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ABSTRACT Cardiac arrhythmias are one of the most frequent causes of death worldwide. A popular biological model used to
study arrhythmogenesis is the cultured cardiac cell monolayer, which provides a good trade-off between physiological relevance
and experimental access. Excitation wave patterns are imaged using high-bandwidth detectors, producing large data sets that
are typically analyzed manually. To make such analysis less time consuming and less subjective, we have designed and imple-
mented a toolkit for segmentation and tracking of cardiac waves in optical mapping recordings. The toolkit is optimized for high-
resolution detectors to accommodate the growing availability of inexpensive high-resolution detectors for life science imaging
applications (e.g., scientific CMOS cameras). The software extracts key features of propagating waves, such as wavefront
speed and entropy. The methods have been validated using synthetic data, and real-world examples are provided, showing
a difference in conduction velocity between two different types of cardiac cell cultures.
INTRODUCTION
Cardiac arrhythmias such as ventricular or atrial fibrillation
are a major factor in the occurrence of cardiac arrest, one of
the most frequent causes of death worldwide, claiming
300,000–400,000 deaths annually in the United States alone
(1). Despite recent advances and decades of research, a pre-
cise insight into the mechanics of fibrillation is lacking (2).
A popular experimental model of arrhythmogenesis, or,
more generally, signal propagation in excitable media, is
cultured cardiac monolayers (CCMs) (3). CCMs can be
grown in a controlled manner, allowing for manipulation
of their spatial and functional organization. For example,
CCMs can give insight into the origins of reentrant waves
and can be used to determine conditions that allow different
wave topologies to occur (4). Despite being structurally
different from in vivo tissue, CCMs remain popular models
of cardiac conduction due to their simplicity, controllability
of growth, and ease of experimental access due to very little
movement of the tissue and the absence of deep 3D struc-
ture. CCMs therefore allow researchers to perform experi-
ments that would not be practical in vivo.

Optical mapping techniques are used to observe wave
propagation in CCMs. Two types of optical mapping, dye
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based and dye free, are used. Typically, cell activity is
recorded using fluorescence imaging, using either voltage-
sensitive or calcium-sensitive dyes (5). Although these tech-
niques directly measure key biophysical properties, they
tend to suffer from two major drawbacks, phototoxicity
and photobleaching, rendering longer recording of tissue
nearly impossible. An alternative approach is based on
dye-free visualization of contraction of cardiac cells, using
either phase imaging (6) or off-axis illumination (7).
Although dye-free techniques do not capture membrane
voltage or calcium concentration, they allow direct visuali-
zation of wave patterns without the drawbacks associated
with fluorescent-imaging approaches.

All the optical mapping techniques are capable of produc-
ing a large quantity of image data, but the analysis of such
data is still frequently done manually (8), or largely manu-
ally (9), which is subjective and time-consuming. An auto-
mated analysis of wave propagation in optically mapped
tissue would be less prone to operator bias and has the po-
tential to increase throughput. However, most of the existing
automated methods for analyzing optical mapping data
focus on the properties of single cells or patches of tissue,
rather than macroscopic behavior of the tissue.

There are automated approaches to the analysis of higher-
level activity (e.g., waves), but their focus seems to be
mainly on the analysis of data from electrode arrays
(10,11); an example task being solved is keeping track of
the number of waves in a recording, recording the events
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of splitting and fusion (12,13). Such electrophysiological re-
cordings are characterized by an excellent temporal resolu-
tion of >1 kHz, a low amount of noise, and relatively poor
spatial resolution (e.g., the 22 � 23 and 24 � 21 arrays used
in (10)). These techniques have been successfully applied to
voltage-sensitive dye recordings collected by specialized
low-resolution high-speed detectors (14).

Recently, relatively inexpensive high-resolution, low-
noise sCMOS sensors with moderate frame rates have
been made widely available for biomedical research (15).
These detectors yield data sets with relatively poor temporal
resolution of up to 100 Hz, and signals typically have a
lower signal/noise ratio (SNR), but their high spatial resolu-
tion offers several advantages. Such an increase in spatial
resolution may be used to measure detailed properties of
wave propagation, such as the distribution of wavefront
speeds for different parts of a wave, or to track small and
short-lived wavelets (16), which cannot be achieved with
lower-resolution devices. The gold standard for measuring
conduction properties is the method by Bayly et al. (10),
developed for conduction-velocity estimation in electro-
physiological recordings, also used in the toolkit Rhythm
(14). However, in our experience, the method is not ideally
suited for processing high-resolution, heterogeneously con-
ducting tissue; a discussion of its shortcomings and a com-
parison with the methods developed by us can be found in
Section S7 in the Supporting Material.

Because of the lack of suitable software for analysis of
the behavior of waves in high-spatial-resolution data sets,
particularly for recordings where the activation is not a
continuous pattern (such as obtained using conventional cal-
cium imaging) but a discrete one, we designed the toolkit
Ccoffinn (Cardiomyocyte Cultures Optically-mapped: Fast
Feature extractIoN and trackiNg), presented in this text;
the code (with user guide and sample data) is available
from https://ccoffinn.dpag.ox.ac.uk/. The approach is based
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on the segmentation of single cells or groups of neighboring
cells, using the information of their activity to construct a
representation of waves and track their movement. After
these steps, features are extracted that describe the quantita-
tive properties of the observed waves, such as wavefront
speed, wavefront smoothness (or lack thereof), or several
measures of order in the recorded activity. The presented
methods are validated using synthetic data and used as a
proof of concept to demonstrate the difference in conduction
properties of myocyte cultures and cocultures of myocytes
and cardiac neurons. The whole process of segmentation,
tracking, and feature extraction, is implemented mainly in
Matlab, and it is relatively high throughput, allowing for
processing hundreds of data sets per day on a personal com-
puter. Although the software was designed for data sets ob-
tained using a dye-free imaging approach, we demonstrate
that it also can be directly applied to data sets collected us-
ing fluorescence techniques with a continuous pattern of
activation.
MATERIALS AND METHODS

This section briefly sketches the functionality of Ccoffinn, describing the

process of wave segmentation, tracking, and subsequent feature extraction.
Wave segmentation and tracking

The main aim of the wave segmentation is to estimate which parts of tissue

are firing in a synchronized manner in each frame of a source video. In addi-

tion to simple wave segmentation, we also propose a method for detection

of a wavefront (the part of a wave that advances forward). Using the

methods for segmenting waves, we can then track movement of wavefronts

and extract features describing the waves. An example output of Ccoffinn

for both dye-free and calcium imaging is shown in Fig. 1. Below is a

more detailed description of the algorithms used to get from a source video

to extracted features. Furthermore, Sections S3–S5 in the Supporting Mate-

rial give an overview of parameters, a description of the synthetic and

experimental data used, and notes on implementation, respectively.
FIGURE 1 An example output of wave segmen-

tation and tracking. Each row contains two consec-

utive frames of a recording, with segmentation and

annotation by Ccoffinn in the third column. In the

first row is a straight wave imaged using a calcium

dye at 200 fps. The second row is a case of dye-free

imaged wavelets at 50 fps with spurious activity

(which is the most difficult type of activity to pro-

cess). The colors in the images encode the roles of

blobs within the waves. Blue represents the area

inside the waves, cyan the borders of waves that

are not in the upstroke phase, magenta the wave-

front blobs (border blobs in the upstroke phase),

red the wavefront blobs that were not wavefront

in the previous frame (‘‘became-wavefront’’), and

yellow the tracking arrows linking border blobs

from the first shown frame to those that ‘‘became

wavefront’’ in the second shown frame.

https://ccoffinn.dpag.ox.ac.uk/
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Blob segmentation

The aim of this step is to estimate locations of pixel clusters that are acti-

vated at the same time (given available temporal resolution). This can be

single cells or clusters of cells, depending on the spatial resolution used.

Using the off-axis-illumination dye-free imaging, active cells or groups

of cells manifest as bright blobs; thus, the segmentation of the cell culture

is reduced to blob detection. The segmentation is greatly simplified, as the

blobs in monolayers do not change their location throughout the recording.

Therefore, we can average all the frames of the video, obtaining an image

with an excellent SNR that contains all the blobs that were active. The

averaged image is then segmented using the four-connected version of

the SeNeCA algorithm (17), chosen for its computational simplicity and

its ability to cope with data with uneven background brightness, which is

a common feature in our data sets. The parametrization of SeNeCA is

described in Section S3 in the Supporting Material.

For cases of data where the imaged tissue does not manifest clear blobs

(e.g., macroscopic calcium imaging), an alternative segmentation method

based on filtered binning is included in Ccoffinn. Using this approach, a

frame of the video is binned into squares with a chosen side length (param-

eter binningSize; see Section S3 in the Supporting Material). Using the

whole source video, the SNR is measured for each of the brightness traces

of the squares using the Matlab snr function. Optionally, the squares with

SNR smaller than a given threshold (parameter minSNR) are discarded.

The remaining squares are then considered to be segmented blobs in a

manner similar to segmentation using the default approach.

Determining times of blob activity

Once the blobs have been segmented, the next task is to determine which

blobs are active at which frame of the recording. Simple thresholding of in-

tensities performed poorly on our data, given the wide range of brightness

and/or SNR of blob traces. We did not want to use shape-specific methods

(such as template matching), as our aim was to keep the method flexible

with respect to different imaging modalities and species-specific action-

potential morphologies. Methods based on the derivative of the measured

intensity, which is often used as a surrogate for the rate of change of mem-

brane voltage (14), cannot be used solely, because the derivative of intensity

only provides the time of the upstroke and not information such as action-

potential duration (APD). We designed a simple spike-mining algorithm

that uses the derivative of intensity to detect spikes as events and then

uses temporal surroundings of the detected event to extract the start and

end of the particular spike. The detailed description of the algorithm is

given in Section S1.1 in the Supporting Material.

Wave segmentation

Here, we aim to detect waves in each frame. Informally, a wave is defined as

a ‘‘sufficiently large group of active blobs which are sufficiently dense.’’

Our approach works frame by frame, and in each frame, it takes all the

blobs active in that particular frame, considers them in areas of dense-

enough activation (see Section S1.2 in the Supporting Material for details),

and divides them into groups using a recursive criterion: blobs a and b

belong to the same wave5 a and b are close enough or if there exist blobs

c and d so that a is close enough to c, b is close enough to d, and c and

d belong to the same wave (the case when a ¼ c or b ¼ d is allowed).

The blobs are then further segmented according to their ‘‘roles’’: blobs

within a wave, blobs at the border of the wave, and blobs that are at the

border and are furthermore wavefront blobs (i.e., the wave is propagating

across them, as opposed to, e.g., border blobs that are at the tail of the

wave and are ceasing to be active rather than becoming active). The whole

process of wave segmentation is described in detail and illustrated in Sec-

tion S1.2 in the Supporting Material.

Wavefront tracking

After the blobs are segmented into various types according to their position

in waves, the next step is to track the movement of the wavefronts
throughout the recording. The tracking information may be then used to es-

timate wavefront-related features of interest. Unlike in traditional tracking

of blobs, the blobs are stationary in our data and only the pattern of their

activation is tracked. This means that the number of tracked objects (wave-

front blobs) is highly variable throughout the recording and waves tend to

disappear completely unless they are reentrant.

For wavefront tracking, Ccoffinn uses a novel algorithm, to our knowl-

edge, based on solving a minimum-cost bipartite matching problem to link

wavefront blobs of a wavewith the border blobs of the samewave in the pre-

vious frame. This approach is optimal in the total distance between the linked

cells and is sufficiently fast for recordings with <10,000 segmented blobs.

The detailed explanation of the algorithm is given in Section S1.3 in the Sup-

porting Material. Alternatively, we have implemented the method of Bayly

et al. (10), which may be used for smoothly conducting recordings.
Feature extraction

Rather than to observe wave segmentation and tracking in a video visually, it

may be more convenient to extract several features that describe the data set

using anautomatedmethod. Furthermore, anautomated approach avoids oper-

ator bias, which can occur if researchers are free to select regions manually,

possibly causing false-positive results (18). Ultimately, an automated analysis

is more easily scaled to high-throughput applications (e.g., drug screening).

For the purpose of the automated description of the recorded behavior, we

havedesigned several features that either simplydescribe the data ormay serve

as away of showing a difference between two groups of data.Most features are

actually multisets, which can be further summarized, e.g., averaged over time

(producing a spatial map) or over space (producing a development over time),

or both (producing a single number). The features extracted are given below,

with precise definitions in Section S2 in the Supporting Material.

� Conduction-oriented: wavefront speed (conduction velocity), wavefront

roughness

� Organization-oriented: entropy, perimeter/area ratio

� Spike properties: APD, interspike duration, beating frequency

� Structural: number of blobs, sparseness of blobs (spatial)
RESULTS

We made two comparisons using the available dye-free data
(more details on the data are provided in Section S4.2 in the
Supporting Material). First, we manually divided the record-
ings into organized waves (target, spiral, or straight) and
disorganized waves (wavelets or chaotic activity). We then
compared the features extracted from organized waves to
those from disorganized waves. Second, we compared the
properties of organized waves in myocyte cultures to orga-
nized waves in cocultures of myocytes and neurons. In both
comparisons, we used the rank sum test to compare features
of the groups of recordings. Furthermore, an evaluation of
Ccoffinn using synthetic data is given in Section S6 in the
Supporting Material.

The results of comparing the recordings of organized and
disorganized activity are given in the upper part of Table 1.
The disorganized cultures had a significantly higher perim-
eter/area ratio and wavefront roughness. This is an expected
result, as these two features are mainly aimed at orderliness
of propagation in tissue. The third feature aimed at orderli-
ness, entropy, failed to discern between the two classes of
data, supporting the opinion, based on the evaluation of
Biophysical Journal 111, 1595–1599, October 18, 2016 1597



TABLE 1 Comparisons of Recordings of Organized and Disorganized Activity and of Organized Activity in Myocyte Cultures and

Myocyte-Neuron Cocultures

Organized versus Disorganized Activity

Feature Org Median (IQ range) Dis Median (IQ range) p value

Number of cells 4678 (4138–5087) 4890 (4318–5573) 0.1909

Wavefront speed (mm/s)a 11.3 (7.6–20.8) 5.9 (5.2–7.4) 0.0024

Interspike period (ms) 443.2 (331.8–564.3) 372.1 (341.9–466.1) 0.2673

APD (ms) 138.5 (112.1–180.4) 138.2 (103.6–150.3) 0.3286

Cell sparseness (m) 170.2 (152.8–204.6) 192.4 (168.5–210.7) 0.3453

Wavefront roughness (�)a 27.1 (23.3–30.9) 37.7 (32.7–38.9) 0.0010

Beat frequency (Hz) 0.838 (0.606–1.403) 1.173 (0.894–1.437) 0.1694

Entropy 0.322 (0.034–2.130) 0.127 (0.060–0.509) 0.7281

Perimeter/area ratioa 0.139 (0.093–0.162) 0.188 (0.161–0.229) 0.0022

Organized Activity in Myocyte Cultures versus Myocyte-Neuron Cocultures

Feature Myo Median (IQ range) Co Median (IQ range) p value

Number of cells 4956 (4751–5313) 4411 (4127–4835) 0.1471

Wavefront speed (mm/s)a 6.5 (5.3–9.5) 17.8 (11.1–21.5) 0.0110

Interspike period (ms)a 564.3 (432.9–643.1) 366.3 (307.7–464.6) 0.0420

APD (ms) 180.4 (134.4–204.5) 133.5 (107.3–151.3) 0.0559

Cell sparseness (m) 184.3 (159.5–204.8) 169.3 (146.1–204.4) 0.7925

Wavefront roughness (�) 29.6 (24.1–38.6) 26.6 (23.1–29.3) 0.2635

Beat frequency (Hz) 0.599 (0.516–0.929) 0.947 (0.815–1.891) 0.0559

Entropy 0.667 (0.306–2.081) 0.168 (0.003–2.179) 0.3676

Perimeter/area ratio 0.152 (0.135–0.192) 0.117 (0.084–0.162) 0.2198

For each feature (or mean of feature), the median and interquartile range are given. Org, organized recordings (target, spiral, or straight wave); Dis, disor-

ganized activity (wavelets); IQ, interquartile; Myo, cultures of myocytes; Co, cocultures of myocytes and neurons.
aFeatures that differ significantly ðp<a ¼ 0:05Þ between the respective groups.
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synthetic data, that it is not a useful feature. Wavefront
speed was significantly increased in the group containing
organized activity, which is an expected result as well.

The results of comparing recordings of organized activity
in myocyte cultures and cocultures of myocytes and neurons
are given in the lower part of Table 1. The most striking
result is the large increase of wavefront speed in cocultures
compared to myocyte cultures. At the same time, the perim-
eter/area ratio is not significantly different between the two
groups of data; thus, the difference in wavefront speed and
wavefront roughness is unlikely to be caused by different
morphology of waves. Also, we can observe a borderline-
significantly faster beat rate in cocultures (this trend is
further bolstered by shorter APD and interspike period,
consistent with more frequent spiking).

To link the results using real data to the analysis of syn-
thetic data (Section S6 in the Supporting Material), we
have estimated the noise standard deviation in the real
data using the method by Immerkær (19). The mean over re-
cordings of standard deviation of the noise was 0.1063 with
a standard deviation of 0.0583, suggesting that the results
presented in this section should not be affected too severely
by the presence of noise.
DISCUSSION

In this work, we present the toolkit Ccoffinn, a novel
approach, to our knowledge, to segmentation and wave
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tracking in optically mapped tissue, with subsequent feature
extraction, focused on the analysis of high-resolution record-
ings with heterogeneously conducting tissue. The method
was validated using synthetic data and applied to a large car-
diac culture data set, where it successfully detected signifi-
cant differences in properties of two types of cell cultures.

Our software toolkit has the following advantages: the
ability to extract many different features from data sets,
describing various properties of the imaged tissue that, to
our knowledge, have not been analyzed automatically before
(e.g., wavefront roughness); computational efficiency; and
freely available code. The code is written in Matlab in a
modular fashion using static classes and subprograms
to allow users to easily incorporate different methods in
Ccoffinn while still being able to use the toolkit’s core func-
tionality (e.g., the current spike-mining algorithm can be
seamlessly replaced without disrupting Ccoffinn’s tracking,
visualization, and feature-extraction functionality).

The main limitation of Ccoffinn is the offline nature of the
software; this is very convenient for blob segmentation
tasks, but having a real-time implementation might be also
very useful. Implementing a real-time version of the toolkit
is feasible, provided that no complex visualization of the
segmentation is needed. The main change needed would
be an alternative algorithm for determining which cells
are active and which are not. A frame-by-frame use of the
SeNeCA algorithm might be an option, as this has been vali-
dated in (17).
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We believe that the main future use of the toolkit will be
to discover and quantify the effects of pharmacological
agents on cardiac propagation, or for determining functional
differences between tissue types, similar to the proof-of-
concept application presented in this text. A second use
might be to explore the relationships between features in
a very large data set, for example, the homogeneity of
distribution of cells and the propagation velocity. When
the real-time version of our approach is implemented, a third
possible use is for optogenetic applications (20), allowing
the automated control of illumination for feedback applica-
tions that depend on wavefront location or velocity. Ccoffin
could greatly improve the reaction time to experimental
events and could allow the application of patterns of stimu-
lation that are well beyond the capabilities of human
operators.
SUPPORTING MATERIAL

Supporting Materials and Methods, Supporting Results, 11 figures, and four

tables are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(16)30816-5.
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S 1 Methodology description

S1.1 Spike-mining

The pseudocode summarising the spike-mining process is given in Pseudocode S.1 with
further details below.

Pseudocode S.1 The algorithm for determining which blobs are active in which frames.

function b lobAct iv i ty = g e t A c t i v i t y (
frames , {Sequence o f recorded frames}
mask {Resu l t o f b l o b segmentat ion }
smoothingParameter {Kernel width f o r averag ing f i l t e r }
frameRate {Frame ra t e o f the frame sequence }
ac t i v i t yThre sho ld {Threshold f o r f i n d i n g sp i k e t imes }
apdN {Leve l o f APD−N%, on s c a l e 0−1}
minSpike , maxSpike {Limits o f s p i k e dura t ion }
isDoubleHump {1 i f a d d i t i o n a l f i l t e r i n g i s to be app l i e d }
)

begin

d i f f T h r e s h o l d = ac t i v i t yThre sho ld / frameRate ;
{Get p i x e l s occupied by each b l o b . }
b l o b Po s i t i on s = getCP (mask ) ;
{Get t ing and f i l t e r i n g i n t e n s i t y t r a c e s }
bI = getBI ( frames , b l o b Po s i t i o n s ) ; {Blob i n t e n s i t i e s }
b I f i l t = f i l t e r B I ( bI , frameRate , isDoubleHump ) ;
[ upstrokeTimes , zeroTimes ] = processDVDT ( b I f i l t , frameRate ,

d i f f T h r e s h o l d ) ;
b l obAct iv i ty = f i n d S p i k e s ( b I f i l t , upstrokeTimes , zeroTimes ,

minSpike , maxSpike , frameRate ) ;
end ;

First, diffThreshold is computed as activityThreshold/frameRate, which scales the
activityThreshold by an element proportional to the duration between consecutive frames,
dt. When we later compare discrete derivative of intensity (dV ) to a threshold, this scaling
makes sure we are comparing dV /dt to an element proportional to a fixed-value activityThreshold,
which makes the threshold invariant to sampling frequency used.

Then, a list of pixels belonging to each blob is extracted from the segmentation mask in
getCP. In the second step (getBI), the average brightness of a blob’s pixels is measured for
all the blobs in all frames and stored in the matrix bI, so that:
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bI(i, j) =

∑
∀k b(B

i
k(j))

||Bi||
(1)

where Bi is the list of pixels belonging to the i-th segmented blob and b(Bi
k(j)) is the

brightness of the k-th pixel belonging to the i-th blob in frame j. ||Bi|| is the number of
pixels belonging to the i-th blob.

In filterBI, the intensity of each blob is first scaled to the 0–1 range and its baseline
is subtracted (the baseline is estimated as the intensity after median filtering with the filter
size representing 2s duration, thus with the filter size depending on the frame rate, with
symmetric treatment at the edges of the trace). Then, the intensity is smoothed using a
median filter with filter size of smoothingParameter, yielding bIfilt. Median filtering has the
advantage that it does not change the time of the action potential upstroke, unlike filters
based on averaging. If isDoubleHump is true, zero-phase averaging of the same filter width is
further applied to connect the two humps representing an action potential. Traces with two
humps per action potential are commonly seen in temporally filtered traces from dye-free
imaging experiments, since both excitation and contraction generate an increase in intensity.
The added averaging step helps to connect the two humps so that they are segmented as a
single spike for the purposes of activation detection.

In processDVDT, times of maximum dV /dt are determined first (dV stands for intensity
in general, which traditionally represents voltage). For each blob, dIS is defined so that
dIS [1] = 0 and dIS [i] = bIfilt [i] - bIfilt [i-1]. The variable dIS is then thresholded using
diffThreshold and within each block above threshold, the maximum value of dIS is found
and saved in upstrokeTimes. Furthermore, all times when dIS is zero or crosses zero are
saved in zeroTimes.

Ultimately, the times of activity of each blob are determined in findSpikes. For each
blob and time of its upstroke tu, let us consider the following variables:

• tBaselineprev: The last element of zeroT imes smaller than tu. This gives a time when
the blob is likely to be repolarised before the currently processed action potential.

• tBaselinepeak. The first element of zeroT imes that is larger than tu. This is the time
of maximum intensity of the given action potential.

• tBaseline2after. The second element of zeroT imes that is larger than tu. This gives
the time when the blob is likely to be repolarised after the current action potential.

• intensityprev = bIfilt[intensityprev]

• intensitypeak = bIfilt[intensitypeak]

• intensityafter2 = bIfilt[intensityafter2]
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• baseline =
intensityafter+intensitybefore

2

Then, we define a threshold for the given spike as follows:

spikeThreshold = baseline+ (1− apdN)(intensitypeak − baseline)

The particular blob is then considered active in the interval of frames represented by the
segment of bIfilt > spikeThreshold which contains frame tu (note that this happens for
each upstroke detected in the particular blob and the times of activity are combined, rather
than overwriting one another). Also, if the duration of the interval in ms (obtained using
the number of frames taken and frameRate) does not fit within minAPD and maxAPD, the
interval is discarded as an artifact.

S1.2 Wave segmentation

As mentioned in the main text, the first step of wave segmentation is to split blobs active
in a particular frame to separate waves. Then, each wave is divided into border blobs ( B
blobs) and inside blobs (I blobs). The B blobs are labeled as wavefront blobs (W blobs)
if they are in the phase of an action potential when voltage rises, and the subset of these
that were not wavefront blobs in the previous frame are labelled new-wavefront blobs (NW
blobs). The whole process is sketched in Pseudocode S.2; described below in depth for a
single frame:

Using the output of getActiveBlobs, we first extract the locations of blobs that are active
in the given frame. The function filterActiveBlobs filters the active blobs according to
their centroids to retain as active only the ones that have at least minDensity neighbours
within distanceThreshold pixels, while the rest are rejected (This helps to remove spurious
action potentials and helps the later tracking steps focus on the propagation of organised
activity.).

Then, a graph G=(V,E) is created. The vertices V are the centroids of active blobs
in this frame. In getEdges, near blobs are linked with an edge: ∀vi, vj ∈ V : (vi, vj) ∈
E ⇔ d(vi, vj) <= distanceThreshold, where d is Euclidean distance and distanceThreshold
a parameter. The graph G is then decomposed into connected components which represent
separate waves.

The next step is to determine which blobs are at the border of the waves. To do this, a
wave mask is created (in cleanMask):

wave mask(i, j) =

{
1, If ∃k such that (i, j) ∈ Pk

0, otherwise
(2)

where Pk is the k-th blob active in the current frame.
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Pseudocode S.2 The algorithm for segmenting blobs active in a given frame into waves.
The blobs are also labelled according to their position in their respective wave.

procedure waveSegmentation (
frames , {Sequence o f recorded frames}
frameRate , {Rate o f ac qu i r ing frames}
mask , {a matrix wi th the same s i z e as a frame ,

wi th 1 where b l o b s are , 0 e l s ewhere }
b l o b A c t i v i t i e s , { output o f g e tA c t i v i t y }
bISmoothed , {as computed wi th in g e tA c t i v i t y }
minDensity , {Minimum dens i t y o f b l o b s }
di s tanceThresho ld ) {The minimum a l l owed d i s t ance o f waves}

begin
[ c en t ro id s , d i s t ] = g e t I n f o (mask ) {Get c en t r o i d s and d i s t anc e s o f b l o b s

in mask}
for frame in frames do
begin
{Part a ) Segmenting b l o b s in t o waves}
ac t iveB lobs = getAct iveBlobs ( frame , b l o b A c t i v i t i e s ) ;
a c t i v e B l o b s F i l t e r e d = f i l t e r A c t i v e B l o b s ( c e n t r o i d s [ a c t i veB lobs ] ,

d i s tanceThresho ld , minDensity ) ;
V = c e n t r o i d s [ a c t i veB lobs ] ;
E = getEdges ( a c t i v e B l o b s F i l t e r e d , d i s tanceThresho ld ) ;
waves = getConnectedComponents (V,E, d i s t ) ;

{Part b ) Determining which a c t i v e b l o b s are are border b l o b s
and which are i n s i d e b l o b s }

waveMask = cleanMask (mask , waves ) ;
wH = getWrapperHull ( waves , waveMask , d i s tanceThresho ld ) ;
[ in s ideBlobs , borderBlobs ] = s p l i t I B ( act iveBlobs , wH) ;

{Part c ) Further segmenting border b l o b s }
[ wfBlobs , nonwfBlobs ] = sp l i tWave f ront ( borderBlobs , frameRate ,

blobBrightnessBS ) ;
end ;
end ;
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(a) (b) (c) (d)

Figure S.1: Four stages of determining the border blobs. In (a), a part of the binary mask
of blobs active in a given wave is shown, with the result of its morphological dilation in (b).
The wrapper hull, morphological erosion of (b) is shown in (c). Ultimately, (d) shows the
pixels that were 1 in (a), but not in (c): these represent the blobs at the border of the given
wave.

Then, we compute a wrapper hull as a binary mask obtained using the following steps,
illustrated in Figure S.1. The name ’wrapper hull’ is used due to similarities with a a convex
hull, However, since the waves are not always convex objects, a convex hull would not work
sufficiently well in this application.

1. Morphologically dilate the wave mask with a circular structural element of radius
bdistanceThreshold−1

2
c. Note that due to the waves being at least distanceThreshold apart

by their definition, this operation cannot merge separate waves into a single object.

2. Morphologically erode the wave mask with a circular structural element of radius
bdistanceThreshold−1

2
c+2.

To obtain B blobs (in splitIB), the wave mask is taken and all 1s in it that are also 1s
in the wrapper hull are set to 0. Only the blobs that were not fully removed from the wave
mask are then labelled as B blobs: their existence is a consequence of the morphological
erosion being performed with a slightly larger structural element than the dilation.

Ultimately (splitWavefront), the B blobs are further separated according to the slope of
cISmoothed at the given frame; the slope is estimated as the difference between consecutive
elements. The border blobs with positive slope at the given frame (i.e., becoming activated)
are labelled as W blobs; the rest of the blobs stays labelled as B blobs.

S1.3 Wavefront Tracking

The wavefront tracking is performed in a hierarchical way. First, separate waves (connected
components of active blobs) in frame f are linked to separate waves in frame f-1. For each
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(a) (b)

Figure S.2: In (a) is an example of tracking problem in a section of a spiral or target wave.
In blue are the B blobs in the previous frame, in red are the NW blobs in the current frame.
The resulting tracking arrows are shown in green. Due to the fact that there are more NW
blobs than B blobs, two NW are not linked to anything via an arrow. The subfigure (b)
contains an illustration of a graph used in computation of minimum-cost maximum-flow.

wave wi in frame f, a wave wj in frame f-1 is chosen so that the number of active blobs
that are present both in wi and wj is the maximum possible. If the size of the largest found
intersection is 0, no link is formed. These steps ensure that only blobs belonging to the same
wave are tracked.

When the high-level links (wi, wj) are formed between waves,W blobs in wi and B blobs
in wj are then tracked as described below. An illustration of the tracking output of our
software is given in Figure S.2a.

Two groups of tracking arrows are defined:

• The trivial group is “zero” arrows: if a W blob in frame f is also a B blob in frame
f − 1, it means that the wave is static there, not propagating further.

• The second group of tracking arrows contains the arrows representing an actual move-
ment of a wavefront. However, rather than linking full wavefronts at frames f and f-1,
we link all the border blobs in frame f-1 to the NW blobs (W blobs in frame f that
were notW in frame f-1 ) to obtain a smaller integer programming problem later. Also
for increased computational performance, we disregard the B blobs in frame f-1 with
no NW blob in frame f within maxSpeed ; these removed border blobs are too far from
the wavefront to be linkable to the new wavefront. Finally, tracking arrows longer than
maxSpeed are removed.

To obtain the nontrivial tracking arrows, we form a complete oriented bipartite graph
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with G = (V1 ∪ V2, E) where vertices in V1, the first partite, represent centroids of eligible B
blobs in frame f − 1 and vertices in V2 represent NW blobs in frame f , with (u, v) ∈ E ⇔
u ∈ V1, v ∈ V2. Furthermore, we set ∀(u, v) ∈ E : c(u, v) = 1, a(u, v) = d(u, v), where c is
capacity, a is cost and d is Euclidean distance of the vertices. We can then formulate the
problem of finding the best tracking arrows as finding the maximum-size matching of the
two partites in G with minimum total cost. Such a matching may be found, for example, by
maximising network flow. Using this approach, the source and sink vertices are added to the
graph (also with unitary capacities, but zero costs) and linked to their respective partites as
shown in Figure S.2b. Then, we aim to find the cheapest flow f of size φ = min(|V1|, |V2|).
In order to make sure that an edge is either fully used in the flow or not at all (i.e., a tracking
arrow is present there or not), we formulate the task as an integer programming problem
with variables x(u,v) = f(u, v):

minimize:
∑

u∈V1,v∈V2

x(u,v)a(u, v) (3.1)

subject to: x(u,v) ≤ 1 ∀(u, v) ∈ E (3.2)

x(u,v) ≥ 0 ∀(u, v) ∈ E (3.3)∑
(u,v)∈E

x(u,v) −
∑

(v,w)∈E

x(v,w) = 0 ∀v ∈ V1 ∪ V2 (3.4)

∑
(source,v)∈E

x(source,v) = φ ∀v ∈ V1 (3.5)

∑
(v,sink)∈E

x(v,sink) = φ ∀v ∈ V2 (3.6)

x(u,v) ∈ Z ∀(u, v) ∈ E (3.7)

After the optimum of this system is found via the Branch and Bound method, the arrows
are filtered. The arrows longer than maxSpeed are discarded, as well as arrows that are
estimated to pass outside wrapper hull in the frame containing the blobs at the end of the
arrows; this heuristic aims to discard artifactory arrows between unrelated wavefronts which
typically pass through zones outside waves. The exact criterion for discarding arrows is as
follows: First, for the i-th arrow considered, Li is the set of pixels under the i-th tracking
arrow, determined using Bresenham’s line-drawing algorithm between the arrow’s start and
end points. Then, let ‖wh(Li)‖ be the number of pixels of Li belonging to wrapper hull
and ‖Li‖ is the total number of pixels belonging to Li. The i-th arrow is then discarded if
2‖wh(Li) > Li‖ and ‖wh(Li) > 2‖. The first condition serves to discard arrows predom-
inantly traversing outside the wrapper hull, the second condition then protects very short
arrows in slow conducting zones: due to the nature of wrapper hull and the fact that erosion
is larger than dilation by two pixels, each arrow traversing less than four pixels would be
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discarded automatically.
The arrows passing the filtering that are not longer than maxSpeed are drawn in places of

oriented edges (u, v) : u ∈ V1, v ∈ V2 where x(u,v) = 1 and the coordinates of their start and
end points are saved for future use in feature extraction, along with the “trivial” zero-length
arrows representing static wavefronts.

Note that the integer programming formulation above is fairly restrictive, allowing only
a single arrow leaving a blob and a single arrow pointing to a blob. This prevents the
artifactory behaviour of nearest-neighbour tracking which tends to label several blobs with
many outcoming or incoming arrows. The integer programming framework allows relaxing
the “at most one in, at most one out” restriction in an elegant way: the capacities of the
edges from source to V1 directly correspond to the maximum number of allowed outcoming
arrows and the capacities of the edges from V2 to sink directly correspond to the maximum
number of allowed incoming arrows. In the following subsection, the required generalisation
is described in detail.

For convenience, Ccoffinn contains an implementation of the frequently used method by
Bayly et al. (1), although in general case, we recommend using the above-described minimum-
cost-maximum-flow approach, as discussed in section S7. For cases when high number of
blobs is present and the default approach would be too computationally demanding, Ccoffinn
also contains a common and computationally cheap algorithm that can be used in place of
the default one: the nearest-neighbour tracking (2). There a wavefront blob in frame f is
linked to the nearest border blob in frame time f-1. According to our experience, however,
the method performs poorly in the case of waves that are not very simple (e.g., in case of
spiral or wavelet waves).

S1.3.1 Generalisation of the MCMF tracking

The tracking algorithm described previously may suffer from the rule that allows a maximum
of one arrow exiting and one arrow entering a blob. An example of a potential problem is
a target wave spreading faster in one direction than in others. In such a case, conduction
velocity and potentially direction of conduction would be under-tracked; a concrete example
of this problem is given in section S7.5.

The integer programming may be modified to accommodate for more arrows entering
or leaving a blob. The parameter maxArrows determines the maximum allowed number of
arrows leaving/entering a blob. It can be set to ’auto’, which then uses the smallest integer
value that is sufficient to cover all the blobs from the larger partite of the tracking graph;
e.g., if movement from 4 to 10 blobs is tracked, maxArrows=’auto’ is considered 3. The
exact value is computed separately for each instance of the tracking problem. The integer
programming may be then modified as follows:

• The upper bound on flow in the inequality 4.2 is increased to maxArrows for all edges
from the source to the first partite and from the second partite to the sink. Then, e.g.,
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when flow 3 enters a vertex in the first partite, this then forces the tracking to send
three distinct arrows from the given vertex (the maximum capacities of edges between
the partites are still capped at 1, preventing duplicate arrows).

• φ is redefined from φ = min(|V1|, |V2|) to φ = min(max(|V1|, |V2|),maxArrows ·
min(|V1|, |V2|)), where V1, V2 are the first and second partite respectively. The first
component of the minimum makes sure that more tracking arrows are never required
than is the size of the larger partite. The second component then makes sure that more
arrows than available are never requested of the tracking algorithm. It can be clearly
seen that for maxArrows = 1, the original algorithm is obtained, while for maxArrows
= ’auto’, the number of tracking arrows is precisely the size of larger partite.

S 2 Feature description

Below are given definitions of features, followed by a brief discussion of their physiological
relevance.

S2.1 Feature definitions

S2.1.1 Number of blobs

A scalar value giving the total number of blobs segmented in the dataset.

S2.1.2 Sparseness of blobs

A multiset containing the distances from each blob to their nearest non-self neighbour,
providing information on how evenly are blobs spread in the culture.

S2.1.3 Wavefront speed

A multiset of lengths of tracking arrows found throughout the recording, including or ex-
cluding the zero-length arrows, based on the value of useZeroArrows. The mean value may
be used as an indicator of overall conduction velocity, however, note that unlike manual
operators who generally focus on the propagation of the fastest wavefronts, mean wavefront
speed takes into account the speed of wave propagation in all directions where wavefronts are
propagating. According to our observations, the 90th or 95th percentile can be used in our
datasets to obtain the conduction velocity in the fastest-propagating wavefronts. Using only
the longest arrow per dataset is problematic as in complex wave patterns, such as wavelets,
long artefactual arrows may appear, linking two parts of the observed wave, that should not
be considered representative.
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The choice of useZeroArrows depends largely on the data available. The motivation for
using zero arrows is that in slow-conducting tissue (or very quickly sampled one), a motion
may not be captured between consecutive frames, even though it is present. E.g., a straight
wave moving one layer of blobs per two frames has a speed 0.5 layer per frame, but the
nonzero arrows will be only of length one; these would be captured every other frame, while
in the complementary frames, only zero-length arrows are recorded. Thus, averaging all the
arrow lengths, one gets the correct answer of 0.5 when considering zero-length arrows. On
the other hand, the zero-length arrows may introduce artefactual drop in wavefront speed
estimation in, e.g., a well conducting tissue where a dish edge is present - when the wave
reaches the dish edge, it will contain zero-length arrows there for several consecutive frames,
contributing low CV information to the overall pool of tracking arrows. Thus, the switch
useZeroArrows should be set to 1 in tissues with low propagation velocity in pixels/frame,
while being set to 0 in other cases.

S2.1.4 Interspike duration

For each blob, let us consider its vector of activity (i-th row of blobActivities, as obtained
in the Section SS1.1). Then, for i-th blob, let ISi be the multiset of lengths of 2-connected
sequences of 0s that are not leading, nor trailing, that cannot be further extended (i.e.,
bordering with 1s on both sides of the interval of 0s). The leading and trailing intervals
of 0s are excluded as they may not represent a full period between two action potentials.
Then,

interspike duration =]i=1,...,nISi (4)

where n is the number of blobs and ] stands for multiset union (i.e., union with allowed
repeats of elements). Ultimately, all the values are scaled by 1000/frameRate to convert
the interspike duration in frames to milliseconds.

S2.1.5 APD

This feature is an analogy of interspike duration, except that lengths of non-trailing and non-
leading intervals of 1s are computed. Note, that while feature is a correlate of physiological
APD, it may not represent it exactly and the level of APD-N it represents may depend
on the nature of the data. This is chiefly due the fact that the APD-N is estimated using
the median-filtered signal and sharp peaks in the signal (as seen in the synthetic data) are
removed. Thus, estimating, for example, APD70 of the filtered signal may not be equivalent
to APD70 in the original signal as the thresholds used for measuring action potential shape
depend on the signals peak value.



Ccoffinn toolkit: Supplementary materials 11

S2.1.6 Wavefront roughness

Wavefront roughness serves to describe the lack of smoothness in signal propagation. A
tracking arrow from location u to location v in frame f is called suitable if there is another
tracking arrow in the frame f with the origin closer than usm (a parameter) micrometers
from u. Informally, suitable arrows are these with an arrow nearby in the same frame. For
the i-th suitable arrow α, we define βi as the set of tracking arrows in the same frame with
their origin closer than usm to the origin of α (including α). Then, we can define:

wavefront roughness =]i=1,...,mS(ϕ(βi)) (5)

where ϕ(βi) is the set of angular components of polar coordinates (in degrees) of all the
arrows in βi, S is the circular standard deviation and m is the number of suitable tracking
arrows.

It is expected that when a wavefront is propagating smoothly, such as in straight waves,
most of its tracking arrows will point in the same direction, contributing low values to
wavefront roughness, while chaotic activity with many wavebreaks will display lack of local
smoothness (i.e., high ϕ(β)), contributing high values of wavefront roughness.

S2.1.7 Beat frequency

Beat frequency of a recording can be used to estimate the beating rate of blobs in the
recording. For a single blob and its brightness trace, we define its beat frequency as the
number of spikes per second. The beat frequency of the whole recording is then simply a
multiset union of the beat frequencies of single blobs.

S2.1.8 Entropy

This feature is a variant of the spatiotemporal entropy described previously (3), using the
representation of a wave as a set of blobs, rather than a set of pixels (which seems to be the
approach used by Jung). Let us construct a 3D space S where (x, y, f) ∈ S ⇔ ∃ blob c so
that (x, y) is the centroid of blob c and blobActivitiesF iltered(c, f) = 1 (blobActivitiesFiltered
is obtained in Section SS1.2). Informally, a point is present in the space if it represents a
centroid of an active blob in a certain frame.

We then define a distance dS in the space S:

dS((x1, x2, x3), (y1, y2, y3)) =
√

(x1 − y1)2 + (x2 − y2)2 + ζ(x3 − y3)2 (6)

where ζ is the mean of Sparseness of blobs feature. This distance function is essentially an
euclidean distance with weighted distance in the z-axis (this is equivalent to an ordinary
euclidean distance in a space where frames are spaced ζ pixels apart).
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Let us define a graph G′(V ′, E ′), where V ′ contains vertices representing all points in
space S and (u, v) ∈ E ′ ⇔ dS(u, v) < distanceThreshold. A spatiotemporal wave is then
defined as a connected component of G′ with the number of the points in the connected
component giving its size.

Using notation from the work by Jung (3), spatiotemporal volume of class of size s is
defined as Vs = s·ns, where s is the size of connected component and ns is the number of such
connected components in the data. Then, relative coverage of a size class s is vs = Vs∑

s Vs
.

Spatiotemporal entropy is then defined as follows:

S = −
∑
s

vs ln vs (7)

Even though entropy is a popular measure of order, providing a single number for the
whole dataset, it has its limitations. We can observe, for example that a completely random
activity of isolated blobs, yielding many connected components of size 1, has the same
(zero) entropy as when there is a single large wave present in the recording. Also, a very
heterogeneous wave, such as a group of wavelets, may still be a single connected object in
the 3D space, depending on the exact shape of the waves and quantity of noise; this feature
then becomes fairly unstable, with small changes to the recording causing large difference in
entropy.

Efficient computation of entropy in our context, namely the decomposition of G′ into
connected components is not entirely trivial. The only difficulty in computing the entropy
is the decomposition of the graph G into connected components due to large size of the
graph itself. With hundreds of active blobs per frame and a video that is thousand frames
long (which are both possible in our data), the number of edges present in the graph can
be too large to fit into memory of a desktop computer (especially using memory-inefficient
representations, such as adjacency matrix).

The first observation that helps is that the whole graph does not have to be represented
explicitly at any time for us to obtain the decomposition into connected components. The
standard DFS-based algorithm for finding connected components can be adapted to not
require the whole graph. Let us recall that an edge is present between vertices in G if
the two vertices are closer than distanceThreshold. Thus, the step when the search expands
into a vertex’s neighbours (usually determined directly from the graph representation) can be
modified to instead query all the other unlabelled vertices (candidate neighbours), expanding
into these that are near enough to the vertex expanded. While this greatly reduces the
memory complexity from O(|V |)2 to O(|V |), it also increases the time complexity from
O(|V |) to O(|V |)2, making the computation impractically long.

A second improvement to the basic algorithm is restricting the search of candidate neigh-
bours so that not all vertices are searched. We can divide the 3D spatiotemporal space occu-
pied by the vertices of G into cubes with side length of distanceThreshold and for each cube,
we record the list of vertices present in it. Then, when looking for neighbours of a vertex to
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be expanded v, instead of testing the distance to all the vertices in the space, we test only
the distance to the same cube and the 26 neigbouring ones. In a standard case of our data,
256x256 pixels and distanceThreshold of ca. 16, we search only at most 27 cubes instead of
4096 there are, which is a considerable time-saver. This function has been implemented in
C to further improve performance and connected to the main code via MEX interface.

S2.1.9 Perimeter-to-area ratio

In order to counteract the deficiencies of entropy, we have designed a different measure of
the degree of order of the recorded activity. For each frame, we obtain the mask of active
blobs in the frame (after filtering out blobs in sparse regions, i.e., using blobActivityFiltered).
Morphological closing with circular structural element and radius distanceThreshold/2 is
performed to fill holes between blobs belonging to a same wave (but not mixing separate
waves together). Then, we define the perimeter-to-area ratio in the i-th frame as:

perimeter − to− area(i) =
#sideP ixels(mi)

#pixels(mi)
(8)

where mi is the processed mask of the i-th frame, #sideP ixels(mi) is the number of one-
containing pixels in mi that border with a zero (“perimeter”), and #pixels(mi) is the total
number of ones in mi (“area”).

The whole feature perimeter-to-area ratio is then defined as a multiset union of all the
perimeter − to− area(i) such that #pixels(mi) > 0.

We can clearly see that a wavelet activity will have overall high perimeter-to-area ratio
due to large perimeter and low area, unlike, e.g., round target waves, which have large areas
and small perimeters.

A slightly different approach would be to compute the surface and volume of a 3D voxel,
instead of computing perimeter-to-area ratio for each frame separately. However, such ap-
proach would be then very sensitive to wave speed: an organised wave that moves very fast
would have larger surface than a wave of the same type that travels more slowly due to larger
number of facets between two frames. We consider this effect undesirable, as a measure of
wavefront structure should not depend on propagation speed, which is why we have adopted
the frame-by-frame approach instead.

A limitation of this approach is that waves entering the field of view (FOV) may have a
fairly high perimeter-to-area ratio at the given frame, as most of the true area of the wave is
not seen. However, such cases are highly unlikely to affect the feature value in a major way,
as waves tend to be present in FOV for multiple frames. If this limitation affects the results
severely for some unexpected reasons, the code for this feature’s extraction could be modified
to ignore several leading and trailing of activity in each wave when perimeter-to-area ratio
is determined, thus discarding the frames when a wave enters or leaves the FOV altogether.
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S2.2 Physiological relevance of features

Wavefront speed, APD, and firing frequency are widely reported measures of cardiac wave
dynamics that yield information on connectivity, upstroke velocity, automaticity, and ion
channel kinetics, e.g. calcium dynamics (1, 4, 5). Interspike duration is a measure of cardiac
recovery time, which is often used to describe the presence or absence of dynamic changes
in action potential shape, e.g., alternans (6). The other measures described in the paper
(wavefront roughness, entropy, and perimeter to area ratio) attempt to quantify the relative
complexity of propagating waves in tissue. Since complex dynamics can be caused by a wide
variety of different causes, it is often impossible to assign a one to one electrophysiological
or structural correlation to these measures. However, these measures are directly relevant
to the understanding wavefront interactions and arrhythmogenesis in our preparations.

Wavefront roughness is an indirect measure of the connectivity of the tissue as well as
the number and size of local structural heterogeneities. Well connected tissue will generate
smooth wavefronts whereas locally disconnected tissue, or tissue in the presence of spatially
distributed heterogeneities, tend to generate wavefronts that appear fractured (7–11). En-
tropy is a measure of spatiotemporal complexity (3, 12, 13), and can be used to quantify
variability in wavefront structure. Tissue experiencing changes in electrophysiology, or con-
nectivity (14) may be expected to display higher entropy values. However, entropy may
be difficult to interpret as it does not necessarily map onto an intuitive understanding of
complex cardiac dynamics: for example, many multiple interacting wavelets (e.g. fibrilla-
tion) may have low entropy if the wavefronts have similar sizes. Entropy calculation is also
sensitive to noise and the threshold for activation. In contrast, wave perimeter to area ratio
directly maps to an intuitive measure of spatial complexity in our data sets. Wave perimeter
to area ratio gives information on the shape of a wave (larger values map to smaller waves
and waves with non-circular shapes). As with the wavefront roughness descriptor, perimeter
to area ratio is a function of local heterogeneity, but also a measure of dynamic instability
in homogeneous tissue. For example multiple wavelets caused by steep restitution can have
a low roughness value and a high perimeter to area value, whereas multiple wavelets caused
by local heterogeneity are expected to have high values for both descriptors. Taken together,
these measures can be used to differentiate different experimental preparations (e.g. Table
1).

S 3 An overview of parameters

Table S.1 shows a list of constants given by physical conditions of the experiment, Table
S.2 contains the free parameters of the methods used in our toolkit, and Table S.3 contains
the computed parameters, values of which are based on constants and free parameters. The
table S.4 contains an overview of switches that control the behaviour of the software.
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Name Description

frameRate The frame rate of the recording in frames per second.
mimps The upper limit of speed of waves in micrometres per ms.
pixelMicroMetres How many micrometres does a side of a pixel measure (based

on the resolution of the recording).

Table S.1: An overview of constants that need to be specified as a part of input. These
numbers can be different for each video processed in a batch (e.g., all videos of cell cultures
created and imaged using a fixed protocol, before and after addition of a drug).
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Name Description Value

hlt, llt, cws The parameters of the SeNeCA segmentation algorithm for
the case when blob-based segmentation is used: High light
threshold, low light threshold , and contrast window size
respectively (these are used only if SeNeCA is used for blob
segmentation). Fourth parameter described in the article
on SeNeCA, minLight, is not used, i.e., set to 0.

1.4,
1.3, 8

binningfactor,
minimumSNR

The parameters of the filtered binning segmentation algo-
rithm: the video is binned into squares with side length
binningfactor, ignoring squares traces of which have SNR
lower than minimumSNR (these are used only if filtered
binning is used for blob segmentation). minimumSNR is
0 by default, meaning that no filtering is performed.

3, 0

smoothingFactor Used to compute smoothingParameter; the larger it is,
the shorter the filter. E.g., for the default value and 100fps,
smoothing width is 100ms

10

activityThreshold Used to determine which segments of dIS (as obtained in
Section S1.1) are labelled as containing an AP upstroke

2

apdN The N determines the APD level measured; scaled to 0-1.
I.e., 0.5 represents APD50. The default value used is suited
for data with relatively high amount of noise and disorder.

0.3

minAPD,maxAPD The minimum/maximum duration of an action potential
in ms. If a candidate action potential does not fit within
this range, it is discarded.

25,
800

distanceThreshold If two blobs are closer than this (in pixels), they are con-
sidered to belong to the same wave. This parameter may
be either given exactly as a number, or as ’auto’, being
estimated heuristically as 4· median distance of each blob
to its nearest non-self neighbours.

’auto’

minDensity If a blob considered active based on activityThreshold does
not contain at least this many other blobs considered active
within distanceThreshold, it is relabelled as not active to
keep focus on non-sparse activity.

5

maxArrows The maximum number of arrows starting and ending in
each blob; used in MCMF tracking. This may be an integer
value or ’auto’.

1

usm Used in feature extraction, determines the radius (in mi-
crometres) around a start point of a tracking arrow in
which other arrows are considered for computing rough-
ness of wavefront.

750

Table S.2: An overview of free parameters that need to be specified as a part of input; these
numbers are expected to be the same for all the videos processed in a batch. The third
column contains values that we used in experiments described in this text, included in order
to improve the reproducibility of our results.
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Name Description Formula

uniformitySurroundings usm in pixels usm
pixelMicroMetres

maxSpeed Maximum speed of waves in
pixels per frame

1000·mimpms
frameRate·pixelMicroMetres

smoothingParameter Size of averaging filter (in
frames) used in smoothing
intensity traces of blobsA. It
set to make a single cardiac
action potential smooth, but
not to merge two separate
ones.

frameRate
smoothingFactor

Table S.3: An overview of parameters based on constants and free parameters.
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Name Description Values

isDebug If 1, traces of all the blobs seg-
mented in the processed recording
are stored in tmp subfolder, along
with their smoothed version and
segmentation of activity.

0/1

isDoubleHump If 1, additional smoothing is ap-
plied in spike-mining to connect
”double-humps” resulting from
pre-processing of dye-free imaged
data.

0/1

segmentationMethod This switch selects between
SeNeCA cell segmentation (for
recordings with blobs) and
binningSNR segmentation (for
continuously activated recordings)

’seneca’/’binningSNR’

toP lot If 1, the segmentation and tracking
progress is visualised on-screen

0/1

trackingMethod This determines whether the
default minimum-cost-maximum-
flow approach or Bayly’s method
is used for tracking wavefronts.

’MCMF’/’Bayly’

useZeroArrows If 1, zero-length arrows are consid-
ered in CV estimation. This is to
be used in cases of low pixels-per-
frame conduction.

0/1

verbose If 1, progress of computation is
output to the console and progress
bars are displayed to track the
progress of time-consuming steps.

0/1

Table S.4: An overview of switches used in Ccoffinn.
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S 4 Data description

S4.1 Synthetic data

While it is important to demonstrate usefulness of methodology using real data, such an
evaluation is limited as the underlying signal is intrinsically unknown and the irregularity of
the activity in real systems makes it complex to analyse. Therefore, in addition to evaluating
our software on real data, we also performed an evaluation using synthetic datasets, where we
can determine the correctness of the evaluated methodology. The main aim is to investigate
the robustness of the method to sampling frequency and noise quantity in the data.

The cardiac activity was modelled using a cellular automaton (15), which allowed us to
create various types of waves and to measure them at different sampling frequencies. Below
are described three experiments: Syn1, Syn2, and Syn3, which aim to test different properties
of the process of feature extraction. All created videos have the resolution of 255x255 pixels
and include 2601 blobs (a grid of 51-by-51). Examples of frames of the synthetic data can
be found in Figure S.3 and Figure S.5.

In experiment Syn1, three 400 frame videos sampled at 50 fps are compared, containing
a spiral wave, a planar wave, and a target wave respectively. These three types of waves are
the major types of waves observed in cardiac monolayers and our aim was to confirm that
they are segmented correctly.

In experiment Syn2, three different types of a wave (planar, spiral, and wavelet) are
visualised at three different sampling frequencies (25, 50, and 100 fps; 200, 400, and 800
frames respectively) and we observe the effect on the values of the features extracted. The
recording is generated at 100fps and then subsampled to the respective lower sampling
frequencies.

In experiment Syn3, the same three types of wave are observed for 400 frames at 50 fps
with three levels of Gaussian additive noise with zero mean and variances 0.02, 0.04, 0.06,...,
1 (on a scale of 0-1) and the focus is on the effect of the noise on the features extracted.

S4.2 Real data

Two types of slow-conducting cell cultures imaged using a dye-free approach were used to
evaluate the effectiveness of the toolkit: a culture of ventricular myocytes from SD rat pups
(n=19) and a co-culture of ventricular myocytes grown along stellate cardiac neurons of litter
mates of the rats (n=16). The protocol of culturing is given in (16). A temporal filter has
been applied to the raw data, replacing fi with abs(fi − fi−5), where fi is the i-th frame.
The filtered data can be interpreted as the amount of motion (contraction or relaxation) in
a given pixel. A sample script is provided with Ccoffinn, showing how to apply such filtering
to a dye-free dataset obtained using phase imaging.

Additionally, several datasets of calcium-imaged cell cultures (with high CV compared to
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the dye-free imaged cultures) were used to demonstrate the usefulness of Ccoffinn for such
an imaging modality. The protocol used is described in (17).

S 5 Implementation notes

The methods for segmentation and tracking of waves, as well as the feature extraction,
were written in Matlab, using C code and MEX interface in performance-critical areas.
Pure-Matlab alternatives to the C functions are also provided for convenience and greater
platform independence. The GLPK library was used as a fast integer programming solver,
connected to Matlab via GLPKMEX interface. The cellular automata used to generate the
synthetic datasets is written in Java. The runtime of the segmentation and tracking depends
greatly on the quantity and the pattern of activity of the blobs in the data. On the real
data analysed in this report, the average number of objects segmented in a video was ≈ 4300
and the average runtime of segmentation and tracking was 0.11 seconds per frame (with the
visualisation and console verbosity turned off). The computer used for the computation was
a PC with a six-core processor Intel Xeon E5-1650 v3, 16GB of operating memory and a
magnetic hard drive.

S 6 Results: Validation using synthetic data

Below are described the results of the three experiments Syn1, Syn2, Syn3, described in
Section S4.1.

S6.0.1 Syn1: Results

Figure S.3 shows an output of the segmentation and tracking algorithms on three model
waves. The output of the segmentation and tracking algorithms was visually assessed and
found to be correct.

S6.0.2 Syn2: Results

The features extracted from the three datasets (varying by their sampling frequency) show
that the sampling frequency of the video generally does not seem to drastically affect the
features extracted (note that the change in number of blobs is minuscule, as can be judged
from y-axis). However, we note that while entropy does not seem to be overly affected by
the sampling frequency, it does not capture the complexity of waves very well. Intuitively,
we would expect straight waves to be the most orderly with wavelets most disorganised.
However, it is clearly not so and the straight waves have by far the largest entropy. The
reason for this is that in the 3D spatiotemporal space, different iterations of a straight wave
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Figure S.3: Three types of synthetic waves, before (top) and after (bottom) segmentation
and tracking (we note that the tracking depends on the previous frame). To the left is
a straight wave, in the middle is a spiral wave, and to the right is a wavelet wave. The
interpretation of colours is identical to Figure 1 in the main text.
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Figure S.4: The effect of sampling frequency on values of features (or means of features in
case of non-scalar features). In number of blobs and blob sparseness, spiral and straight wave
have the same values for all sampling frequencies; the same holds for wavelet and spiral wave
values in entropy. In all the waves, ground truth for number of blobs is 2601. For straight
waves, ground truth values of wavefront speed, dominant frequency, and wavefront roughness
can be estimated; the values are 36.8 mm/s, 2.5 Hz, and 0, respectively.
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are completely separate objects of possibly slightly different size. Unlike that, spiral waves
(and many wavelet activities) are merely a single connected spatiotemporal object. Thus,
even though entropy is an elegant and theoretically well-justified method, this flaw is too
serious for the feature to be practically usefl and alternative methods of order estimation
provided in the toolkit are recommended.

S6.0.3 Syn3: Results

An example of data with four selected levels of additive noise are given in Figure S.5. Figure
S.6 shows how features are affected by increasing noise. In features based on segmentation,
namely number of blobs and blob sparseness (min distance to nearest neighbour), the only
case with a trend effect of noise is the case of straight waves, where at high noise levels, lo-
cations of blobs are sometimes estimated incorrectly with the centroid being slightly shifted.
We wondered why there is a difference between straight and spiral waves, which are both
organised. Examining the data, we found that the straight-waves pass through any given
point less frequently than in the case of spiral waves (this is also manifested in the dominant-
Frequency) and that the process of segmenting the averaged frames of the recording thus
has an input with poorer signal-to-noise ratio in the case of straight waves (relatively more
frames of noise for a given pixel than in the case of spiral wave), which is why straight waves
are more damaged by the noise. This reveals an important observation that if Ccoffinn was
to be used for recordings with very high levels of noise and very sparse waves, the recording
should be summarised in a different way than the average of input frames, as this approach
is sensitive to noise (e.g., an approach based on high quantiles and/or maximum might be
better in such a context, as pixels containing pure noise are unlikely to manifest as high
values as pixels that contain genuine activation).

The feature wavefront speed tends to decrease with increasing noise level. The reason
behind is the fact that overly long arrows are deleted. Considering a single arrow in a noise-
free environment, when noise is added, the arrow can stay the same, shorten, or prolong;
however, the prolongations are limited as too long arrows are removed. For this reason, the
net effect of noise perturbation is mean arrow shortening.

In dominant frequency, we see a decrease as the noise is added, accompanied by prolon-
gation of both APD and interspike period. This is again due to the asymmetric filtering
process: an action potential is much more likely to be shortened below the minAPD (or
even to be completely removed by noise) than prolonged above maxAPD.

The wavefront roughness grows with noise in the organised waves, as their usually smooth
wavefronts become jagged and heterogeneous, increasing the roughness of propagation. We
note, however, that at all levels of noise, the three types of waves are ordered in their most
natural order of smoothness of propagation. Entropy again fails to discern the degree of order
associated with the types of waves, similarly to the result from experiment Syn2. perimeter-
to-area ratio changes little with increasing noise and maintains the ordering of organised
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versus disorganised waves at all noise levels. The separation of spiral and straight waves is
relatively small, but stable.

Overall, we believe that while the whole process of data analysis and feature extraction is
not immune to the quantity of noise present in the data, it is at least fairly resistant, giving
good results even at high noise levels in most features (the only exception is wavefront
roughness). Especially in the case of noise with standard deviation smaller than 0.2, most
features are highly stable.
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Figure S.5: A spiral wave generated using a cellular automaton with four levels of additive
noise (given as the standard deviation of the noise on scale 0-1): 0, 0.2, 0.4, and 1. The
interpretation of colours is identical to Figure 1 in the main article.
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Figure S.6: The effect of increasing noise standard deviation on values of features (or means
of features in case of nonscalar features). In all the waves, ground truth for number of blobs
is 2601. For straight waves, ground truth values of wavefront speed, dominant frequency, and
wavefront roughness can be estimated; the values are 36.8 mm/s, 2.5 Hz, and 0, respectively.
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S 7 Bayly’s wave tracking algorithm and MCMF track-

ing in high-resolution anisotropic data

In this section are discussed the problems associated with the algorithm for wave tracking and
conduction velocity (CV) estimation by Bayly et al. (1) in high-resolution, heterogeneously
conductive tissue, as well as discussing potential shortcomings of the MCMF algorithm which
is the default approach of Ccoffinn.

Bayly’s method considers each “active point” in a wave (e.g., a pixel), finds points in 3D
spatiotemporal space that are closer than given thresholds in the x,y,t dimensions, and fits
a quadratic surface through these using least squares criterion. Partial derivatives are then
used along x,y axes to find a velocity vector for the given active point. A small problem
intrinsic to this approach is the fact that the problem of surface fitting may be poorly
conditioned, making an estimation of CV impossible in a given point. This problem happened
several times in most datasets available to us, however, this error did not occur frequently
enough to significantly impact CV mapping or make the results uninformative.

In the relatively high-resolution data available to us, where a wave is represented by up
to thousands of active objects and for a reasonably sized spatiotemporal neighbourhood,
the basic algorithm is fairly slow, taking almost a minute per frame of data, making high-
throughput analysis impossible. However, using Ccoffinn’s framework for wave segmentation,
an adjustment to the basic algorithm can be made, where for an active point (x, y, f) (in
frame f), “near active points” are taken only from wavefront blobs in frames f − 1, f , and
f + 1, closer than maxSpeed in the plane given by first two dimensions of the space. Using
only two adjacent frames along the one in which the point (x, y, f) is used, as a quadratic
surface does not have enough degrees of freedom to correctly fit all the points in a larger
temporal neighbourhood.

Considering only wavefront blobs, rather than all the active blobs, the algorithm becomes
much faster, even though it is still an order of magnitude slower than the minimum-cost-
maximum-flow (MCMF) approach described previously. We note that this holds for the
data available to us at the moment; it would most likely not scale for extremely large
wavefronts of hundreds of thousands blobs, where the potential exponentiality of the integer
programming used to solve the MCMF problem would overcome the high-multiplicative-
constant polynomial complexity of the Bayly’s algorithm. However, both algorithms would
be extremely slow in such a case and an entirely new approach to tracking would have to be
adopted.

The main issue associated with Bayly’s algorithm is that in heterogeneously conductive
tissue (such as poorly coupled cell cultures, cultures rich in fibroblasts, or intact myocar-
dial tissue with myocardial infarction), where the heterogeneity captured by sufficiently high
resolution imaging method is genuine, the surface fitting approach can consistently yield
counterintuitive and incorrect results due to its dependence on smoothing. Below are several
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examples of wavefront topologies constructed to illustrate certain scenarios, where Bayly’s
algorithm fails to provide correct answer. We note that the errors demonstrated below are
not not a principal flaw of Bayly’s algorithm, as it was designed for low-resolution elec-
trophysiological data where the problems tend not to occur, but rather an illustration of
the algorithm’s struggles with heterogeneously conducting tissue. According to our expe-
rience, even in high-resolution data, Bayly’s method performs well as long as the tisue is
isotropic/homogeneously conducting. Furthermore, in section S7.5 are also discussed po-
tential issues associated with the non-generalised and generalised MCMF algorithm used in
Ccoffinn, showing how both MCMF and Bayly’s method may struggle in certain context.

We visualise the tracking information using 2D plots containing points in the plane,
representing the wavefront, where the colour further codes for the time slice in which the
points are considered active; the warmer the colour, the later in the “recording”. Estimated
vectors are shown using arrows of the given direction and length. When an arrow is missing,
it was either a case of a poorly conditioned problem, or the arrow was rejected as too
long (longer than neighbourhood radius, which is essentially a representation of maximum
conduction velocity). When a particular point is discussed, it is encircled in red and the
spatial neighbourhood is shown using a dashed magenta circle (however, only points that
are at most 1 frame away from the encircled point may be considered, even if they were
close enough in the spatial plane). Furthermore, in selected cases, we show the points in
neighbourhood in 3D with the quadratic surface fitted to them.

S7.1 Slow band in a straight wave

Figures S.7 and S7.1 show a case of a straight wave travelling from bottom to top (with central
point of the wavefront slowing down over time, limping behind the rest of the wavefront),
with three different radii of neighbourhood shown.

In the panel S.7a are shown velocity vectors for the case when neighbourhood radius is
30. The main systematic error is present at the centre of the wave, where tracking arrows
tend to aim towards the centre, rather than purely to the top of the frame. The reason
is that in frames 6 and 7, only two points are present within the magenta circle, while in
frame 8, three points are present; two a part of “normal” wavefront, one a part of the slowed
band. The fitted surface (shown in S.7b) passes exactly through the seven points in the
neighbourhood, but is practically wrong, both in the direction, and the conduction velocity
estimate. A secondary type of error is present at the edges of the frame, where the optimal
fit is not unique and the fitting procedure in Matlab returns unstable results. In practical
settings, these cases would be best detected automatically and discarded.

At the bottom of panel S.7c is an identical scenario, but with neighbourhood radius of 60.
The problem with unstable borders is solved at the sides (where for each point at the side,
9 points are in its neighbourhood rather than 6 in the previous case, making the optimal
solution unique). However, the problem with incorrect estimation of direction in the vicinity
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Figure S.7: In the left column are diagrams of wavefront of a straight wave travelling from
bottom to top with a slowing-down segment. The colours code for time. Velocity vectors
obtained using Bayly’s algorithm are superimposed on the locations of “wavefront blobs”. In
a) is the tracking information for neighbourhood radius 30, in b) for neighbourhood radius
60. In the right column are shown quadratic surfaces fitted through the respective points
and their surroundings shown in the left column.
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Figure S.8: a) and b) are an analogy of the previous figure, with neighbourhood radius 65.
In c) is given the tracking information obtained using Ccoffinn’s MCMF tracking algorithm.
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of the slowing down band is aggravated overall. Furthermore, CV becomes overestimated
severely in the slowing down band, as demonstrated by the case of the encircled point
(producing the longest arrow shown in the plot) and the respective fitted surface. This is
due to the fact that when a surface is fitted around the encircled point, the algorithm also
considers the points of the fast part of wavefront that are some distance away, which results
in an incorrect high CV estimate. Indeed, this error increases as the distance between the
fast and slow wavefront increases making the estimated CV excessively large.

Increasing the neighbourhood size to 65 yields the plot in S7.1a, revealing yet another
type of error, e.g., in the point circled in red, where the velocity vector points away from the
slowing down band. When fitting the respective surface (shown in S7.1b), the surface has to
be lifted at its right part to pass near the point belonging to the slow part of the wavefront;
however, as the fitted model is a quadratic surface, this forces the left part of the surface
to be lifted up, making the partial derivative such that the velocity vector then aims away
from the centre of both the fitted surface, and the centre of the velocity plot.

The panel c contains the wave tracking information by Ccoffinn’s MCMF method, pro-
viding correct estimation of both CV and conduction direction.

The three examples of various mistakes made by Bayly’s algorithm on the particular data
also highlight the sensitivity of the method to the neighbourhood radius, as the tracking
outputs in the vicinity of the slowing down segment differ between the three examples rather
considerably. At the same time, there is no “correct” neighbourhood size in general. In
a heterogeneously conducting excitable medium, the example given above may be only a
small part of the overall activation pattern; “good” values of neighbourhood size may then
differ substantially between distinct areas of the tissue. As the algorithm allows only a
single parametrisation of neighbourhood size, it then follows that at least some areas will
contain tracking artifacts. This issue could be probably ameliorated by extending the Bayly’s
algorithm to somehow dynamically determine an appropriate neighbourhood size.

S7.2 Near wavefronts in a single wave

A second type of problem associated with the surface-fitting approach of Bayly is that
different wavefronts of a single wave can affect one another; one example is shown in the
panel S.9a. The panel shows a wave spreading towards the top and bottom of the plot; it also
steers towards left in its top-travelling segment. The steering then affects the direction and
length of several arrows associated with the bottom-travelling segment of the wave, which is
incorrect. The tracking by MCMF shown in the panel S.9b is correct.

S7.3 Wave shape affects CV and direction estimation

The panel S.10a shows two waves of identical CV (10 arbitrary units), travelling from bottom
to top; a straight wave to the left and a pointed “arrow” wave to the right. While the CV
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Figure S.9: In a) is shown the activation diagram of a simulated wave spreading simul-
taneously towards the top and the bottom of the plot; the interpretation of colours and
arrows obtained using Bayly’s algorithm is identical to the previous figure. In b) is given
the tracking information obtained using Ccoffinn’s MCMF algorithm.

estimation is correct in the straight wave, when the first and last temporal slices are ignored,
both local CVs and propagation directions are almost all incorrect in the arrow-shaped wave,
suggesting at a major sensitivity of the Bayly’s algorithm to the wave shape, rather than
purely to the actual conduction velocity. The panel S.10b gives the surface fitted to the
left encircled point’s surroundings, showing why CV is mildly overestimated at the point.
The panel S.10c then shows the surface fitted to the right encircled point, showing why
the direction of propagation is incorrectly estimated. The panel S.10d contains the correct
tracking outcome obtained using MCMF algorithm.

S7.4 Wavefront jaggedness yields overestimation of CV

In Figure S.11 is shown the tracking output of Bayly’s algorithm on a straight wave with
jagged wavefront that propagates from bottom to top. Even though the true CV is 10 units
per time step, the estimated CV is clearly and systematically estimated to be higher. In
certain cases (e.g., the encircled one), the direction is also estimated poorly, due to the
asymmetrical positioning of neighbouring active points in the neighbourhood.



Ccoffinn toolkit: Supplementary materials 33

Figure S.10: In a) is shown the activation diagram of two simulated waves of identical
conduction velocity: a straight wave to the left, and a arrow-shaped wave to the right;
the interpretation of colours and arrows obtained using Bayly’s algorithm is identical to
the previous figure. In b) and c) are the surfaces fitted to the respective points in a) and
their surroundings. In d) is given the tracking information obtained using Ccoffinn’s MCMF
algorithm.
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Figure S.11: In a) is shown the activation diagram of a simulated straight wave with jagged
wavefront travelling from bottom to top; the interpretation of colours and arrows obtained
using Bayly’s algorithm is identical to the previous figure. In b) is given the tracking infor-
mation obtained using Ccoffinn’s MCMF algorithm.
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S7.5 Heterogeneously spreading target waves and changing wave-
front size

A case where the basic version of MCMF algorithm (allowing at most one arrow entering and
leaving a blob) may struggle primarily is the case when wavefront size changes considerably
(such as in origination of a target wave), possibly under-tracking the propagation. An
example of such under-tracking is shown in Figure S.12a. The issue is the most problematic
between frames 1 and 2, where the basic MCMF algorithm generates one arrow where there
should be four. The CV is estimated correctly in the frame, but the information on direction
of propagation is insufficient. In the last two frames it can be clearly seen how the algorithm
chooses the shortest arrows possible, underrepresenting the faster-propagating parts of the
wave, thus underestimating CV.

In Figure S.12b is shown the performance of the generalised MCMF algorithm with
maxArrows = ’auto’, showing improved tracking of the previously underrepresented parts
of the wave. The perpendicular arrow pairs in certain regions is an artifact caused by the
use of synthetic data in this example which rarely observed in real data; weighted spatial
averaging of the arrows might be performed to obtain more smooth velocity field. Figure
S.12c,d shows the output of Baylys method on the same data (differing in neighbourhood
size of 35 and 60 respectively). It is noteworthy that Baylys algorithm also does not work
perfectly in this case as arrows leaving blobs in frames 1 and 2 are either not present due to
poor conditioning or they are too long and the CV is overestimated in some other regions
as well (e.g., the arrow from the blob at the location of x=90, y = 100).

Unfortunately, the generalisation of MCMF with maxArrows> 1 does not always perform
better than the basic version of the algorithm. The first example is a wave leaving field of
view in a corner, as shown in Figure S.13, where the generalised algorithm considers the wave
leaving the field of view to be genuinely narrowing, while the basic algorithm and Bayly’s
method maintain its relative straightness. At the same time, it is important realise that the
same wave morphology might happen within field of view due to conduction heterogeneity
making a wave narrow down; in such a case, the generalised MCMF with maxArrows> 1
would provide the best tracking information.

There are two cases where MCMF with maxArrows> 1 may generate incorrect track-
ing information. First, in the case of steep increase in wavefront size, the method becomes
more vulnerable to noise causing a non-spiking blob to be randomly detected as spiking in
the vicinity of the main wave; in such a case, the larger value maxArrows is allowed, the
more artefactual arrows will enter or leave these ”fake-spiking” blobs, polluting the tracking
information. A second problematic case happens when a slow wave is imaged at high sam-
pling frequency: even if the wavefront maintains constant size, only a fairly small proportion
of the wavefront will be tracked due to the fact that only the became-wavefront blobs are
candidates for incoming arrows. At the same time, the set of blobs allowing outcoming ar-
rows (previous-border blobs) will be comparatively large. As a consequence, multiple arrows
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Figure S.12: In a) is shown the tracking of an uneven target wave using the basic MCMF
approach. In b) is the same scenario using generalised MCMF tracking with the parameter
maxArrows set to ’auto’. In c) and d) are shown the outputs of Bayly’s algorithm for
neighbourhood size 35 and 60 respectively.
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Figure S.13: A segment of a spiral wave leaving the field of view, as tracked by MCMF with
maxArrows = ’auto’ (a), maxArrows= 1 (b), and Bayly’s method (c).

Figure S.14: Four frames of an originating target wave tracked by MCMF with maxArrows=
1.

will be pointing to most became-wavefront blobs, most of these being necessarily wrong,
overestimating conduction velocity and roughness of propagation.

We note that in real use, an obvious underrepresentation of propagation with MCMF
and maxArrows= 1 happened only fairly rarely in the data available to us and the cases
with the largest potential for steep difference (such as the first two frames capturing the
origin of a target wave) are implicitly treated by the fact that Ccoffinn requires waves to
have a sufficient size/density to be tracked in the first place. In Figure S.14 is shown a
sequence of four frames showing origin of a target wave (sample dataset dataCa2 target),
as tracked using MCMF with maxArrows= 1, showing no major systematic flaw of tracking.
The problem of under-tracking is somewhat present in the top left part of the wave between
frames 3,4, but the bulk of the wavefront is tracked correctly, even the bottom part which is
also heterogeneously quickly conducting.

For the reasons stated above, we believe that too high values of maxArrows are expected
to bring more problems than benefit and values of 1 or 2 are likely to work best, unless a
particular dataset requires otherwise.
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