Supporting Information

Study to explore the mechanism to form inclusion complexes of β -cyclodextrin with vitamin molecules

Subhadeep Saha, Aditi Roy, Kanak Roy & Mahendra Nath Roy
Department of Chemistry, University of North Bengal, Darjeeling-734013, India
E-mail: mahendraroy2002@yahoo.co.in

Tables:

Table S1 Data for the Job plot performed by UV-Vis spectroscopy for a queous nicotinic acid- β -CD system at 298.15K^a

Nicotinic acid (mL)	β-CD (mL)	Nicotinic acid (µM)	β-CD (μM)	[NA]/([NA]+[β-CD])	Absorbance (A)	ΔA	$\Delta A \times [NA]/([NA]+[\beta-CD])$
0.0	1.0	0	100	0.0	0.0000	0.3625	0.0000
0.1	0.9	10	90	0.1	0.0357	0.3268	0.0327
0.2	0.8	20	80	0.2	0.0664	0.2961	0.0592
0.3	0.7	30	70	0.3	0.1022	0.2602	0.0781
0.4	0.6	40	60	0.4	0.1369	0.2256	0.0902
0.5	0.5	50	50	0.5	0.1681	0.1944	0.0972
0.6	0.4	60	40	0.6	0.2044	0.1581	0.0948
0.7	0.3	70	30	0.7	0.2421	0.1204	0.0842
0.8	0.2	80	20	0.8	0.2828	0.0797	0.0638
0.9	0.1	90	10	0.9	0.3233	0.0392	0.0353
1.0	0.0	100	0	1.0	0.3625	0.0000	0.0000

Table S2	Data	for	the	Job	plot	performed	by	UV-Vis	spectroscopy	for	aqueous
ascorbic a	ıcid-β-	CD s	yste	m at	298. 2	15K ^a					

Ascorbic acid (mL)	β-CD (mL)	Ascorbic acid (µM)	β-CD (μM)	[AA]/([AA]+[β-CD])	Absorbance (A)	ΔΑ	$\Delta A \times [AA]/([AA]+[\beta-CD])$
0.0	1.0	0	100	0.0	0.0000	0.6877	0.0000
0.1	0.9	10	90	0.1	0.1489	0.5388	0.0539

0.2	0.8	20	80	0.2	0.2460	0.4417	0.0883
0.3	0.7	30	70	0.3	0.2935	0.3942	0.1182
0.4	0.6	40	60	0.4	0.3587	0.3290	0.1316
0.5	0.5	50	50	0.5	0.4134	0.2743	0.1371
0.6	0.4	60	40	0.6	0.4737	0.2139	0.1284
0.7	0.3	70	30	0.7	0.5268	0.1609	0.1126
0.8	0.2	80	20	0.8	0.5811	0.1066	0.0853
0.9	0.1	90	10	0.9	0.6333	0.0543	0.0489
1.0	0.0	100	0	1.0	0.6877	0.0000	0.0000

 \overline{a} Standard uncertainties in temperature *u* are: *u*(T) = ±0.01 K.

Table S3 Data for surface tension,	conductivity a	and pH s	study	of aqueous	nicotinic
acid- β -CD system at 298.15K ^a					

Volm of β-CD (mL)	Total volm (mL)	Conc of Nicotinic acid (mM)	Conc of β-CD (mM)	Surface tension (mN m ⁻¹)	Conductuvity (mS m ⁻¹)	рН
0	10	10.000	0.000	82.0	8.81	3.349
1	11	9.091	0.909	80.5	8.10	3.359
2	12	8.333	1.667	79.0	7.55	3.367
3	13	7.692	2.308	77.8	7.13	3.377
4	14	7.143	2.857	76.7	6.75	3.385
5	15	6.667	3.333	75.8	6.41	3.393
6	16	6.250	3.750	75.0	6.10	3.401
7	17	5.882	4.118	74.3	5.85	3.409
8	18	5.556	4.444	73.7	5.65	3.416
9	19	5.263	4.737	73.3	5.49	3.423
10	20	5.000	5.000	73.0	5.39	3.428
11	21	4.762	5.238	72.9	5.32	3.432
12	22	4.545	5.455	72.7	5.29	3.436
13	23	4.348	5.652	72.6	5.26	3.440
14	24	4.167	5.833	72.5	5.22	3.442
15	25	4.000	6.000	72.4	5.19	3.445
16	26	3.846	6.154	72.3	5.17	3.447
17	27	3.704	6.296	72.2	5.14	3.450

18	28	3.571	6.429	72.1	5.11	3.453
19	29	3.448	6.552	72.1	5.08	3.455
20	30	3.333	6.667	72.0	5.06	3.458

^{*a*} Standard uncertainties in temperature *u* are: $u(T) = \pm 0.01$ K.

Table S4 Data for surface tension,	conductivity	and pH	study	of aqueous	ascorbic
acid- β -CD system at 298.15K ^a					

Volm of β-CD (mL)	Total volm (mL)	Conc of Ascorbic acid (mM)	Conc of β-CD (mM)	Surface tension (mN m ⁻¹)	Conductuvity (mS m ⁻¹)	рН
0	10	10.000	0.000	82.5	18.85	2.916
1	11	9.091	0.909	80.5	17.25	2.921
2	12	8.333	1.667	79.0	15.94	2.935
3	13	7.692	2.308	77.9	14.90	2.955
4	14	7.143	2.857	76.9	14.00	2.970
5	15	6.667	3.333	76.0	13.29	2.986
6	16	6.250	3.750	75.2	12.62	3.002
7	17	5.882	4.118	74.5	11.98	3.020
8	18	5.556	4.444	73.9	11.40	3.031
9	19	5.263	4.737	73.4	10.95	3.045
10	20	5.000	5.000	73.0	10.68	3.056
11	21	4.762	5.238	72.8	10.50	3.067
12	22	4.545	5.455	72.7	10.35	3.081
13	23	4.348	5.652	72.6	10.25	3.092
14	24	4.167	5.833	72.5	10.16	3.104
15	25	4.000	6.000	72.4	10.07	3.115
16	26	3.846	6.154	72.3	10.01	3.123
17	27	3.704	6.296	72.2	9.94	3.136
18	28	3.571	6.429	72.2	9.90	3.145
19	29	3.448	6.552	72.1	9.83	3.154
20	30	3.333	6.667	72.1	9.80	3.162

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp	[NA]	[β-CD]	٨٥	٨	۸۸	1/[β-CD]	1 / ۸ ۸	Intercent	Slope	Ka
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/K ^a	/µM	/μΜ	AU	А	ΔΑ	/M ⁻¹	1/ <u>A</u> A	intercept	Slope	/M-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	30		0.1793	0.0073	33333	137.0			
288.15 50 50 0.1720 0.1839 0.0119 20000 84.0 6.2982651 0.0038934 1617.68 50 60 0.1860 0.0140 16667 71.4 6.2982651 0.0038934 1617.68 </td <td></td> <td>50</td> <td>40</td> <td></td> <td>0.1818</td> <td>0.0098</td> <td>25000</td> <td>102.0</td> <td></td> <td></td> <td></td>		50	40		0.1818	0.0098	25000	102.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	288.15	50	50	0.1720	0.1839	0.0119	20000	84.0	6.2982651	0.0038934	1617.68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	60		0.1860	0.0140	16667	71.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	70		0.1880	0.0160	14286	62.5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	30		0.1784	0.0064	33333	156.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50	40		0.1805	0.0085	25000	117.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	293.15	50	50	0.1720	0.1824	0.0104	20000	96.2	6.2545665	0.0044882	1393.56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	60		0.1843	0.0123	16667	81.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	70		0.1862	0.0142	14286	70.4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	30		0.1774	0.0054	33333	185.2			
298.15 50 50 0.1720 0.1808 0.0088 20000 113.6 6.7025956 0.0053795 1245.95 50 60 0.1823 0.0103 16667 97.1		50	40		0.1790	0.0070	25000	142.9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	50	50	0.1720	0.1808	0.0088	20000	113.6	6.7025956	0.0053795	1245.95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	60		0.1823	0.0103	16667	97.1			
50 30 0.1769 0.0049 33333 204.1 50 40 0.1783 0.0063 25000 158.7 303.15 50 50 0.1720 0.1799 0.0079 20000 126.6 6.4153885 0.0059772 1073.31 50 60 0.1816 0.0096 16667 104.2 1073.31 50 70 0.1829 0.0109 14286 91.7 1073.33 50 30 0.1762 0.0042 33333 238.1 1000000000000000000000000000000000000		50	70		0.1841	0.0121	14286	82.6			
50 40 0.1783 0.0063 25000 158.7 303.15 50 50 0.1720 0.1799 0.0079 20000 126.6 6.4153885 0.0059772 1073.31 50 60 0.1816 0.0096 16667 104.2 104.2 104.2 104.2 50 70 0.1829 0.0109 14286 91.7 1073.31 50 30 0.1762 0.0042 33333 238.1 50 40 0.1777 0.0057 25000 175.4		50	30		0.1769	0.0049	33333	204.1			
303.15 50 50 0.1720 0.1799 0.0079 20000 126.6 6.4153885 0.0059772 1073.31 50 60 0.1816 0.0096 16667 104.2 104.2 104.2 104.2 104.2 104.2 50 70 0.1829 0.0109 14286 91.7 1073.31 1073.31 50 30 0.1762 0.0042 33333 238.1 104.2 104.2 50 40 0.1777 0.0057 25000 175.4 1073.31		50	40		0.1783	0.0063	25000	158.7			
50 60 0.1816 0.0096 16667 104.2 50 70 0.1829 0.0109 14286 91.7 50 30 0.1762 0.0042 33333 238.1 50 40 0.1777 0.0057 25000 175.4	303.15	50	50	0.1720	0.1799	0.0079	20000	126.6	6.4153885	0.0059772	1073.31
50 70 0.1829 0.0109 14286 91.7 50 30 0.1762 0.0042 33333 238.1 50 40 0.1777 0.0057 25000 175.4		50	60		0.1816	0.0096	16667	104.2			
50 30 0.1762 0.0042 33333 238.1 50 40 0.1777 0.0057 25000 175.4		50	70		0.1829	0.0109	14286	91.7			
50 40 0.1777 0.0057 25000 175.4		50	30		0.1762	0.0042	33333	238.1			
		50	40		0.1777	0.0057	25000	175.4			
308.15 50 0.1720 0.1790 0.0070 20000 142.9 6.3315992 0.0068908 918.85	308.15	50	50	0.1720	0.1790	0.0070	20000	142.9	6.3315992	0.0068908	918.85
50 60 0.1802 0.0082 16667 122.0		50	60		0.1802	0.0082	16667	122.0			
50 70 0.1814 0.0094 14286 106.4		50	70		0.1814	0.0094	14286	106.4			
50 30 0.1757 0.0037 33333 270.3		50	30		0.1757	0.0037	33333	270.3			
50 40 0.1769 0.0049 25000 204.1		50	40		0.1769	0.0049	25000	204.1			
313.15 50 50 0.1720 0.1782 0.0062 20000 161.3 6.4667146 0.0078986 818.72	313.15	50	50	0.1720	0.1782	0.0062	20000	161.3	6.4667146	0.0078986	818.72
50 60 0.1791 0.0071 16667 140.8		50	60		0.1791	0.0071	16667	140.8			
50 70 0.1804 0.0084 14286 119.0		50	70		0.1804	0.0084	14286	119.0			

Table S5 Data for the Benesi-Hildebrand double reciprocal plot performed by UV-Vis spectroscopy for aqueous nicotinic acid- β -CD system

Temp	[AA]	[β-CD]	٨٥	٨	٨٨	1/[β-CD]	1 / ۸ ۸	Intercent	Slope	Ka
/K ^a	/µM	/μΜ	AU	А	ΔΑ	/M ⁻¹	1/ <i>Δ</i> A	mercept	Slope	/M-1
	50	30		0.4098	0.0078	33333	128.2			
	50	40		0.4120	0.0100	25000	100.0			
288.15	50	50	0.4020	0.4139	0.0119	20000	84.0	14.350533	0.0034272	4187.25
	50	60		0.4159	0.0139	16667	71.9			
	50	70		0.4181	0.0161	14286	62.1			
	50	30		0.4088	0.0068	33333	147.1			
	50	40		0.4103	0.0083	25000	120.5			
293.15	50	50	0.4020	0.4123	0.0103	20000	97.1	14.545396	0.0040579	3584.46
	50	60		0.4144	0.0124	16667	80.6			
	50	70		0.4161	0.0141	14286	70.9			
	50	30		0.4078	0.0058	33333	172.4			
	50	40		0.4095	0.0075	25000	133.3			
298.15	50	50	0.4020	0.4112	0.0092	20000	108.7	14.671623	0.0047343	3099.01
	50	60		0.4126	0.0106	16667	94.3			
	50	70		0.4142	0.0122	14286	82.0			
	50	30		0.4071	0.0051	33333	196.1			
	50	40		0.4085	0.0065	25000	153.8			
303.15	50	50	0.4020	0.4102	0.0082	20000	122.0	14.632896	0.005469	2675.61
	50	60		0.4114	0.0094	16667	106.4			
	50	70		0.4128	0.0108	14286	92.6			
	50	30		0.4065	0.0045	33333	222.2			
	50	40		0.4075	0.0055	25000	181.8			
308.15	50	50	0.4020	0.4090	0.0070	20000	142.9	14.83579	0.0063582	2333.33
	50	60		0.4104	0.0084	16667	119.0			
	50	70		0.4117	0.0097	14286	103.1			
	50	30		0.4057	0.0037	33333	270.3			
	50	40		0.4067	0.0047	25000	212.8			
313.15	50	50	0.4020	0.4079	0.0059	20000	169.5	15.638863	0.0077024	2030.39
	50	60		0.4091	0.0071	16667	140.8			
	50	70		0.4099	0.0079	14286	126.6			

Table S6 Data for the Benesi-Hildebrand double reciprocal plot performed by UV-Vis spectroscopy for aqueous ascorbic acid- β -CD system

	Temp /K ^a	Ka	1/T	lnK _a	Intercept	Slope	ΔH^{o}	ΔSo
		/M ⁻¹					/kJ mol ⁻¹	/J mol ⁻¹ K ⁻¹
Nicotinic acid	288.15	1618	0.00347	7.3887	-1.1985	2476.18	-20.59	-9.96
	293.15	1394	0.00341	7.2396				
	298.15	1246	0.00335	7.1277				
	303.15	1073	0.00330	6.9785				
	308.15	919	0.00325	6.8231				
	313.15	819	0.00319	6.7077				
Ascorbic acid	288.15	4187	0.00347	8.3398	-0.7058	2606.59	-21.67	-5.87
	293.15	3584	0.00341	8.1844				
	298.15	3099	0.00335	8.0388				
	303.15	2676	0.00330	7.8919				
	308.15	2333	0.00325	7.7551				
	313.15	2030	0.00319	7.6160				

Table S7 Data of the van't Hoff equation for calculation of thermodynamic parameters ΔH° and ΔS° of different vitamin- β -cyclodextrin inclusion complexes

^{*a*} Standard uncertainties in temperature *u* are: $u(T) = \pm 0.01$ K.

Table S8 Data of the van't Hoff equation for calculation of thermodynamic parameters $\Delta H^{0\Psi}$ and $\Delta S^{0\Psi}$ of different vitamin- β -cyclodextrin inclusion complexes

	Temp	K_a^{ψ}	1/T	$lnK_{a}{}^{\psi}$	Intercept	Slope	$\Delta H^{o\psi}$	$\Delta S^{o\Psi}$
	/K ^a	/M-1					/kJ mol ⁻¹	/J mol ⁻¹ K ⁻¹
Nicotinic acid	288.15	1655	0.00347	7.412				
	293.15	1425	0.00341	7.262	262 114 -1.4704 2559.29 965 338 703	2559.29	-21.28	-12.23
	298.15	1229	0.00335	7.114				
	303.15	1059	0.00330	6.965				
	308.15	933	0.00325	6.838				
	313.15	815	0.00319	6.703				
Ascorbic acid	288.15	4209	0.00347	8.345	-0.7695	2625.40	-21.83	-6.40
	293.15	3612	0.00341	8.192				
	298.15	3061	0.00335	8.026				
	303.15	2644	0.00330	7.880				
	308.15	2349	0.00325	7.762				
	313.15	2028	0.00319	7.615				

Fig S1. 2D ROESY spectra of 1:1 molar ratio of β -CD and nicotinic acid in D₂O. Red circles showing the correlation signals.

Fig S2. 2D ROESY spectra of 1:1 molar ratio of β -CD and nicotinic acid in D₂O. Red circles showing the correlation signals.

Fig S3. 2D ROESY spectra of 1:1 molar ratio of β -CD and ascorbic acid in D₂O. Blue circles showing the correlation signals.

Fig S4. 2D ROESY spectra of 1:1 molar ratio of β -CD and ascorbic acid in D₂O. Blue circles showing the correlation signals.

Fig S5. Benesi-Hildebrand double reciprocal plot for the effect of β -CD on the absorbance of nicotinic acid (260 nm) and ascorbic acid (261 to 265 nm) at different temperatures.

Fig S6. Plot of $\ln K_a$ vs 1/T for the interaction between nicotinic acid (•) and ascorbic acid (•) with β -CD.

Fig S7. Plot of $\ln K_a^{\Psi}$ vs 1/T for the interaction between nicotinic acid (**•**) and ascorbic acid (**•**) with β -CD.