SUPPORTING INFORMATION

Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg²⁺

Yongming Guo^{1,*}, Lianfeng Zhang¹, Fengpu Cao¹, and Yumin Leng^{2,*}

¹College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University,

Nanyang 473061, China

²College of Physics and Electronic Engineering, Nanyang Normal University,

Nanyang 473061, China

*corresponding authors: Y. G. (email: chinahenangm@163.com) or Y. L. (email: ymleng@nynu.edu.cn).

Figure S1 UV-vis absorption spectrum of CQDs.

Figure S2 Emission spectra of CQDs in the absence and presence of 100 μ M NaClO (Excitation wavelength is 330 nm.).

Figure S3 High resolution XPS spectra for C1s, N1s, and O1s of CQDs.

Figure S4 FT-IR absorption spectrum of CQDs.

Figure S5 Fluorescence emission spectra of CQDs in the absence and presence of Hg^{2+} (100 μ M), Cu^{2+} (20 μ M) and Fe^{2+} (20 μ M).

Figure S6 UV-vis absorption spectra of CQDs in the absence and presence of 500 μ M Hg²⁺.

Figure S7 Fluorescence decay curve of CQDs in the absence and presence of 250 μ M and 500 μ M Hg²⁺ (Excitation wavelength is 330 nm, emission wavelength is 415 nm.).

Figure S8 The effect of incubation time on the fluorescence intensity of CQDs at 415 nm in the presence of 500 μ M Hg²⁺ (performed in pH 5.0, 50 mM NaAc-HAc buffer; excitation wavelength is 330 nm.).

Probes	Detection limit	Linear range	Quantum	Reference
			yield (%)	
CQDs	10 nM	0-5 μΜ	68	1
Nitrogen-doped CQDs	0.23 μM	0-25 μM	15.7	2
Carbon nitride quantum	0.14 µM	0.1 - 10 μM,	27.1	3
dots		10-30 μM		
Eu ³⁺ /CQDs@MOF-253	13 nM	0-150 μM	42.3	4
CQDs	1.6 µM	6-80 µM	4.7	5
CQDs	1.51 nM,	0-10 nM,	44.8	6
	126 nM	100-5000 nM		
CQDs	10 nM	0-75 μM	10.75	This work

Table S1. Comparison of the performance of different CQDs for Hg²⁺ detection.

Figure S9 (A) Fluorescence emission spectra of CQDs in the presence of different concentrations of Hg^{2+} in tap water. (B) The plot of I/I₀ versus the concentration of Hg^{2+} in tap water, the inset is the linear section of the plot (performed in pH 5.0, 50 mM NaAc-HAc buffer; I₀ and I correspond to the fluorescence intensity of CQDs at 415 nm in the absence and presence of Hg^{2+} , respectively; excitation wavelength is 330 nm.).

References:

1. Guo, Y., Wang, Z., Shao, H., & Jiang, X., Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection

of mercury ions. Carbon 52, 583-589 (2013).

- Zhang, R. & Wei, C., Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-of" fluorescent probe for detection of Hg²⁺ ions. *Biosens. Bioelectron.* 55, 83-90 (2013).
- Cao, X. *et al.*, A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. *Spectrochim. Acta A.* 151, 875-880 (2015).
- 4. Xu, X.-Y. & Yan, B., Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg²⁺ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu³⁺. *J. Mater. Chem. C* **4**, 1543-1549 (2016).
- Wang, C. *et al.*, Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg²⁺. *J. Mater. Sci.***51**, 861-867 (2015).
- Zhang, C., Hu, Z., Song, L., Cui, Y., & Liu, X., Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg²⁺ with high sensitivity and selectivity. *New J. Chem.* **39**, 6201-6206 (2015).