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1. The model

We consider a gene regulatory network with N nodes N = {X1, . . . , XN}. For

i = 1, . . . , N , we let Xi(t) denote the expression level of gene Xi at time t. Our data

set, denoted by D, consists of the observed expression levels of the N nodes in N

at T time points, {tj}Tj=1. We consider a model space M as follows. To begin, we

suppose that the data are generated according to a system of ordinary differential

equations, possibly observed with noise:

(1.1)
dX

dt
= F (X(t)),

where X(t) = (X1(t), . . . , XN(t)). In general, stochastic effects play a significant role

in the dynamics of any individual cell, and such considerations lead one to stochastic

differential equations. However, we consider data generated by averaging expression

levels over many (∼ 108) individual cells, and we therefore assume that the stochastic

effects are insignificant, leading to our adoption of ordinary differential equations.
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The behavior of the system in (1.1) is determined by the choice of function F :

RN → RN . For a node X in N , we assume that

(1.2)
dX

dt
= αf(X(t))− β X(t) + γ,

where α > 0 represents the strength of the regulation, β ≥ 0 represents the rate

of degradation of X, and γ ≥ 0 represents the basal rate of production of X. The

function f : RN → R governs the type of regulation that X experiences. Following

previous non-linear modeling efforts, we use Hill functions to model the effects of ac-

tivation and repression in the system. In other words, we say that node A “activates”

X, if the function f consists of a term of the form

(1.3) a(A) =
An

An +Kn
,

where K > 0 represents the half-level of maximal activation and n ≥ 1 is called the

Hill coefficient. Similarly, we say that A “represses” X, if f consists of a term of the

form

(1.4) r(A) =
Kn

An +Kn
.

The fact that we only consider functions of at most one variable reflects our sparsity

assumption that in any given experimental condition, we seek to find the dominant

regulatory mechanism for any node.

Given a list of nodes N , we let L = {L1, . . . , Lr} be the list of all possible logical

regulatory relationships. To each L in L, we associate a parameter space RL ⊂ Rd
+
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of dimension d = d(L). Hence, the space of possible models for X is given by

M(X) =
⊔
L∈L

{L} ×RL,

and the full model space for the entire system is

M =
∏
X∈N

M(X).

2. Local approximation

Suppose we have a node X, a model (L, θ) ∈ M(X) for X, and data D =

{Xi(tj)}i,j. Suppose that the logic L involves regulation of X by node A. Then

from the data, for each time t = tj with j = 1, . . . , T , we compute the values

F (t) = fL(A(t))− βX(t) + γ,

and extend F to the interval [t1, tT ] by linear interpolation. Then for any t in [t1, tT ],

we analytically integrate to obtain

(2.1) X̂(t) =

∫ t

t1

F (t) ds.

The values X̂(t), properly shifted, represent the predicted values of X(t) made by

the model (L, θ) from the data. Notice that this prediction is “local,” in the sense

that it refers only to the model for X and not the full (“global”) system of differ-

ential equations. From a statistical point of view, this local approximation suffers

from a version of the “errors-in-variables” problem, while the global model does not.

Nonetheless, it is precisely this local approximation that renders inference of the

local model computationally tractable and scalable to moderately large networks.
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3. Inference

In this section we describe our inference methodology. Given a node set N , a node

X in N , a model (L, θ) ∈M(X), and data D, we define a loss function

`(D,L, θ) = min
c∈R

1

T

T∑
t=1

(X(t)− X̂(t)− c)2,

where X̂ is the (shifted) prediction of X(t) made by the model (L, θ) from data as

in (2.1).

Let π be a probability distribution onM(X), which we view as a prior distribution

in a Bayesian framework. The Gibbs posterior principle can be shown to be the

optimal (rational) method for updating belief distributions when a fully generative

model is unknown.33 Since we do not attempt to model the noise in the data (which

would depend heavily on the technology used, e.g. arrays versus sequencing), we

are in such a setting. Then by the Gibbs posterior principle,33,34 we obtain that the

posterior distribution on the model (L, θ) ∈M(X) given the data D is

p(L, θ | D) =

exp

(
−`(D,L, θ)

)
π(L, θ)

∑
L′∈L

∫
RL′

exp

(
−`(D,L′, θ′)

)
π(L′, dθ′)

.

Define

C(D) =
∑
L′∈L

∫
RL′

exp

(
−`(D,L′, θ′)

)
π(L′, dθ′).

Then

(3.1) p(L | D) =
1

C(D)

∫
RL

exp

(
−`(D,L, θ)

)
π(L, dθ).
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To formulate our prior distribution, we place a priori bounds on the real-valued

parameters that may appear in any equation. First, we linearly rescale the time

so that t1 = 0 and tT = 100. Next, we linearly rescale the expression levels of

each node so that they lie in the interval [0, 100] and obtain the maximum value of

100. Our a priori bounds are made on this scale. We place bounds on each type

of parameter independently; see Supplementary Information Table 1. These bounds

were chosen by considering the loose biological interpretation of each parameter and

selecting large parameter ranges that include all biologically reasonable speeds of

transcription and protein decay. The bounds on α and γ ensure that the maximum

slope (transcription rate) is approximately 100. The bounds on β ensure that the

minimum slope (decay rate) is −100. The bounds on K ensure that the critical value

of the activity of any node is not greater than the maximum of the node. The bounds

on n reflect the range of non-linearity that we consider reasonable in these systems.

By choosing these bounds, we have defined a rectangle R in R5
+. With these bounds

in place, we choose the maximum entorpy distribution as our prior as follows:

π(L, dθ) =
1

s

dθ

Vol(R)
,

where s is the number of regulatory relationships that have X as the target, dθ is

Lebesgue measure restricted to R, and Vol(R) is the volume of R.

With these choices, the Gibbs posterior probability of L given D is

p(L | D) =
1

sC(D) Vol(R)

∫
R

exp

(
−`(D,L, θ)

)
dθ

=

exp

(
−`(D,L, θ∗)

)
sC(D) Vol(R)

∫
R

exp

(
−`(D,L, θ) + `(D,L, θ∗)

)
dθ,
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where θ∗ is a minimizer of the function θ 7→ `(D,L, θ). The Laplace approximation

is a well-known approximation to an integral of the form
∫

exp(f(x))dx, where f is

twice-differentiable.35 We take f to be the function θ 7→ −`(D,L, θ), and note that

it is twice-differentiable, since the prediction X̂(t) is twice-differentiable with respect

to the parameters in θ. We then use a Laplace approximation to the integral35 on

the right-hand side of the previous display and get

p(L | D) =

exp

(
−`(D,L, θ∗)

)
sC(D) Vol(R)

∫
R

exp

(
−`(D,L, θ) + `(D,L, θ∗)

)
dθ

≈
exp

(
−`(D,L, θ∗)

)
sC(D) Vol(R)

1

2d∗

√
(2π)5

detH
.

Here, H is the Hessian of the map θ 7→ `(D,L, θ) at the point θ∗, and d∗ is the

number of parameters in θ∗ whose value is at one of the extremes of the allowed

ranges (see Supplementary Information Table 1). Thus, our approximate Gibbs

posterior distribution is formed by taking

(3.2) p(L | D) ∝ 1

2d∗
(detH)−1/2 exp

(
−`(D,L, θ∗)

)
.

Observe that if the regulation L is robust to changes in parameters near θ∗, then detH

is small, which increases the posterior probability of L. This relationship reflects the

widespread belief that evolved, biological networks ought to be robust to changes

in parameters.55 Also, the term 2d∗ , which appears in the denominator, decreases

the posterior probability of L as the number of extremal parameter values in θ∗

increases. The effects of using a Bayesian method (as opposed to simply minimizing

the loss function) and estimating the integral over parameter space enter the posterior
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through the presence of detH and d∗, both of which arise directly as a result of our

approxmations of the integral.

3.1. Output of inference. Given a set N consisting of N nodes, LEM will generate

a set of 2N2 logical regulatory relationships (edges): {(X, Y, u) : X, Y ∈ N , u ∈

{a, r}}. For each edge L, LEM computes the right-hand side of (3.2). Then, for each

node X, these values are normalized so that the sum over all edges with X as the

target is one. Thus, for each node X, LEM returns a probability distribution over the

set of possible regulatory controls of X. In order to obtain a probability distribution

on the full network, one may take the product of all the node-wise distributions.

From such a distribution, there are multiple ways to select a single network. One

could select a threshold 0 < δ < 1 and declare that any edge L such that p(L | D) ≥ δ

is in the network.

4. Optimization and computational details

After the local approximation to the model and the inference method outlined

in Section 3, it remains to find parameter values θ∗ that minimize the loss function

`(D,L, θ∗) and compute the Hessian of the loss function at θ∗. Here we must deal with

a constrained, non-convex optimization problem, which is computationally difficult.

However, due to our sparsity assumption and our local approximation, we need

only consider N independent optimization problems on R5
+. For comparison, the

full global problem in which the edges are already known would require solving a

single optimization problem in Rm, where m = Θ(N). If the edges were not known

in advance, then the global problem involves comparison of eΘN2
different network
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topologies. However, in our formulation, we have many small optimization problems,

which is ideally suited to parallelization.

Our general optimization procedure involves repeated, random selection of pa-

rameters θ in RL, followed by some greedy algorithms from each such selection. Our

implementation uses some existing optimization tools in R (the function optim with

algorithm L-BFGS-B in R package stats, and the function nloptr in the R package

nloptr with algorithm NLOPT LD SLSQP).

As LEM must solve a local optimization problem for each possible edge in the

network, the amount of computation required by LEM scales quadratically with the

number of nodes, i.e., it is O(N2).

In practice, LEM is run on a cluster of computers (called the Duke Shared Cluster

Resource, or DSCR). For evaluation of the running time, we restricted LEM to

run on a small group of computers with CPU clock from 2GHz(Turbo 2.8GHz) to

2.6GHz(Turbo 3.4Hz) and memory from 128GB to 256GB. Note that each machine

runs 32 threads of LEM, and by design, LEM is not a memory intensive algorithm.

To get a feeling for the running time of a sample computation, see Supplementary

Information Table 2, where the run time is the length of time LEM would take to

compute the posterior distribution of each node if run on a single, one-thread, CPU

core, and Supplementary Information Table 3, where the run time is the length of

time LEM would take to compute all posterior distributions (one for each node) if

run on a single, one-thread, CPU core.

Given the increasingly wide availability of computer clusters for research in systems

biology, we also describe the parallelized time performance of LEM on the DSCR.

For example, consider the network ”Yeast cell-cycle 5 (replicate 2)”. This network
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contains 28 nodes, and the total time LEM uses is 24514.531 seconds. However,

LEM hires 1568 separate processes to complete these computations, and among these

individual processes, the longest time spent is 27.72 seconds. This time is longer than

Granger Causality takes, but it is much shorter than the time used by Inferelator,

Hill-DBN, Jump3, and TD-ARACNE.

5. Scoring and comparison of algorithms

In order to compare LEM to other algorithms, we use three well-established meth-

ods of network comparison, the area under the receiver operating characteristic

(AUC-ROC or just AUC) scores,56 area under the precision-recall curve (AUPR)

scores, and Matthew’s Correlation Coefficient (MCC).

If an algorithm (such as LEM) produces a ranked list of predictions as output in

response to a binary classification problem, then AUC-ROC may be used as assess-

ment of the quality of the predictions. To do so, one plots the true positive rate

against the false positive rate after each possible cut-off within the ranked list, which

produces the receiver operating characteristic (ROC) curve. The AUC-ROC score is

then defined as the area under the ROC curve. A score of 1 indicates perfect classi-

fication, whereas a score of 0.5 is the expected score when predictions are made at

random (in which case, the ROC curve would be the diagonal). The AUPR is defined

similarly using the precision-recall curve in place of the ROC curve; however, in this

case, 0.5 is no longer the expected score when predictions are made at random.

Given a “gold standard” network, we interpret the list of edges as the goal for

classification: the perfect algorithm would predict all of the “gold standard” edges

and not predict any other edges. Since LEM returns a list of probabilities associated
9
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to each possible edge, we use these probabilities to rank-order the LEM predictions,

from highest to lowest probability. Since LEM assigns a probability to each signed,

directed edge, we compute AUC-ROC and AUPR scores for the signed, directed

classification problem (classify all possible signed, directed edges). To assess LEM

using the unsigned, directed classification problem, we assign each edge a score equal

to the maximum of the two probabilities given to the two signed versions of that

edge. Then we rank-order the edges by these scores and again compute AUC-ROC

and AUPR scores.

To compare LEM to the Inferelator, we use the recent Inferelator implementation18

(version 2013.3.RC3). This package includes the option to output ranked lists of

predictions, and we therefore compare it to LEM using AUC-ROC and AUPR scores.

In this implementation of the Inferelator, the ranked lists of predictions do not include

a prediction about the sign of an edge. In order to compare with LEM on the signed

classification problem, we assign both the activator and the repressor version of each

edge the same score as output by the Inferelator. These scores are all non-negative.

In order to incorporate prior information, we simply assign a score of zero to any

edge with prior probability zero.

To compare LEM to Granger Causality,14 we use an implementation in R (package

MSBVAR, version 0.9-2). This method requires a choice of a “lag” parameter. We

compute the AUC-ROC scores for this method with all possible lags and then report

the maximal score. Similarly, we compute the AUPR scores for this methods with all

possible lags and report only the maximal score. Note that the maximal AUC and

AUPR scores may not correspond to the same lag. For this reason, the scores for

Granger Causality should be interpreted as “best possible” and do not necessarily

10
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reflect the results of any single choice of lag. As with the Inferelator, the output of

Granger Causality is unsigned, directed edges, and we assign both the activator and

the repressor version of each edge the same score as output by the algorithm in the

signed classification problem. Also, we enforce that edges with prior probability zero

are assigned a p-value of 1.

The algorithm labeled Hill-DBN22 was evaluated using the MATLAB implemen-

tation provided with the paper. All parameters were set to their default or suggested

values, including the “maximum number of parents” that any node may have, which

was set to 4.

The Jump3 algorithm25 was executed using the implementation MATLAB imple-

mentation published with the paper. All parameters were set to their default or

suggested values, including the “system noise” and “observation noise,” which were

set as in the example provided in the documentation.

To compare LEM to TD-ARACNE and Banjo, we use the a recent TD-ARACNE

implementation19 (R package version 1.22.0) and the most recent Banjo implemen-

tation20,21 (version 2.2.0). Banjo involves a parameter that controls how long it

may search through network space. In choosing this parameter, we allowed Banjo

to run for twice as long as LEM took on each network. Since these methods are

binary classifiers, we use MCC as our basis of comparison. We have also included

ROC plots of the LEM results for the networks in Table 1, plotted together with the

TD-ARACNE and Banjo results (see Additional File 4). When prior information is

included, we enforce that any edge with prior probability zero is not included in the

output network.

11
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To perform the binary classification task for LEM (for computation of MCC), we

threshold the posterior probability of each edge using a threshold of 0.4 (so an edge

e is predicted by LEM if p(e | D) ≥ 0.4). The choice of 0.4 as our threshold was

made by testing a range of possible values on the in silico datasets, but we readily

acknowledge that this choice is somewhat arbitrary and may be altered to fit the

needs of the user.

6. Noise and incompleteness testing

Here we present our results regarding the performance of LEM with noise-corrupted

data. We use an observational noise model with Gaussian noise at several scales. To

be more specific, suppose we have the data {X(tj)}Ti=1 for node X. We define the

signal level σsignal as

σ2
signal =

1

T − 1

T∑
i=1

(X(ti)− X̄)2,

where X̄ = 1
T

∑
X(ti) is the average value of X. For a fixed noise scale α, we

generate independent Gaussian noise

e0
i ∼ N (0, (ασsignal)

2), for all i = 1, · · · , T.

The noise variables are then projected to the 3σ interval

ei =


3ασsignal, when e0

i > 3ασsignal,

−3ασsignal, when e0
i < −3ασsignal,

e0
i , otherwise.

12
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Finally, the testing data we use is given by {max(X(ti) + ei, 0.001)}Ti=1. This projec-

tion is necessary, because a gene expression level can never be negative and LEM is

designed accordingly.

In Additional file 19, we show the AUC-ROC scores that LEM obtains under sev-

eral noise scales and with access to incremental amounts of prior information on

several in silico networks. In each case, we added noise as above, and also gave LEM

access to some fraction of the possible pieces of prior information. The possible

prior information was simply an “identity” for each node, which was one of “activa-

tor,” “repressor,” “both/unknown,” or “neither.” As expected, the performance of

LEM degrades under increasing noise and improves as additional prior information

is available.

In Additional file 14, we present the AUC-ROC scores that LEM obtains for the

yeast cell-cycle networks with increasing amounts of prior information.

7. Non-periodic data

In this section, we describe LEM’s performance on four non-periodic datasets. The

datasets were generated in silico, using an evolutionary algorithm as described in

Section 9. However, in these instances, we did not select for periodicity. The AUC-

ROC scores for LEM on these networks are given in Supplementary Information

Table 4. Note that this performance is comparable to LEM’s performance on our

oscillating in silico datasets with the same numbers of nodes (see Additional file 5).

8. Identifiability

In this section, we present two examples of non-identifiability of network structures.

In silico networks 3 and 8 are used to generate time-series data. In each case, LEM
13
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returns a “maximum a posteriori” network with parameters (obtained by combining

the most likely regulation of each node into a system of ODEs). In both cases, the

LEM networks are distinct from the generating networks (see Additional file 20). In

particular, nodes C and D are under complex regulation in the generating networks,

but LEM finds simpler networks. Nonetheless, the solutions of systems of ODEs

inferred by LEM matches the data very well (see Additional file 20), highlighting the

issue of non-identifiability.

9. Benchmark in silico datasets

An evolutionary algorithm was used to create the in silico datasets. The algorithm

allows “mutations” in parameter values in the differential equations corresponding

to a fixed network structure. Selection is based on whether the system of differential

equations generates oscillating (periodic) behavior.

A wide variety of such parameterized systems of equations was created by varying

the size, logical structure, and complexity of the network used as input by the evo-

lutionary algorithm. To model AND gates such as (X&Y )→ Z, we used equations

of the form

dZ

dt
= α

Xn1

Kn1
1 +Xn1

· Y n2

Kn2
2 + Y n2

− βZ + γ.

Similarly, for an OR gate such as (X | Y )→ Z, we used equations of the form

dZ

dt
= α2

Xn1

Kn1
1 +Xn1

+ α2
Y n2

Kn2
2 + Y n2

− βZ + γ.

All of our benchmark in silico datasets involved about 50 time points, sampled at

regular intervals. For the cyclic datasets, we sampled over two cycles, yielding about
14
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25 samples per cycle. This sampling rate is currently on the high end of what is

practical in wet lab experiments (see57 for example).

10. Yeast Cell-cycle datasets

Here we describe the yeast cell-cycle datasets.2 Wild-type budding yeast cells

(strain derivative of BF264-15Dau) were synchronized in the cell cycle, and periodic

gene expression profiles were obtained by microarray profiling in two biological repli-

cates (GEO accession number GSE8799). Gene expression data from genes manually

curated to be part of a transcription factor (TF) network were used in this study

(Additional file 7). The data cover 15 time points over approximately two cell cy-

cles.2 We removed the stress response (due to synchronization and media shift) and

used only the last 13 time points as gene expression data. Eliminating the first two

time points gives us the cell-cycle regulated transcription from the experiment.

To generate the heatmap of our cell-cycle genes of interest (Figure 1), a cubic

spline interpolation was applied to the gene expression data from replicate 1 to

generate expression profiles with 40 data points. Next, we utilized a visualization tool

produced by Rescon Ltd. (www.rescontechnologies.com) to rank-order the splined

gene expression data according to timing of 50% of the peak value (Additional file

7). The Rescon visualization tool also applies a three-color scale by moving-average

normalization to indicate the gene expression value at a given data point relative to

its moving-average mean. The splined profile of each gene was processed by a moving-

average normalization, where the expression value at each point was adjusted to a

baseline generated by the average value of up to 16 (±8) of the surrounding data

points.
15
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11. Manual curation of yeast cell-cycle networks

For the purpose of testing LEM, we created five different yeast cell-cycle networks,

called Yeast cell-cycle networks 1 through 5 (see Additional files 10 through 12).

Networks 2 and 3 were derived from previously published cell-cycle networks that

are capable of oscillations in a Boolean framework.2,3 To build complexity, Networks

1 and 4 were obtained by modifying networks 2 and 3 (respectively) to include high

confidence targets of transcription factors as sink nodes in the network models (see

Additional files 3 and 8). Network 5 is the most expansive model, including all

previously identified transcription factors that likely play a role in driving cell-cycle

regulated transcription. The 28 nodes and edges in Network 5 are supported by

literature and database evidence (Additional files 3 and 8). Evidence and citations

for all edges appears in Additional file 3.

12. Circadian datasets and analysis

We analyzed circadian transcript data from 12 mouse tissues provided by the

Hogenesch lab.44 First, as we have previously recommended, we identified periodic

genes with periods of 20 to 28 hours using multiple periodicity algorithms, in this case

the Lomb-Scargle and JTK CYCLE periodicity detection algorithms.58 Observing

that JTK CYCLE captures more of the peaked-type data prevalent in the circadian

transcription data, we declared periodic transcripts to be those with a p-value less

than 0.1 according to the JTK CYCLE algorithm. We selected a conservative cutoff

for circadian periodicity by aiming for slightly less than 40% of all mouse genes,

which was the estimate provided by the Hogenesch group for genes under circadian

control. This filter identified circadian periodic transcripts numbering between 1927
16
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and 5498, depending on the tissue (see Supplementary Information Table 5). Next,

we identified a set of “core” circadian regulatory network nodes that can be called

central circadian regulators with high confidence (see Additional file 15).

To determine regulators of the core, we applied LEM to identify periodic genes

that regulate the aforementioned high confidence nodes in multiple organs. LEM

generated probabilities for each potential edge from potential regulators to the high

confidence core nodes. We summed the LEM output probabilities across all tissues

to generate a probability across the entire mouse circadian clock. If an edge was

missing in a tissue because the regulator did not meet the periodic cutoff in that

tissue, it was scored as a zero. To this sum of probabilities we applied a cutoff of

0.1 to identify regulators. This analysis yielded 333 unique regulators of the high

confidence core.

Next, we took this list of candidates (and the high-confidence core set) and ran

LEM to determine whether the high-confidence core regulated the candidate circa-

dian regulators. Rather than use all of the tissues, we restricted this analysis to the

liver circadian data that was considered periodic to reduce the complexity of the

output results. The 333 unique regulators together with the core genes yielded a set

of 354 genes, of which 205 were either known core genes or considered periodic in the

liver circadian data set. These 205 gene expression profiles from liver were then run

through LEM. To rank these candidate circadian genes, we created a measure of the

likelihood of a “core-to-X-to-core” relationship: the maximum LEM probability that

the candidate was a regulator of any core element multiplied by the maximum LEM

probability that the candidate was regulated by any high-condence core element in

the liver. These results are listed in Additional file 16.

17
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13. Experimental validation of circadian analysis

13.1. Cell culture and reverse siRNA transfection. Mouse NIH3T3 fibroblast

cells were maintained in DMEM (Gibco) supplemented with 10% FBS (HyClone)

and 1x penicillin-streptomycin-glutamine (PSG; Invitrogen) and incubated at 37◦C,

5% CO2. For transfection experiments, pooled siRNA mixes (n=4/gene; Qiagen)

were diluted to a final concentration of 24 nM in transfection medium (Opti-MEM I

Reduced Serum Medium (Gibco) supplemented with 2% Lipofectamine RNAiMAX

(Life Technologies)). siRNA pools are incubated with the transfection medium for 20

minutes at room temperature to form liposome complexes. Cells suspensions were

prepared at a density of 67,000 cells/ml in DMEM supplemented with 20% FBS

(HyClone), 2x-glutamine (Invitrogen) without antibiotics. Primed siRNA-liposome

complexes were added to cells drop-wise. Cells were seeded with a multichannel into

96-well plates at a final concentration of 10,000 cells/well with a final pooled siRNA

concentration of 8nM. Transfected cells were incubated for 24 hours at 37◦C, 5%

CO2 prior to use in kinetic bioluminescence assays.

13.2. Bioluminescence recording and data analysis. siRNA/transfection medium

was aspirated 24 h post–transfection and replaced with bioluminescence recording

medium (phenol red–free DMEM (Sigma D-2902), sodium bicarbonate (Invitrogen),

D-(+)-glucose (Sigma), 10mM HEPES (Invitrogen), 1% pen/strep/L-glutamine (In-

vitrogen), 0.1mM luciferin (Promega)) supplemented with 0.1 uM dexamethasone

(Sigma-Aldrich) to synchronize the cells and provide substrate for the Per2:Luc

reporter prior to luminescence recordings. Bioluminescence was recorded at a 1h

resolution for 6 days at 32◦C using a Synergy 2 (BioTek) microplate reader. All
18
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transfections were performed in triplicate for bioluminescence recordings. Period

length quantification was done using the Waveclock package (Price et al., 2008) im-

plemented in R. Data were plotted in Excel using mean bioluminescence over time.

13.3. Reverse transcription and RT-qPCR analysis for siRNA efficiency

validation. Replicate 96 well plates were seeded in parallel to the bioluminescence

assay plates in order to validate siRNA knockdown efficiency by real-time quanti-

tative PCR (RT-qPCR) using TaqMan chemistry (Applied Biosystems). Cells were

harvested 48-72 h post transfection in Qiazol (Qiagen) and RNA was extracted fol-

lowing the Directzol-96 RNA manufacturer’s protocol (Zymo Research). cDNA was

prepared from 500 ng RNA following the qScript cDNA Supermix (Quanta Bio-

Sciences) protocol. cDNA was diluted 1:5 for all qPCR reactions and amplified

using the PerfeCTa FastMix II, Low ROX (Quanta) reagent. RT-qPCR cycling pa-

rameters were 95◦C for 30 s followed by 45 cycles of 95◦C for 5 s and 60◦C for 30 s

on the Viia7 instrument (Applied Biosystems). All qPCR reactions were performed

in triplicate and normalized to Gapdh as an endogenous control. Relative expres-

sion was determined using the delta delta CT method normalizing all samples to the

Allstars negative siRNA control expression levels.

References

[55] Barkal, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387(6636), 913–917

(1997)

[56] Egan, J.P.: Signal detection theory and {ROC} analysis (1975)

[57] Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503

(2004)
19



Supplement to “The local edge machine” McGoff, et al.

[58] Deckard, A., Anafi, R.C., Hogenesch, J.B., Haase, S.B., Harer, J.: Design and analysis of

large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals

in biological data. Bioinformatics, 541 (2013)

20



Supplement to “The local edge machine” McGoff, et al.

Parameter Lower bound Upper Bound Loose interpretation
α 0 100 maximal transcription rate
β 0 1 degredation rate
γ 0 0.3 basal expression rate
K 0 100 threshold of regulator
n 1 10 Hill non-linearity

Supplementary Information Table 1: Parameter bounds used by LEM. As de-
scribed in Supplementary Information Section 3, LEM rescales both time and the
expression levels of each gene individually so that the time course runs from 0 to 100
time units and the maximum expression value attained is 100. After this rescaling,
the above bounds are used on the parameters appearing in Equations (1.2) - (1.4) in
Supplementary Information Section 1.
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Node Run Time (sec.)
A 236.724
B 239.003
C 252.353
D 259.724
E 219.866

TOTAL 1207.67

Node Run Time (sec.)
A 451.783
B 459.081
C 426.512
D 464.851
E 424.67
F 414.671
G 432.243
H 488.815
I 451.673
J 439.277

TOTAL 4453.576

Supplementary Information Table 2: Running times used to compute the pos-
terior distribution of each node in networks In silico 3 and In silico 18,
respectively. The run times are given in seconds on a single, one-thread, CPU core.
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Network # Nodes Time (seconds)

In silico 1 3 402.25
In silico 2 3 505.866

In silico 6 3 456.089
In silico 7 3 333.581

In silico 3 5 1207.67

In silico 8 5 1062.454
In silico 9 5 1125.322

In silico 10 5 1027.981

In silico 4 10 3776.992
In silico 11 10 4283.354

In silico 12 10 3824.53

In silico 13 10 4467.378
In silico 14 10 3979.865

In silico 15 10 4046.833

In silico 16 10 3999.285
In silico 17 10 4392.954

In silico 18 10 4453.576
In silico 19 10 4378.909

In silico 5 20 17587.971

In silico 20 20 16947.546
In silico 21 20 16843.079

In silico 22 20 16849.042

Yeast cell-cycle 1 (replicate 1) 17 9226.179
Yeast cell-cycle 1 (replicate 2) 17 8628.105

Yeast cell-cycle 2 (replicate 1) 8 2024.189

Yeast cell-cycle 2 (replicate 2) 8 1936.728
Yeast cell-cycle 3 (replicate 1) 10 2949.304

Yeast cell-cycle 3 (replicate 2) 10 3207.803
Yeast cell-cycle 4 (replicate 1) 19 10783.98

Yeast cell-cycle 4 (replicate 2) 19 11417.906

Yeast cell-cycle 5 (replicate 1) 28 24531.552
Yeast cell-cycle 5 (replicate 2) 28 24514.531

Supplementary Information Table 3: Running times required to compute all
posterior distributions on all networks. Running times are given in seconds on
a single, one-thread, CPU core.

23



Supplement to “The local edge machine” McGoff, et al.

Network # nodes LEM AUC-ROC
Non-periodic 1 10 1.0000
Non-periodic 2 10 0.8363
Non-periodic 3 20 0.8170
Non-periodic 4 20 0.8362

Supplementary Information Table 4: Performance of LEM on non-periodic
datasets. Four non-periodic datasets were generated in silico, as described in Sup-
plementary Information Section 7. Here we present the number of nodes in each
network, along with the AUC-ROC score earned by LEM on each network.
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Tissue # genes with JTK p-value less than 0.1
adrenal gland 2852
aorta 2306
brown fat 3897
brainstem 1927
cerebellum 2093
heart 2888
hypothalamus 2616
kidney 5156
liver 5396
lung 5498
skeletal muscle 2435
white fat 2125

Supplementary Information Table 5: Number of gene expression profiles called
periodic in each tissue. The gene expression profiles in 12 different mouse tissues
were generated using microarrays.44 The microarray contained 21, 406 probesets.
The expression profiles for each tissue were searched for periods in the range from
20 to 28 hours using JTK-CYCLE. A gene was called periodic in a particular tissue
if JTK-CYCLE returned a p-value of less than 0.1 for the gene’s expression profile
in that tissue.
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