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A: Parameter Selection

In this section we describe the model parametrization for the examples shown above. A
major source of our parameters is the work [1] which statistically fit a hierarchical
differential equation model (similar to equation (1) of the main text) to time series data
of CML patents undergoing TKI therapy. All birth rates and death rates below are in
the units of cells per day.

Stem cell kinetics

• Density dependence parameters φi of type i stem cell, for each i. We have
φi = 1/(1 + pi

∑n
i=1 x1,i(t)), with p1 = (b01,1/d

0
1,1 − 1)/K1,

p2 = (b01,2/d
0
1,2 − 1)/K2, and pi = p2 for i ≥ 3. The values of K1 and K2 are given

in Section “Initial cell populations at diagnosis”.

• The birth rates bj1,i. The estimates bj1,1 = 8.00× 10−3 and bj1,i = 1.00× 10−2 for

any cell type i ≥ 2 and drug j. The value 1.00× 10−2 is used in [1] for the birth
rate of leukemic stem cells without drug. We further assume that this value
remains the same under any therapy, which is different from [1].

• The death rates dj1,i. The estimate dj1,i = 5.00× 10−4 for any i and j, from [1].

Progenitor cell kinetics

• The death rates dj2,i. The estimates d1
2,i = 2.80× 10−3 and d2

2,i = 5.30× 10−3 for
any i, from [1]. The death rate of leukemic progenitor cells under high-dose
imatinib (800 mg/day) is 3.50× 10−3 in [1]. We consider imatinib with regular
dose (400 mg/day) in this paper, so we set d3

2,i = 3.5× 10−3 ÷ 2 = 1.75× 10−3 for
any i. Note the death rates are the same across all cell types with the same
therapy, but vary with different therapies. In addition, we set the death rate of
normal progenitor cells d0

2,i = min{d1
2,i, d

2
2,i, d

3
2,i} = 1.75× 10−3 for any i.

• The differentiation rates bj2,i.

– For normal cells, bj2,1 = 0.350 for any j. The estimate is from [1]
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– For wild type, b02,2 = 2bj2,1 = 0.700, b12,2 = b02,2/400 = 1.75× 10−3,

b22,2 = b02,2/200 = 3.50× 10−3, and b32,2 = b02,2/400 = 1.75× 10−3. All
estimates are from [1].

– For mutants, the differentiation rates are listed in Table 1. Since there are
little in vivo data available in the literature related to leukemic mutant birth
rate, our estimation is based on in vitro data for these mutants, in particular
the IC50 values. We use a piecewise linear interpolation to estimate the
differentiation rates, based on the relative IC50 values of mutants under
nilotinib, dasatinib, and imatinib reported in [2]. For sensitive or moderately
resistant mutants (the relative IC50 value is less than or equal to 4), the
differentiation rate of mutant i is estimated using the linear interpolation

bj2,i = relative IC50 value of mutant i under drug j × bj2,2.

For resistant mutants (the relative IC50 value is between 4.01 and 10.0), the
differentiation rate is estimated with the following linear interpolation:

bj2,i = 0.9b42,2+
0.1b42.2

10.0− 4.01
(relative IC50 value of mutant i under drug j−4.01).

Thus if the relative IC50 value for a resistant mutant is 4.01, then its
differentiation rate is 90% of the differentiation rate of the WT cell without
any drug (0.700 per day); if the relative IC50 value for a resistant mutant is
10.0, then its differentiation rate is equal to the birth rate of the WT
progenitor cell without drug. For highly resistant mutants (the relative IC50
is larger than 10.0), we set its differentiation rate to the differentiation rate
of the WT progenitor cells without drug.

Table 1. The differentiation rate of mutant progenitor cells under three drugs

E255K E255V F317L M351T Y253F V299L
Nilotinib (b12,i) 0.661 0.700 3.89× 10−3 7.70× 10−4 5.65× 10−3 2.35× 10−3

Dasatinib (b22,i) 0.649 0.0120 0.635 3.08× 10−3 5.53× 10−3 0.684
Imatinib (b32,i) 0.654 0.700 4.55× 10−3 3.08× 10−3 6.27× 10−3 2.70× 10−3

Differentiated cell kinetics

• The death rate dj3,i. The estimates d1
3,i = 0.0442 and d2

3,i = 0.0394 for any i,
from [1]. The death rate of leukemic differentiation cells under high-dose imatinib
(800 mg/day) is 0.0550 in [1]. We consider imatinib with regular dose (400
mg/day) in this paper, so we set d3

3,i = 0.0550/2 = 0.0275 for any i. In addition,

d0
3,i = min{d1

3,i, d
2
3,i, d

3
3,i} = 0.0275 for any i.

• The differentiation rates bj3,i.

– For normal cells, bj3,1 = 5.50 for any j. The estimate is from [1].

– For wild type, b03,2 = 1.5b03,1 = 8.25, b13,2 = b03,2/600 = 0.0138,
b23,2 = b03,2/300 = 0.0275, and b33,2 = b03,2/600 = 0.0138. All estimates are
from [1].

– For the mutant, if it is sensitive or moderately resistant to drug j (the
relative IC50 value is less than or equal to 4), then bj3,3 = bj2,3 × b

j
3,2/b

j
2,2, for

j = 1, 2, 3; otherwise bj3,3 = bj2,3 × b43,2/b42,2, for j = 1, 2, 3.
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Terminally differentiated cell kinetics

Using the estimates from [1], we set the differentiation rates bj4,i = 100 and death rates

dj4,i = 1.00 for any i and j.

Initial cell populations at diagnosis

The normal marrow output in an adult is approximately 3.50× 1011 cells per day [3].
To achieve this equilibrium condition, we set K1 = 8.75× 104 in differential equations
from equation (1) of the main text with parameters described in Sections “Stem cell
kinetics” to “Terminally differentiated cell kinetics” and in the absence of leukemic cells.
To obtain an estimate of K2, we assume that diagnosis of CML occurs once the
leukemic cell burden reaches a threshold of 1012 cells [4], and that the differential
equations in equation (1) of the main text have parameters described in Sections “Stem
cell kinetics” to “Terminally differentiated cell kinetics” and start with K1 = 8.75× 104

normal stem cells, one wild-type leukemic stem cell, and no other cells. We set
K2 = 3× 106 so that the patient is diagnosed with CML around 78 months (6.5 years)
after the first leukemic stem cell arises. At diagnosis, the normal stem cell, progenitor
cell, differentiated cell, and terminally differentiated cell populations are 7.34× 104,
1.61× 107, 3.24× 109, and 3.24× 1011, respectively; the leukemic stem cell, progenitor
cell, differentiated cell, and terminally differentiated cell populations are 2.95× 105,
4.07× 107, 1.08× 1010, and 1.08× 1012 respectively. These are used as the initial cell
populations for a patient diagnosed with CML.

ANC kinetics

• We require that the patient’s ANC cannot fall below Lanc = 1000/mm3. The
normal range of the ANC is 1500 to 8000/mm3. We assume that the normal level
of ANC is Uanc = 3000/mm3, and the patient’s initial ANC is 3000/mm3.

• We initially set the monthly decrease rates of ANC to be danc,1 = 350/mm3 under
nilotinib, danc,2 = 300/mm3 under dasatinib, and danc,3 = 250/mm3 under
imatinib. For imatinib, in [5] it was observed that the median time until the first
neutropenia event was 74 days. Given the large range of possible ANC values
(1500-8000) at the start of the trial this gives a range of 200/mm3 to 2800/mm3

for feasible ANC decrease rates under imatinib. For nilotinib, the reference [6]
observes that nilotinib has a higher risk of adverse hematological events than
imatinib. Furthermore [6] observes a median time of 24 days until
myelosuppresion events. Given that these events may have included lower-grade
hematological events we assumed that the median time was an underestimate for
the time until neutropenia and thus chose danc,1 = 350/mm3. We were unable to
find any published data on the median time until neutropenia during dasatinib
therapy. However, it has been observed that dasatinib induces grade 3 and 4
neutropenias at a higher rate than imatinib [7]. Based on this we initially set
dastinib to have a toxicity in between imatinib and nilotinib, but then also
considered the scenario where dasatinib has a higher toxicity than nilotinib, i.e.,
danc,1 = 300/mm3 and danc,2 = 350/mm3. It usually takes less than a month for
the ANC of a patient with grade 3-4 neutropenia to go back to normal level, so
the monthly increase rate of ANC level is between 500 and 7000/mm [5]. In our
model, we assume that the ANC of a patient increases by banc = 2000/mm3

during a drug holiday, before it reaches the normal level 3000/mm3.
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B: Method to solve the optimization model

We describe the method to solve the optimization model introduced in the Treatment
optimization problem section (see equations (2)-(6) of main text) with toxicity
constraints given by equation (7) of the main text and ym ≥ Lanc for m ∈M. Our
strategy is to build a mixed-integer linear optimization model [8] that approximates the
optimization model given by equations (2)-(6) of the main text, and then solve the
approximation model to optimality numerically by off-the-shelf optimization software
CPLEX [9]. The mixed-integer linear optimization model is built through two steps: (1)
we first approximate the ODE constraints (equation (3) of main text) by bilinear
constraints; (2) we then transform the bilinear constraints and nonlinear toxicity
constraints (equation (7) of the main text) into equivalent linear constraints, by adding
auxiliary decision variables.

We first describe how to approximate the ODE constraints (equation (3) of main
text) by bilinear constraints. Suppose patients take drug j in month m. Since the cell
dynamics are modeled by the following set of ODEs

ẋ(t) = f j(x(t)), t ∈ [m∆t, (m+ 1)∆t],

x(m∆t) = xm,

the cell abundances in month m+ 1, xm+1, are completely determined by the initial cell
abundance xm and function f j . Without loss of generality, we assume this relationship
is described by

xm+1
l,i = gjl,i(x

m)

with some unknown nonlinear function gjl,i : RL×n → R, for each month m, layer l, and
cell type i. Recall that L is total number of cell layers (L = 4), and n is the total
number of cell types. Then the ODE constraints (equation (3) of main text) are
equivalent to the constraints below

xm+1
l,i =

∑
j∈J

zm,jgjl,i(x
m), for each m, l, i. (2)

We will approximate the nonlinear function gjl,i with an affine function

ĝm,j
l,i : RL×n → R, for each m, j, l, and i. In particular, the function

ĝm,j
l,i (x) = aj,l,ix+ hm,j

l,i , (3)

where aj,l,i is an (Ln)-dimensional vector and does not depend on m. Details of how
ĝm,j
l,i is constructed are provided in Section “linear approximation to the solutions of the

ODEs” of the Appendix. Let aj,l,i = [aj,l,i1,1 , . . . , a
j,l,i
k,s , . . . , a

j,l,i
L,n ]. Then constraint (2) can

be approximated by the bilinear constraint

xm+1
l,i =

∑
j∈J

zm,j ĝm,j
l,i (xm) =

∑
j∈J

zm,j(
∑

k∈L,s∈I

aj,l,ik,s x
m
k,s + hm,j

l,i ), (4)

for each type i cell at layer l in month m.
We now describe how to transform bilinear constraints (4) and piecewise linear

constraints (equation (7) of the main text) into linear constraints. These are standard
techniques in mixed-integer linear optimization [8]. We introduce auxiliary continuous
variables vm,j

k,s , and set vm,j
k,s = zm,jxmk,s. Then bilinear constraints (4) are transformed
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into the equivalent linear constraints below.

xm+1
l,i =

∑
j∈J

(
∑

k∈L,s∈I

aj,l,ik,s v
m,j
k,s + hm,j

l,i z
m,j)

0 ≤vm,j
k,s ≤ Uk,sz

m,j ,

0 ≤xmk,s − v
m,j
k,s ≤ Uk,s(1− zm,j),

where Uk,s is an upper bounds of cell abundance xmk,s for each m. The value of Uk,s can
be obtained by taking the maximum value of layer k type s cell abundances over the
whole planning horizon under all three monotherapies and no treatment. The piecewise
linear constraints can be transformed into equivalent linear constraints below, by
introducing auxiliary continuous variable um and binary variable qm for each m.

um+1 = ym + bancz
m,0 −

∑
j∈J\{0}

danc,jz
m,j ,

ym+1 ≥ um+1 − bancqm+1,

ym+1 ≥ Uanc − (Uanc − Lanc)(1− qm+1),

ym+1 ≤ um+1,

ym+1 ≤ Uanc,

qm+1 ∈ {0, 1}.

Overall, the optimization model (equations (2)-(6) of main text) with toxicity
constraints (equation (7) of main text and ym ≥ Lanc for m ∈M) is approximated by
the following mixed-integer linear optimization model.

min
∑
l≥1

∑
i≥2

xMl,i

s.t. xm+1
l,i =

∑
j∈J

∑
k∈L,s∈I

aj,l,ik,s v
m,j
k,s +

∑
j∈J

hm,j
l,i z

m,j , i ∈ I, l ∈ L,m ∈M \ {M}

0 ≤ vm,j
k,s ≤ Uk,sz

m,j , i ∈ I, l ∈ L,m ∈M \ {M}

0 ≤ xmk,s − v
m,j
k,s ≤ Uk,s(1− zm,j), i ∈ I, l ∈ L,m ∈M \ {M}

um+1 = ym + bancz
m,0 −

∑
j∈J\{0}

danc,jz
m,j , m ∈M \ {M}

ym+1 ≥ um+1 − bancqm+1, m ∈M \ {M}
ym+1 ≥ Uanc − (Uanc − Lanc)(1− qm+1), m ∈M \ {M}
ym+1 ≤ um+1, m ∈M \ {M}
ym+1 ≤ Uanc, m ∈M \ {M}
ym ≥ Lanc, m ∈M∑
j∈J

zm,j = 1, m ∈M \ {M}

zm,j , qm+1 ∈ {0, 1}, m ∈M \ {M}, j ∈ J
x(0) = x0, y0 is given.

(6)

C: Linear approximation to the solutions of the ODEs

In this section, we describe how to construct the affine function ĝm,j
l,i in (3) in Section

“Method to solve the optimization model” of the Appendix. If we assume that the drugs
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do not affect stem cells, we can compute the abundance of stem cells over the planning
horizon numerically in advance, regardless of the treatment schedules. Thus we assume
x1,1(t), . . . , x1,n(t) are given as data, for any t. We can first eliminate all the variables
xm1,i and constraints containing xm1,i, for each m and i, in the optimization problem (6).
The dynamics of wild-type leukemic cells and each mutant type have no impact on each
other. We can decouple the ODEs into a series of linear ODEs as follows, each
describing the dynamics for type i cell from layer 2 to layer 4. ẋ2,i(t)

ẋ3,i(t)
ẋ4,i(t)

 =

 −d
j
2,i 0 0

bj3,i −dj3,i 0

0 bj4,i −dj4,i


 x2,i(t)
x3,i(t)
x4,i(t)

 +

 bj2,ix1,i(t)

0
0

 (7)

Write the above equations in the matrix form, we have

v̇i(t) = W j
i vi(t) + wj

i (t), for t ∈ [m∆t, (m+ 1)∆t], (8)

where vi(t) = [x2,i(t), x3,i(t), x4,i(t)]
>, wj

i (t) = [bj2,ix1,i(t), 0, 0]>, and W j
i is the lower

triangular matrix in (7).
We divide (m∆t, (m+ 1)∆t) into ∆t = 30 one-day sub-intervals. Consider a

sub-interval (t0, t0 + 1). By assuming wj
i (t) = wj

i (t0) for any t ∈ (t0, t0 + 1), we solve (8)
approximately and obtain

vi(t0 + 1) ≈ eW
j
i vi(t0) + (eW

j
i − I)(W j

i )−1wj
i (t0). (9)

By combining equations (9) for t0 = m∆t,m∆t+ 1, . . . , (m+ 1)∆t− 1, we have

vi((m+1)∆t) = eW
j
i ∆tvi(m∆t)+

∆t−1∑
d=0

eW
j
i (∆t−1−d)(eW

j
i −I)(W j

i )−1wj
i (m∆t+d). (10)

Recall that vi(m∆t) = [xm2,i, x
m
3,i, x

m
4,i]
> for each m. Thus (10) can be rewritten as xm+1

2,i

xm+1
3,i

xm+1
4,i

 = Aj,i

 xm2,i
xm3,i
xm4,i

 + hm,j
i , (11)

where Aj,i = (eW
j
i )∆t and hm,j

i =
∑∆t−1

d=0 (eW
j
i )∆t−1−d(eW

j
i − I)(W j

i )−1wj
i (m∆t+ d).

Each equation in (11) is used as the affine function ĝm,j
l,i in (3), for each m, j, i, and

l = 2, 3, 4.
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