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S1 Text

I. DERIVATIONS OF THE THEORETICAL RESULTS

Here we give the complete derivations of the theoretical results. The following calculations
are based on standard textbooks related to polymer dynamics [S1] and statistical physics [S2].
The mean-squared displacement (MSD) of the Rouse polymer in the viscoelastic environment was
first analyzed by Weber et al. [S3], whose work is a useful reference for the flow in the following
calculations.

A. The fluctuation-dissipation relation between gp(t) and γ(t)

According to the fluctuation-dissipation relation (FDR) for g(n, t),

⟨gκ(n, t)gλ(m, t′)⟩ = kBTγ(t− t′)δ(n−m)δκλ, (S1)

the following calculations can be made:
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. (S2)

B. The parameter kp relates to the variance of Xp

At thermal equilibrium via the preaveraging approximation, the memory effect of the friction
coefficient vanishes, i.e., γ(t− t′) → 2γ̄ · δ(t− t′). Then, Eq. 5 for p ≥ 1 can be written as

γ̄Ẋp(t) = −kpXp(t) + ḡp(t), (S3)

where

⟨ḡpκ(t)ḡqλ(t′)⟩ =
γ̄kBT

N
δ(t− t′)δκλδpq. (S4)

Since this Langevin equation for one degree of freedom corresponds to the Ornstein-Uhlenbeck
process described by the stochastic differential equation [S4],

dXpκ(t) = −kp
γ̄
Xpκ(t)dt+

√
kBT

Nγ̄
dBt, (S5)

the variance of Xp becomes ⟨
X2

pκ

⟩
CD

=
kBT/(Nγ̄)

2kp/γ̄
=

kBT

2Nkp
, (S6)

where ⟨·⟩CD represents the average for all nucleosome beads within the chromatin domain (CD) at
thermal equilibrium. Thus, this relation implies that the normal-coordinate amplitude satisfies the
equipartition theorem at thermal equilibrium.
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C. Asymptotic form of ⟨X2
p⟩CD

Here, we omit the argument t to calculate the thermal average. Using integration by parts, the

normal coordinates Xp ≡ 1
N

∫ N

0
cos

(
pπn
N

)
R(n) dn are rewritten as

Xp = − 1

pπ
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0

dn sin
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∂n
. (S7)

Thus, ⟨X2
p⟩CD is written as
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⟩
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Using

∂R(n)

∂n
· ∂R(m)
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= −1

2
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∂n ∂m
[R(n)−R(m)]2, (S9)

we can rewrite ⟨X2
p⟩CD as
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⟩
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. (S10)

Introducing a new variable l = m − n and substituting the size scaling (Eq. 4), we can make the
following calculation:
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. (S11)

The underlined integrals converge quickly to the following values if p is large:∫ N−n
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Therefore, we can obtain

⟨
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p
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2p2π2

2
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Using the formulas∫ ∞

0

cos(ax)xb−1 dx = Γ(b) cos

(
πb

2

)
a−b and z Γ(z) = Γ(z + 1), (S15)
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we can make the following formal calculations:⟨
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where

Adf
=

π1+2/df

Γ(1 + 2/df) sin(π/df)
(S17)

is a dimensionless constant depending on the fractal dimension df .

D. The solution of Eq. 9

Performing the Laplace transform to Eq. 9, we obtain

γ̃(s)
[
s C̃p(s)− Cp(0)

]
= −kpC̃p(s), (S18)

where γ̃(s) and C̃p(s) are the Laplace transforms of the functions γ(t) and Cp(t), respectively. Since
γ(t) is defined by Eq. 2, γ̃(s) is derived as follows:

γ̃(s) =
γα

Γ(1− α)

∫ ∞

0

e−stt−α dt,

=
γα

Γ(1− α)
sα−1

∫ ∞

0

e−yy(1−α)−1 dy,

= γαs
α−1. (S19)

Therefore, C̃p(s) is written as

C̃p(s) = Cp(0)
γαs

α−1

γαsα + kp
= Cp(0)

sα−1

sα + kp/γα
. (S20)

In addition, using the formula of the Laplace transform for the Mittag-Leffler function

L
[
Eα (−atα)

]
(s) =

sα−1

sα + a
, (S21)

we can inversely find the solution

Cp(t) = Cp(0)Eα (−kp/γα · tα) . (S22)

By use of Eqs. 6 and 7,

kp
γα

=
Adf

· 3kBT
Nγα⟨R2⟩CD

p1+2/df . (S23)

Then, we can define the relaxation time

τdf ,α ≡
(
Nγα⟨R2⟩CD

Adf
· 3kBT

)1/α

, (S24)

which has the physical dimension s. If the initial condition reaches thermal equilibrium, Cp(0)
becomes ⟨X2

p⟩CD. Thus, finally, we can derive the solution

Cp(t) =
⟨
X2

p

⟩
CD

Eα

[
−p1+2/df (t/τdf ,α)

α
]
. (S25)
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E. The MSD of the center of the CD

For p = 0, the normal coordinate X0(t) corresponds to the center of the CD,

RG(t) =
1

N

∫ N

0

R(n, t) dn. (S26)

According to the Langevin equation (Eq. 5) and the FDR (Eq. S2) for p = 0, the motion obeys∫ t

0

γ(t− t′)
dX0(t

′)

dt′
dt′ = g0(t), where ⟨g0κ(t)g0λ(t′)⟩ =

kBT

N
γ(t− t′)δκλ. (S27)

In general, for degree of freedom x and velocity v, the MSD is associated with the velocity
correlation as follows:⟨

[x(t)− x(0)]
2
⟩

=

⟨(∫ t

0

v(t1) dt1

)2
⟩
,

=

∫ t

0

dt1

∫ t

0

dt2 ⟨v(t1)v(t2)⟩,

= 2

∫ t

0

dt1

∫ t

t1

dt2 ⟨v(t1)v(t2)⟩,

= 2

∫ t

0

dt1

∫ t−t1

0

dt′ ⟨v(t1)v(t1 + t′)⟩. (S28)

Using the Laplace transform and the stationarity of the velocity correlation Cv(t), this relation
becomes more clear:

L
[⟨

[x(t)− x(0)]
2
⟩]

(s) = 2
1

s2
L [⟨v(0)v(t)⟩] (s)

=
2

s2
C̃v(s). (S29)

In terms of the fluctuation-dissipation theorem (FDT) [S2], we can derive the Laplace transform
of the velocity correlation from the relationship between the average response and the FDR. The
force balance between the average response of the system described by Eq. S27 and the external
force f(t) is written as ∫ t

0

γ(t− t′)⟨v(t′)⟩ dt′ = f(t), (S30)

for one degree of freedom. The Laplace transform of this force balance equation becomes

γ̃(s) ⟨ṽ(s)⟩ = f̃(s). (S31)

Then, the ratio of the average velocity to the force, ⟨ṽ(s)⟩ /f̃(s) = 1/γ̃(s), is called the complex ad-
mittance, and the FDT of the first kind represents the relationship between the complex admittance
and the velocity correlation,

kBT

N

1

γ̃(s)
= C̃v(s), (S32)

where the coefficient kBT/N is caused by the FDT of the second kind for the system in Eq. S27.
Therefore, the Laplace transform of the MSD is written as

L
[⟨

[x(t)− x(0)]
2
⟩]

(s) =
2

s2
kBT

N

1

γ̃(s)
,

=
2kBT

Nγα

1

sα+1
. (S33)
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By use of the formula of the inverse Laplace transform, L−1[1/sα+1](t) = tα/Γ(1 + α), the MSD
can be obtained as ⟨

[x(t)− x(0)]
2
⟩
=

2kBT

Γ(1 + α)Nγα
tα. (S34)

Thus, the MSD of the center of the CD is derived as⟨
[X0(t)−X0(0)]

2
⟩

= 3
2kBT

Γ(1 + α)Nγα
tα,

=
2⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α

. (S35)

F. The MSD for t ≪ tdf ,α

The MSD obtained in our experiment is calculated by averaging nucleosome movements at various
positions in CDs. Then, we can replace the term cos2

(
pπn
N

)
in Eq. 8 by the average 1/2. Therefore,

for t ≪ τdf ,α, according to Eqs. 7 and 12, and the asymptotic form of the Mittag-Leffler function,
Eα(−x) ≃ exp [−x/Γ(1 + α)] for x ≪ 1, the second term in the right hand side (RHS) of Eq. 8 can
be expressed as

MSD(t) ≃ 8
∞∑
p=1

1

2

⟨R2⟩CD

2Adf

1

p1+2/df

{
1− exp

[
− p1+2/df

Γ(1 + α)

(
t

τdf ,α

)α]}
. (S36)

Converting the sum into the integral, the RHS becomes

2⟨R2⟩CD

Adf

∫ ∞

0

dp
1

p1+2/df

[
1− e−(t/τdf ,α)α/Γ(1+α)·p1+2/df

]
. (S37)

Here, let us consider the integral formula calculated as follows:∫ ∞

0

dxx−(1+a)
(
1− e−bxc

)
=

[(
x−a

a

)(
e−bxc

− 1
)]∞

0

+
bc

a

∫ ∞

0

dxx−a+c−1e−bxc

,

=
bc

a

∫ ∞

0

1

bc

(y
b

)1/c−1

dy
(y
b

)(−a+c−1)/c

e−y,

=
ba/c

a

∫ ∞

0

dy e−yy(1−a/c)−1,

=
ba/c

a
Γ(1− a/c). (S38)

Therefore, the MSD for t ≪ τdf ,α can be written as

MSD(t) ≃ 2⟨R2⟩CD

Adf

df
2

[
(t/τdf ,α)

α

Γ(1 + α)

]2/(2+df)

Γ [df/(2 + df)] ,

=
2⟨R2⟩CD

Adf
Γ(1 + α)

Γ(1 + α)
df
2
[Γ(1 + α)]

−2/(2+df ) Γ [df/(2 + df)]

(
t

τdf ,α

)α·2/(2+df )

,

=
2Bdf ,α⟨R2⟩CD

Adf
Γ(1 + α)

(
t

τdf ,α

)α·2/(2+df )

, (S39)

where

Bdf ,α =
df
2
[Γ(1 + α)]

df/(2+df ) Γ [df/(2 + df)] (S40)

is a dimensionless constant depending on df and α.
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II. REMARKS ON THE HYDRODYNAMIC EFFECT FOR OUR POLYMER MODEL

In describing the Langevin equation of polymers with the hydrodynamic interaction, the in-
teraction affects the mobility matrix [S1, S5]. This situation corresponds to an ideal case where
hydrodynamic interactions are not screened. Calculating the effect of the mobility matrix for the
normal coordinates Xp(t) under the preaveraging approximation, kp in Eq. 5 is changed into k̄p
with the following p-dependence:

k̄p ∼ kp · p1/d−1 ∼ p3/d. (S41)

Therefore, when we calculate the MSD as above, we need to calculate the integral∫ ∞

0

dp
1

p1+2/d

[
1− e−(t/τ)α/Γ(1+α)·p3/d

]
. (S42)

By use of the integral formula (Eq. S38), the scaling of the MSD for t ≪ τ can be written as

MSD(t) ∼ tα·2/3. (S43)

This means that the hydrodynamic interaction cancels out the effect of the size scaling described
by the fractal dimension df , and that the exponent of the MSD depends on only the exponent α,
which relates to the memory effect of the viscoelastic medium.
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