a yellow solid (69 mg, 19% over 2 steps). C₈₀H₈₄O₄; MW: 1109.52 g/mol; M.p.: decomposition before reaching melting point; (cm⁻¹): v 711.20, 797.45, 819.04, 833.88, 852.76, 872.88, IR 1054.21, 1075.99, 1142.20, 1205.62, 1246.77, 1361.96, 1393.01, 1454.70, 1591.61, 2955.07; UV-vis (CH_2Cl_2, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 227 (87142), 262 (119172), 284 (95153), 344 (12760), 399 (8506), 424 (15820), 452 (19572); ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.08-8.06 (m, 2H, ArH), 7.65-7.63 (m, 1H, ArH), 7.53-7.41 (m, 10H, ArH), 7.2-7.24 (m, 2H, ArH), 7.12-7.08 (m, 3H, ArH), 7.00-6.98 (m, 2H, ArH), 6.94-6.92 (m, 1H, ArH), 6.74-7.72 (m, 2H, ArH), 6.41 (s, 1H, ArH), 3.93 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 1.40-1.39 (s, 36H, CCH₃), 1.30 (s, 9H, CCH₃), 1.15 (s, 9H, CCH₃); ¹³C-NMR (100.5 MHz, CD_2Cl_2) δ_c : 155.19, 152.92, 151.80, 151.70, 149.90, 149.60, 147.08, 144.72, 142.79, 142.16, 140.77, 140.47, 139.38, 138.84, 137.96, 133.05, 132.99, 131.77, 131.21, 130.51, 129.74, 129.58, 127.23, 127.14, 126.34, 125.54, 124.78, 124.57, 122.28, 122.14, 121.90, 121.75, 120.57, 119.72, 118.91, 118.31, 117.96, 117.61, 114.18, 113.71, 111.56, 109.37, 61.39, 56.82, 35.31, 35.30, 34.73, 34.50, 31.66, 31.44, 31.29 (four aromatic peaks and one of the CCH3 carbon are missing due to overlap); MALDI-HRMS: ([M]⁺ [C₈₀H₈₄O₄]⁺) calc. 1108.6670, found 1108.6400.

1,2-Bis(4-(tert-butyl)phenyl)-8-(3,5-di-tert-butylphenyl)-4-(6-(3,5-di-tert-butylphenyl)-2-hydroxynaphthalen-1yl)xantheno[2,1,9,8-klmna]xanthen-5-ol 16^{tBuPh}

To a solution of 15^{tBuPh} (40 mg, 0.036 mmol) in anhydrous CH₂Cl₂ (10 mL), BBr3 (110 $\mu\text{L},$ 0.11 mmol, 1M in CH2Cl2) was added at 0 $^\circ\text{C}$ under argon. The resulting mixture was stirred overnight at room temperature. H_2O (10 mL) was added and the solution stirred 30 min. The mixture was washed with H_2O (2 × 15 mL) and the aqueous layer extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1) affording 16^{tBuPh} as a yellow solid (25 mg, 64%). C₇₈H₈₀O₄; MW: 1081.47 g/mol; M.p.: decomposition before reaching melting point; (cm⁻¹): v 562.90, 711.30, 736.69, 801.29, 861.19, 1019.18, IR 1096.43, 1260.75, 1362.73, 1392.92, 1462.02, 1509.58, 1593.95, 2867.54, 2960.65; ¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.08 (d, J = 1.60 Hz, 1H, ArH), 8.02 (d, J = 8.93 Hz, 1H, ArH), 7.68 (dd, J = 1.83 Hz, 8.70 Hz, 1H, ArH), 7.52-7.45 (m, 9H, ArH), 7.38 (d, J = 8.93 Hz, 1H, ArH), 7.27-7.24 (m, 2H, ArH), 7.15-6.98 (m, 6H, ArH), 6.76-6.73 (m, 2H, ArH), 6.49 (bs, 1H, ArH), 5.55 (s, 1H, OH), 5.37 (s, 1H, OH), 1.39 (s, 36H, CCH₃), 1.30 (s, 9H, CCH₃), 1.15 (s, 9H, CCH_3); MALDI-HRMS: ([M]⁺ [C₇₈H₈₀O₄]⁺) calc. 1080.6057, found 1080.6096.

7,8-bis(4-(*tert*-butyl)phenyl)-2,13-bis(3,5-di-*tert*-butylphenyl)tetraoxapentapheno-pentaphene 17^{tBuPh}

To 16^{tBuPh} (21 mg, 0.019 mmol), CuI (11 mg, 0.058 mmol) and pivalic acid (4 mg, 0.039 mmol), anhydrous DMSO (3 mL) was added and the resulting mixture heated to 145 °C for 1h under open-air condition. The solution was filtered, washed with CH₂Cl₂ and evaporated under vacuum. The residue was purified by silica gel column chromatography (eluents: from CH₂Cl₂/cyclohexane, 1:1 to CH₂Cl₂/EtOAc, 1:1) affording 17^{tBuPh} as a red solid (10 mg, 49%). C₇₈H₇₆O₄; MW: 1077.44 g/mol; IR (cm⁻¹): v 816.47, 836.76, 857.16, 1107.35, 1144.83, 1194.21, 1246.99, 1310.37, 1362.33, 1392.85, 1461.27, 1508.02, 1593.82, 2865.90, 2959.38; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 268 (76557), 509 (5800), 552 (5361); MALDI-HRMS: ([M]⁺ C₇₈H₇₆O₄⁺) calc. 1076.5744, found 1076.5760.

6',6'',7',7''-Tetrakis(4-(*tert*-butyl)phenyl)-6,6'''-bis(3,5-di*tert*-butylphenyl)-2,2',2''',3''-tetramethoxy-[1,1':4',1'':4'',1'''-quaternaphthalene]-2'',3'-diol 18^{tBuPh}

To a mixture of CuCl₂ (96 mg, 0.72 mmol) in anhydrous MeOH (15 mL), (\pm) -1-phenylethylamine (115 μ L, 0.89 mmol) was added at 0 °C and the resulting blue-green mixture degassed under argon for 30 min. This was followed by the addition of a solution of 11^{tBuPh} (280 mg, 0.36 mmol) in anhydrous CH_2Cl_2 (15 mL), and the resulting solution was stirred overnight at room temperature. A 1M aqueous solution of HCl (20 mL) was then added and the solution stirred for additional 30 min. CH_2Cl_2 (20 mL) was added and the mixture washed with H_{2O} (3 × 20 mL). The aqueous phase was extracted with $CH_{2}Cl_{2}$ $(3 \times 25 \text{ mL})$. The combined organic layers were dried over MgSO₄ and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/pentane, 1:1 with a gradient to CH₂Cl₂) affording the mixture of the 3 different diastereoisomers **18^{tBuPh}** (207 mg, 74%). C₁₁₂H₁₂₂O₆; MW: 1564.16 g/mol; M.p. 208-212 °C; (cm⁻¹): v 543.11, 562.95, 601.15, 711.31, 736.69, 799.40, IR 873.81, 968.54, 1018.02, 1087.80, 1258.88, 1362.07, 1394.25, 1461.43, 1591.18, 1732.20, 2960.76; ¹H-NMR (270 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.16 (d, J = 9.16 Hz, 2H, ArH), 8.11 (d, J = 1.60 Hz, 2H, ArH), 7.61-7.53 (m, 10H, ArH), 7.47-7.43 (m, 4H, ArH), 7.23 (s, 2H, ArH), 7.15-7.13 (m, 4H, ArH), 7.09-7.07 (m, 4H, ArH), 6.99-6.97 (m, 4H, ArH), 6.88-6.86 (m, 4H, ArH), 6.43 (s, 2H, OH), 4.02 (s, 6H, OCH₃), 3.59 (s, 6H, OCH₃), 1.40 (s, 36H, CCH₃), 1.20-1.19 (m, 36H, CCH₃); ¹³C-NMR (100.5 MHz, CD₂Cl₂) $\delta_{\rm C}$: 155.50, 151.70, 149.65, 149.44, 146.97, 146.76, 140.81, 139.28, 139.17, 139.14, 138.14, 137.71, 133.33, 130.98, 130.57, 129.90, 129.83, 129.71, 128.57, 127.53, 127.35, 126.88, 126.43, 125.96, 124.89, 124.84, 124.72, 122.13, 121.79, 118.18, 115.31, 113.92, 61.30, 56.75, 35.31, 34.61, 34.57, 31.70, 31.49, 31.38; MALDI-HRMS: ([M]⁺ [C₁₁₂H₁₂₂O₆]⁺) calc. 1562.9241, found 1562.9214.

1,2,7,8-Tetrakis(4-(*tert*-butyl)phenyl)-4,10-bis(6-(3,5-di-*tert*butylphenyl)-2-methoxynaphthalen-1-yl)-5,11dimethoxyxantheno[2,1,9,8-*klmna*]xanthene 19^{tBuPh}

To 18^{tBuPh} (95 mg, 0.060 mmol), CuI (35 mg, 0.18 mmol) and pivalic acid (13 mg, 0.12 mmol), anhydrous DMSO (2 mL) was added and the resulting mixture heated at 145 °C for 1 h. The resulting crude was filtered, washed with CH₂Cl₂ and evaporated *in vacuo*. The black residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1 with a gradient to CH₂Cl₂) affording 19^{tBuPh} as a yellow solid (60 mg, 64%). C₁₁₂H₁₁₈O₆; MW: 1560.13 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 711.43, 736.58, 799.75, 833.82, 873.25, 1020.55, 1077.33, 1111.76, 1250.20, 1308.31, 1343.38, 1362.67, 1392.94, 1461.40, 1590.21, 2903.46, 2959.61; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ε_{max} , mol⁻¹ L cm⁻¹) 262 (33816), 292 (19346), 350 (3394), 402 (1875), 426 (3414), 455 (3927);

(±) Trans-like diastereoisomer

¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.04-8.02 (m, 4H, ArH), 7.62 (dd, J = 1.83 Hz, 8.70 Hz, 2H, ArH), 7.52-7.42 (m, 10H, ArH), 7.26-7.02 (m, 12H, ArH), 6.86-6.84 (m, 4H, ArH), 6.39 (s, 2H, ArH), 3.92 (s, 6H, OCH₃), 3.25 (s, 6H, OCH₃), 1.38 (s, 36H, CCH₃), 1.21 (s, 18H, CCH₃), 1.14 (s, 18H, CCH₃); ¹³C-NMR (100.5 MHz, CD₂Cl₂) $\delta_{\rm C}$: 155.01, 151.65, 150.01, 149.64, 146.85, 142.29, 140.72, 139.22, 138.67, 137.82, 133.21, 132.97, 130.98, 130.30, 129.58, 127.09, 126.25, 125.45, 124.85, 124.68, 124.43, 122.37, 122.08, 121.70, 119.66, 117.91, 116.98, 114.00, 113.33, 60.84, 56.82, 35.26, 34.65, 34.49, 31.62, 31.34, 31.24 (three peaks are missing probably due to overlap); MALDI-HRMS: ([M]⁺ [C₁₁₂H₁₁₈O₆]⁺) calc. 1558.8928, found 1558.8900.

(±) Cis-like diastereoisomer

¹H-NMR (400 MHz, CD₂Cl₂) $\delta_{\rm H}$: 8.04-8.02 (m, 4H, ArH), 7.65-7.62 (m, 2H, ArH), 7.52-7.43 (m, 10H, ArH), 7.26-7.02 (m, 12H, ArH), 6.86-6.84 (m, 4H, ArH), 6.40 (s, 2H, ArH), 3.92 (s, 6H, OCH₃), 3.26 (s, 6H, OCH₃), 1.39 (s, 36H, CCH₃), 1.21 (s, 18H, CCH₃), 1.15 (s, 18H, CCH₃); ¹³C-NMR (100.5 MHz, CD₂Cl₂) $\delta_{\rm C}$: 155.12, 151.71, 150.07, 149.71, 146.96, 142.39, 140.80, 139.30, 138.75, 137.91, 133.29, 133.06, 131.05, 130.35, 129.71, 129.65, 127.12, 126.32, 125.52, 124.90, 124.72, 124.49, 122.44, 122.13, 121.75, 119.72, 118.07, 117.05, 114.15, 113.38, 60.86, 56.80, 35.31, 34.70, 34.52, 31.68, 31.41, 31.30 (two peaks are missing probably due to overlap); MALDI-HRMS: ([M]⁺ [C₁₁₂H₁₁₈O₆]⁺) calc. 1558.8928, found 1558.8955.

1,2,7,8-Tetrakis(4-(*tert*-butyl)phenyl)-4,10-bis(6-(3,5-di-*tert*butylphenyl)-2-hydroxynaphthalen-1-yl)xantheno[2,1,9,8*klmna*]xanthene-5,11-diol 20^{tBuPh}

To a solution of 19^{tBuPh} (45 mg, 0.029 mmol) in anhydrous CH₂Cl₂ (10 mL), BBr₃ (86 μ L, 0.086 mmol, 1M in CH₂Cl₂) was added at 0 °C under argon. The resulting mixture was stirred overnight at room

36

temperature. H_2O (10 mL) was then added and the solution stirred for 30 min. The mixture was washed with H_{2O} (2 × 10 mL) and the aqueous layer extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were dried over MgSO4 and evaporated in vacuo. The residue was purified by silica gel column chromatography (eluents: CH₂Cl₂/cyclohexane, 1:1) affording **20^{tBuPh}** as a yellow solid (37 mg, 85%). $C_{108}H_{110}O_6$; MW: 1504.03 g/mol; M.p. > 250 °C; IR (cm⁻¹): v 509.09, 557.99, 711.54, 806.72, 822.33, 839.03, 872.67, 1046.82, 1139.69, 1179.54, 1213.83, 1245.98, 1270.20, 1360.99, 1402.23, 1419.70, 1458.37, 1477.33, 1594.60, 2960.82, 3303.10, 3500.40; UVvis (CH₂Cl₂, r.t.): λ_{max} (ϵ_{max} , mol⁻¹ L cm⁻¹) 260 (97252), 296 (60241), 340 (10045), 400 (5572), 425 (9335), 454 (10112); ¹H-NMR (400 MHz, THF- d_{β}) $\delta_{\rm H}$: 8.13-8.00 (m, 4H, ArH), 7.91 (d, J = 8.93 Hz, 2H, ArH), 7.58-7.51 (m, 6H, ArH), 7.44-7.42 (m, 4H, ArH), 7.27 (d, J = 8.93Hz, 2H, ArH), 7.15-7.10 (m, 8H, ArH), 7.00 (d, J = 8.47 Hz, 4H, ArH), 6.78 (d, J = 8.47 Hz, 4H, ArH), 6.52 (s, 2H, OH), 5.53 (s, 2H, OH), 1.38 (s, 36H, CCH₃), 1.20 (s, 18H, CCH₃), 1.15 (s, 18H, CCH₃); ¹³C-NMR (100.5 MHz, THF- d_8) δ_c : 154.63, 151.49, 149.93, 149.30, 149.21, 145.63, 142.80, 141.60, 139.82, 137.60, 136.89, 134.00, 133.54, 132.09, 131.90, 130.83, 130.16, 130.02, 126.94, 126.56, 125.52, 124.70, 124.48, 122.20, 121.44, 120.96, 119.75, 119.67, 116.12, 115.79, 113.30, 113.13, 35.39, 34.75, 34.64, 31.69, 31.47, 31.36; MALDI-HRMS: ([M]⁺ [C₁₀₈H₁₁₀O₆]⁺) calc. 1502.8302, found 1502.8296

6',6'',7',7''-Tetrakis(4-(*tert*-butyl)phenyl)-6,6'''-bis(3,5-di*tert*-butylphenyl)-2,2',2''',3''-tetramethoxy-[1,1':4',1'':4'',1'''-quaternaphthalene]-2'',3'-diol 21^{tBuPh}

To 20^{tBuPh} (40 mg, 0.027 mmol), CuI (30 mg, 0.16 mmol) and pivalic acid (12 mg, 0.11 mmol), anhydrous DMSO (3 mL) was added and the resulting mixture heated to 145 °C for 1h under open-air condition. The solution was filtered, washed with CH₂Cl₂ and evaporated under vacuum. The residue was purified by silica gel column chromatography (eluents: from CH₂Cl₂/cyclohexane, 1:1 to CH₂Cl₂/EtOAc, 1:1) affording **21^{tBuPh}** as a green-dark solid (12 mg, 29%). C₁₀₈H₁₀₂O₆; MW: 1495.96 g/mol; IR (cm⁻¹): v 563.57, 681.71, 711.05, 800.35, 837.92, 873.78, 1018.51, 1092.03, 1201.29, 1260.21, 1310.52, 1362.28, 1392.74, 1461.27, 1507.21, 1593.50, 1737.84, 2865.49, 2960.91; UV-vis (CH₂Cl₂, r.t.): λ_{max} (ε_{max} , mol⁻¹ L cm⁻¹) 264 (94311), 437 (15124), 557 (3107), 621 (2101); MALDI-HRMS: ([M]⁺ C₁₀₈H₁₀₂O₆⁺) calc. 1494.7556, found 1494.7526.

1.7. NMR Analysis

2-(3,5-Di-tert-butylphenyl)-6-methoxynaphthalene 7

Figure A 1: ¹H-NMR (400 MHz, CDCl₃)

Figure A 2: ¹³C-NMR (100.5 MHz, CDCl₃) 6-(3,5-Di-*tert*-butylphenyl)naphthalen-2-ol 8

Figure A 3: ¹H-NMR (400 MHz, CDCl₃)

Figure A 4: ¹³C-NMR (100.5 MHz, CDCl₃)

6,6'-Bis(3,5-di-*tert*-butylphenyl)-[1,1'-binaphthalene]-2,2'-diol 12

Figure A 5: ^{1}H -NMR (400 MHz, C₆D₆)

Figure A 6: $^{13}\text{C-NMR}$ (100.5 MHz, $C_6D_6)$

Figure A 7: ^{1}H -NMR (400 MHz, C₆D₆)

Figure A 8: $^{13}\text{C-NMR}$ (100.5 MHz, $C_6D_6)$

3-(Benzyloxy)-6'-(3,5-di-*tert*-butylphenyl)-2,2'-dimethoxy-1,1'binaphthalene **10^H**

Figure A 9: ¹H-NMR (400 MHz, CD_2Cl_2)

Figure A 10: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

6'-(3,5-Di-*tert*-butylphenyl)-2,2'-dimethoxy-[1,1'-binaphthalen]-3ol **11^H**

Figure A 11: ^{1}H -NMR (400 MHz, CD₂Cl₂)

Figure A 12: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

```
2-(3,5-Di-tert-butylphenyl)-10-(6-(3,5-di-tert-butylphenyl)-2-
methoxynaphthalen-1-yl)-11-methoxyxantheno[2,1,9,8-klmna]xanthene
15<sup>H</sup>
```


abundance 180.0 170.0 40.0 20.0 -10.0 -20.0 160.0 120.0 100.0 90.0 80.0 70.0 60.0 50.0 30.0 10.0 0 150.0 140.0 130.0 110.0 0.000 0.001 0.011 0.012 0.001 60.570 ----55.707 ---- $34.846 \\ 31.451 \\ 31.413 \\ 31.413$

Figure A 14: $^{13}\text{C-NMR}$ (100.5 MHz, $C_6D_6)$

8-(3,5-Di-*tert*-butylphenyl)-4-(6-(3,5-di-*tert*-butylphenyl)-2hydroxynaphthalen-1-yl)xantheno[2,1,9,8-*klmna*]xanthen-5-ol **16**^H

Figure A 15: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 16: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

6,6'''-Bis(3,5-di-*tert*-butylphenyl)-2,2',2''',3''-tetramethoxy-[1,1':4',1'':4'',1'''-quaternaphthalene]-2'',3'-diol **18^H**

Figure A 17: $^1\text{H}\text{-}\text{NMR}$ (400 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

Figure A 18: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

- 4,10-Bis(6-(3,5-di-tert-butylphenyl)-2-methoxynaphthalen-1-yl)-
- 5,11-dimethoxyxantheno[2,1,9,8-klmna]xanthene
- (±) Trans-like diastereoisomer $\mathbf{19^{H}}$

Figure A 19: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 20: $^{13}\text{C-NMR}$ (100.5 MHz, CD₂Cl₂) 4.8

(±) Cis-like diastereoisomer **19**^H

Figure A 21: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 22: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

4,10-Bis(6-(3,5-di-*tert*-butylphenyl)-2-hydroxynaphthalen-1yl)xantheno[2,1,9,8-*klmna*]xanthene-5,11-diol **20^H**

Figure A 23: ¹H-NMR (400 MHz, THF- d_6)

Figure A 24: $^{13}C-NMR$ (100.5 MHz, THF- d_6)

```
3-(Benzyloxy)-6,7-dibromonaphthalen-2-ol 2
```


Figure A 25: ^{1}H -NMR (400 MHz, CDCl₃)

Figure A 26: $^{13}\text{C-NMR}$ (100.5 MHz, CDCl₃)

3-(Benzyloxy)-6,7-bis(4-(*tert*-butyl)phenyl)naphthalen-2-ol **4^{tBuPh}**

Figure A 27: ^{1}H -NMR (400 MHz, CDCl₃)

Figure A 28: $^{13}\text{C-NMR}$ (100.5 MHz, CDCl_3)

Figure A 29: ¹H-NMR (270 MHz, CD₂Cl₂)

Figure A 30: $^{13}\text{C}\text{-}\text{NMR}$ (68 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

6,7-Bis(4-(*tert*-butyl)phenyl)-6'-(3,5-di-*tert*-butylphenyl)-2,2'dimethoxy-[1,1'-binaphthalen]-3-ol **11^{tBuPh}**

Figure A 31: ^{1}H -NMR (270 MHz, CD₂Cl₂)

Figure A 32: $^{\rm 13}{\rm C-NMR}$ (68 MHz, ${\rm CD}_2{\rm Cl}_2$) 54

1,2-Bis(4-(tert-butyl)phenyl)-8-(3,5-di-tert-butylphenyl)-4-(6-(3,5-di-tert-butylphenyl)-2-methoxynaphthalen-1-yl)-5methoxyxantheno[2,1,9,8-klmna]xanthene 15^{tBuPh}

Figure A 33: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 34: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

1,2-Bis(4-(tert-butyl)phenyl)-8-(3,5-di-tert-butylphenyl)-4-(6-(3,5-di-tert-butylphenyl)-2-hydroxynaphthalen-1yl)xantheno[2,1,9,8-klmna]xanthen-5-ol 16^{tBuPh}

Figure A 35: ^{1}H -NMR (400 MHz, CD₂Cl₂)

6', 6'', 7', 7''-Tetrakis(4-(*tert*-butyl)phenyl)-6, 6'''-bis(3, 5-di*tert*-butylphenyl)-2, 2', 2''', 3''-tetramethoxy-

[1,1':4',1'':4'',1'''-quaternaphthalene]-2'',3'-diol 18^{tBuPh}

Figure A 36: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 37: $^{13}\text{C}\text{-}\text{NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

1,2,7,8-Tetrakis(4-(tert-butyl)phenyl)-4,10-bis(6-(3,5-di-tertbutylphenyl)-2-methoxynaphthalen-1-yl)-5,11dimethoxyxantheno[2,1,9,8-klmna]xanthene (±) trans-like diastereoisomer 19^{tBuPh}

Figure A 38: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 39: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

Figure A 40: ¹H-NMR (400 MHz, CD₂Cl₂)

Figure A 41: $^{13}\text{C-NMR}$ (100.5 MHz, $\text{CD}_2\text{Cl}_2\text{)}$

1,2,7,8-Tetrakis(4-(tert-butyl)phenyl)-4,10-bis(6-(3,5-di-tertbutylphenyl)-2-hydroxynaphthalen-1-yl)xantheno[2,1,9,8klmna]xanthene-5,11-diol 20^{tBuPh}

Figure A 42: ¹H-NMR (400 MHz, THF- d_6)

Figure A 43: $^{13}\text{C-NMR}$ (100.5 MHz, THF- $d_6)$

Fig. SI8. Variable temperature ${}^{1}H$ -NMR spectra (500 MHz, Toluene) of **21^H** (from r.t. to 105 °C).

References

- [1S] P. T. Lynett, K. E. Maly, Org. Lett. 2009, 11, 3726-3729.
- [2S] J. Ranta, T. Kumpulainen, H. Lemmetyinen, A. Efimov, J. Org. Chem. 2010, 75, 5178-5194.
- [3S] W. Kabsch, Acta Cryst. D 2010, 66, 125-132.
- [4S] M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, J. Appl. Cryst. 2015, 48, 306-309.
- [5S] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- [6S] P. Emsley, K. Cowtan, Acta Cryst. D 2004, 60, 2126-2132.
- [7S] A. L. Spek, Acta Cryst. D 2009, 65, 148-155.