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Supporting Materials and Methods 

Intensity or intensity variance thresholding 
Besides manually drawing the ROI or using an organelle-based ROI, the R mask can 

also be generated by thresholding images on the basis of intensity or the variance in 

intensity. Below, we discuss a few approaches to image thresholding. 

Frame-averaged intensity: When structural heterogeneities in the imaged sample 

remain localized (static) over the course of the experiment, the frame-averaged 

intensity can be used as a threshold. The image of the average intensity over all 

frames, , is then compared at each pixel with given thresholds, Imin and Imax, the 

minimal and maximal allowed pixel intensities, respectively, to generate R: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉𝐹 < 𝐼𝑚𝑚𝑚       𝑓𝑓        〈𝐼(𝑥,𝑦)〉𝐹 > 𝐼𝑚𝑚𝑚,    𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓    𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉𝐹 ≤ 𝐼𝑚𝑚𝑚 ,     𝑅(𝑥,𝑦) = 1                     Eq.S1 

Frame-averaged intensity thresholding performs well for separating regions in the 

sample with clear differences in intensity, for example between intra- and 

extracellular regions or between the cytosol and the nucleus.   

Rolling-window frame-averaged intensity: When structural heterogeneities in the 

imaged sample move slowly but remain localized (static) over at least 2ΔF+1 frames, 

averaging over a sliding window of 2ΔF+1 frames can be performed. In this case, the  

average intensity image is calculated between frames (f-ΔF) and (f+ΔF), , and 

the intensity at every pixel compared with the threshold intensities, Imin and Imax, to 

generate a frame-specific ROI mask of size X×Y×(F-2ΔF): 

𝑓𝑓𝑓      〈𝐼(𝑥,𝑦)〉∆𝐹 < 𝐼𝑚𝑚𝑚        𝑓𝑓       〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝐼𝑚𝑚𝑚 ,     𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓      𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐹 ≤ 𝐼𝑚𝑚𝑚,      𝑅(𝑥,𝑦) = 1                      Eq.S2 

Due to the window necessary for performing the rolling average, the first and last ΔF 

frames in the image are ignored for calculation of the SACF. The total Imin and Imax 

can be (i) absolute numbers, (ii) defined relatively to : 

𝑓𝑓𝑓    〈𝐼(𝑥,𝑦)〉∆𝐹 < 〈𝐼(𝑥, 𝑦)〉𝐹/𝑐      𝑓𝑓      〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝑐〈𝐼(𝑥,𝑦)〉𝐹 ,       𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓    〈𝐼〉(𝑥,𝑦)𝐹/𝑐 ≤ 〈𝐼(𝑥, 𝑦)〉∆𝐹 ≤ 𝑐〈𝐼(𝑥,𝑦)〉𝐹,       𝑅(𝑥, 𝑦) = 1              Eq.S3 
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where c defines the strictness of the threshold, (iii) defined relatively to , the 

average intensity image between frames (f-ΔF2) and (f+ΔF2) with ΔF2 > ΔF: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐹 < 〈𝐼(𝑥, 𝑦)〉∆𝐹2/𝑐    𝑓𝑓  〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝑐〈𝐼(𝑥,𝑦)〉∆𝐹2,    𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐹2/𝑐 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐹 ≤ 𝑐〈𝐼(𝑥,𝑦)〉∆𝐹2,     𝑅(𝑥,𝑦) = 1               Eq.S4 

or (iv) defined relatively to the mean intensity in any other region surrounding the 

pixel. A rolling window-averaged intensity thresholding performs well for excluding 

slowly moving bright (e.g. aggregates or oligomers) or dim (e.g. non-fluorescent cell 

organelles) regions from ICS analysis.  

Spatial-averaged intensity: When structural heterogeneities in the imaged sample are 

dynamic from one frame to the next, the spatially averaged intensity image, , 

where ΔL is the size of the spatial averaging window in each dimension in pixels, is 

useful. Again, every pixel is compared with Imin and Imax, to generate R with size (X-

ΔL)×(Y-ΔL)×F: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐿 < 𝐼𝑚𝑚𝑚       𝑓𝑓        〈𝐼(𝑥,𝑦)〉∆𝐿 > 𝐼𝑚𝑚𝑚,    𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓    𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐿 ≤ 𝐼𝑚𝑚𝑚,     𝑅(𝑥,𝑦) = 1                     Eq.S5 

We found it best to define Imin and Imax relatively to a larger spatially average image, 

, where ΔL2 > ΔL is the averaging window size per dimension.  

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐿 < 〈𝐼(𝑥, 𝑦)〉∆𝐿2/𝑐    𝑓𝑓  〈𝐼(𝑥,𝑦)〉∆𝐿 > 𝑐〈𝐼(𝑥, 𝑦)〉∆𝑙2,    𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝑙2/𝑐 ≤ 〈𝐼(𝑥,𝑦)〉∆𝑙 ≤ 𝑐〈𝐼(𝑥,𝑦)〉∆𝐿2,     𝑅(𝑥,𝑦) = 1              Eq.S6 

Typical values were ΔL2 = 30, ΔL = 10 and c = 1.5. 

Space-averaged intensity variance: Lastly, the spatial variance image, , where ΔL 

is the side length of the square in which the variance is calculated, can be compared 

with, the minimal and maximal allowed variance, σ2
min and σ2

max respectively, to 

generate R with a size of (X-ΔL)×(Y-ΔL)×F: 

𝑓𝑓𝑓        𝜎∆𝐿2 < 𝜎𝑚𝑚𝑚2        𝑓𝑓        𝜎∆𝐿2 > 𝜎𝑚𝑚𝑚2 ,           𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓        𝜎𝑚𝑚𝑚2 ≤  𝜎∆𝐿2 ≤ 𝜎𝑚𝑚𝑚2 ,        𝑅(𝑥,𝑦) = 1                     Eq.S7 

We found it best to define σ2
min and σ2

max relatively to , where ΔL2 > ΔL: 
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𝑓𝑓𝑓        𝜎∆𝐿2 < 𝜎∆𝐿22 /𝑐       𝑓𝑓        𝜎∆𝐿2 > 𝑐𝜎∆𝐿22 ,           𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓        𝜎∆𝐿22 /𝑐 ≤  𝜎∆𝐿2 ≤ 𝑐𝜎∆𝐿22 ,           𝑅(𝑥,𝑦) = 1                     Eq.S8 

Typical values were ΔL2 = 30, ΔL = 10 and c = 1.5. Since the  ratio is 

typically larger than the ratio, variance-based thresholding can be 

slightly more sensitive. Intensity and variance thresholding allow removal of dynamic 

bright (e.g. fluorescent aggregates or oligomers) or dim (e.g. non-fluorescent vesicles) 

regions from ICS analysis.  

Simulations for confined diffusion 
Random motion of particles was simulated using a pseudo-random number generator 

based on the commonly used Mersenne Twister algorithm (1). The smallest 

simulation interval was set to 1 µs. Random photon emission was also ensured by the 

pseudo-random number generator, based on the particle’s brightness and its position 

relative to the focus. The focus shape was approximated by a 2D Gaussian with a 

focal size ωr of 200 nm. The restriction to 2D movement was done to increase the 

local concentration and thus reduce the total calculation time of the simulation. The 

molecular brightness was 100 kHz. During the simulation, the focus position was 

moved to emulate the raster scanning. The total area scanned was 250×250 pixels or 

12.5 µm × 12.5 µm, with pixel, line and frame times of 12 µs, 3 ms and 750 ms, 

respectively. Consequently, the pixel size was 50 nm.  In total, 2000 particles per 

condition were simulated for a total of 100 frames. Upon exiting the simulation box, 

particles were reentered on the opposite side. Since this might lead to artifacts in the 

correlation function, the simulation box was increased to 15 µm per dimension, thus 

limiting the border effects. For each simulation two different particle types were 

simulated. The first type of particles was confined to small round compartments and 

moved with a diffusion coefficient of 2 µm2/s. The rest of the particles diffused freely 

around these confinements with D = 10 µm2/s.  

Simulations for diffusion pseudo-maps 
The same algorithms as in the previous section were employed, with the exception 

that the diffusion coefficient or, more precisely, the step sizes of the particles 

depended on their spatial position, defined by an input diffusion map. This spatial 
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diffusion distribution was generated using a map of random numbers that was 

smoothed with a Gaussian blur and rescaled to an appropriate diffusion range (Fig. 

S4A). The resolution of the map was 5 nm. The molecular brightness of the particles 

was 10 kHz for the channel used for correlation analysis and 100 kHz for the one used 

for generating the ROIs. 
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Supporting Results 

Diffusion in confinements 
In order to test the minimal size of compartments in/around which diffusion can still 

be accurately quantified with ARICS, simulations with known parameters were 

employed. Four different diameters of circular confinements were simulated: 200 nm, 

400 nm, 800 nm, and 1600 nm (Fig. S3A, from top to bottom), corresponding to 1, 2 

4, and 8 times the focus size. The confinements covered approximately 10% of the 

total image area. Concentration inside and outside were chosen such that the 

brightness inside the confinements was 4-5 times higher than in the surrounding 

space. The average count rate of all simulations was in the range of 75-80 kHz. Pixels 

with an average count rate of 70 kHz and less were attributed to the free component 

(Fig. S3A, red regions), while all pixels with more than 100 kHz were assumed to 

belong to the confinements (Fig. S3A, blue regions). The intermediate border regions 

with 70-100 kHz were omitted from further analysis.  

SACFs for diffusion outside the confinements showed a similar shape for all 

conditions (Fig. S3B). Quantitatively, a deviation of D from the simulated value was 

more pronounced at smaller confinement sizes, but always less than 10% (Fig. S3D). 

Additionally, the reflective nature of the confinements might further contribute to the 

decreased diffusion. 

SACFs for confined diffusion, on the other hand, were more affected by the 

confinement size (Fig. S3C). The SACFs exhibited a 300-500-nm dip along the fast 

scanning axis, with the depth decreasing for larger sizes and almost vanishing at 

confinement diameters that were 8 times the focus size. This dip is most likely caused 

by the confinement and the reflective borders and not by the ARICS algorithm itself. 

Quantitatively, for confinement sizes up to 400 nm, D was larger than the set value 

(Fig S3D). This is again caused by problems in correctly assigning the pixels so that 

the correlation functions still contain contributions from the freely diffusion 

component. Interestingly, in the simulations with confinements that were four time 

larger than the focus (800 nm), the individual compartments were large enough that 

miss-assignment no longer contributed to the correlation function, but small enough 

such that the confinement still significantly affected the mobility. This lead to an 

apparent D that was even lower than expected. For the largest sizes (1600 nm), the 

diffusion coefficient can be recovered to within less than 5% of the expected value. 
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Together, these results show that ARICS can reliably probe diffusion in 

compartments down to a factor of 4-8 times the focus size, which in practice means 

600-1200 nm for a realistic focus size of 150 nm. This limit can be further decreased 

by decreasing the focus size, e.g. by using STED-RICS (2). However, another limit to 

the quantitative analysis, not specific to the ARICS algorithm, is the actual influence 

of confinements of the diffusion itself. 

Diffusion pseudo-maps 
In order to test the validity of the diffusion pseudo-map generation procedure, 

simulations with known parameters were employed. The differences in the diffusion 

coefficients in the different parts of the simulated image resulted in corresponding 

differences in concentration and, therefore, also in count rate (Fig. S4A). Just as 

described in the Results part of the main text, these differences in signal intensity 

were used to sort the pixels into five ROIs. A separate channel with higher brightness 

was used for this segmentation, to limit crosstalk between the selection procedure and 

the correlations. The segmentation was based on the count rate in a 5×5 pixel and 

5-frame moving average (Fig. S4B). The additional averaging over multiple frames 

was needed due to the low concentrations and strong concentration fluctuations. The 

original diffusion map and the pseudo diffusion map generated using ARICS are 

shown in Fig. S4C and D. There is excellent agreement between the two images. 

However, as the map has gradual diffusion coefficients but the algorithm only divides 

the images into only five ROIs, the complete gradient was not recovered. Especially 

for the highest and the lowest intensity regions, the gradient was flattened by this 

undersampling. This shows that for each system the number and threshold of the 

ROIs need to be adjusted individually to ensure a good recovery of the underlying 

features, while at the same time limit the change of miss-assignment of the individual 

pixels (especially important when the diffusion and the signal intensity are not strictly 

correlated). 
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Supporting Figures 

 
Fig. S1 | Further analysis of the data from Fig 2. (A) The average raw-data SACF, 

color-coded according to the correlation value. (B) Best fit of the data from panel A to 

Eq. 14, color-coded using the weighted residuals goodness-of-fit parameter rw. The 

best fit does not provide reliable results (see red data panels E and F) because the 

error on the average SACF is very large. Hence, rw and the reduced χ2 = 1.39 are still 

relatively small. (C) The average arbitrary-ROI SACF, color-coded according to the 

correlation value. (D) Best fit of the data from panel C to Eq. 14, color-coded using 

the weighted residuals goodness-of-fit parameter rw (reduced χ2 = 1.02). (E and F) 

Experimental G(ξ,0) (symbols in panel E) and G(0,ψ) (symbols in panel F), standard 

deviation (error bars) and Gfit(ξ,0) (solid lines in panel E) and Gfit(0,ψ) (solid lines in 

panel F) corresponding to the data in panels A and B (red) and panels C and D (blue). 

The average arbitrary-ROI SACF has a much lower error and is described excellently 

by the fit model. (Plot on the upper panel) Weighted residuals rw. 
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Fig. S2 | Further information on Fig. 3. (A) Dual-color confocal image of the HeLa 

cell co-expressing Venus, MyrPalm-mYFP and mCherry. The pink arrow points 

towards the location where the z-scan shown in panel B was performed. The pink 

square marks the region shown in panel C used for the RICS analysis. The scale bar is 

5 µm. (B) Axial z-scan, clearly illustrating the enrichment of MyrPalm-mYFP at the 

bottom and top cell membrane. The black arrow points to the middle of the cell, 

where imaging for RICS was performed. (C) Zoom-in of the pink square in panel A. 

Scale bar is 1 µm. 
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Fig. S3 | Simulations for different confinement sizes. (A) Images of samples 

containing confinements of varying diameter: (from top to bottom) 200 nm, 400 nm, 

800 nm and 1600 nm, corresponding to 1, 2, 4 and 8 times the focus size, 

respectively. Blue regions contain the pixels in the confinements, red regions 

encompass the surrounding area. Gray pixels at the borders were omitted from further 

analysis. Scale bars are 2 µm. (B) SACFs calculated only using pixels from the 

surrounding area. (C) SACFs calculated with pixels in the confinements. In panels B 

and C, the fast scanning axis is shown in on the left, the slow scanning axis on the 

right. Points show the data, including the s.e.m., solid lines depict the fit. (D) 

Extracted D values for different confinement sizes for the free (red squares) and 

confined (blue circles) components. Error bars indicate the s.d. of five measurements. 

Dashed lines show the values used for the simulation. 
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Fig. S4 | Simulations for diffusion pseudo-map analysis. (A) Average fluorescence 

intensity image of the simulated experiment with 5000 particles with a molecular 

brightness of 10 kHz. (B) Single frame segmented into 5 ROIs. Maximum intensities 

for selection of the respective ROIs are given in the legend. (C) Diffusion map used 

for the simulations. (D) A pseudo-diffusion map reconstructed from the ROI 

segmentation procedure. The scale bar corresponds to 2 µm. The color table used for 

panels C and D is shown to the right. 
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Fig. S5 | Comparative analysis of the eGFP-LEDGF/p75 imaging data in Fig. 5 with 

the Number & Brightness method. (A) pixel intensity image averaged over all frames.  

(B) Epsilon (brightness) image. (C) The pixel intensity distribution histogram. (D) 

Number image, illustrating similar concentrations as with the ROI segmentation 

method (E). The pointillism-like appearance of the n image is because of low 

statistics. For the N&B analysis, pixel intensities were pre-processed using a space-

time moving average (3-pixel radius and ΔF = 3) as reported before (3). n and epsilon 

images were median-filtered (3-by-3). 
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